752

IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 8, NO. 7, SEPTEMBER 2024

Deep-Learning-Based Cross-Modality Striatum
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Abstract—Striatum segmentation on dopamine transporter
(DaT) SPECT is necessary to quantify striatal uptake for
Parkinson’s disease (PD), but is challenging due to the infe-
rior resolution. This work proposes a cross-modality automatic
striatum segmentation, estimating MR-derived striatal contours
from clinical SPECT images using the deep learning (DL)
methods. 123I-Ioflupane DaT SPECT and T1-weighted MR
images from 200 subjects with 152 PD and 48 healthy controls
are analyzed from the Parkinson’s progression markers initiative
database. SPECT and MR images are registered, and four striatal
compartment contours are manually segmented from MR images
as the label. DL methods including nnU-Net, U-Net, generative
adversarial networks, and SPECT thresholding-based method
are implemented for comparison. SPECT and MR label pairs
are split into train, validation, and test groups (136:24:40). Dice,
Hausdorff distance (HD) 95%, and relative volume difference
(RVD), striatal binding ratio (SBR) and asymmetry index (ASI)
are analyzed. Results show that nnU-Net achieves better Dice
(~0.7), HD 95% (~1.8), and RVD (~0.1) as compared to other
methods for all striatal compartments and whole striatum. For
clinical PD evaluation, nnU-Net also yields strong SBR consis-
tency (mean difference, —0.012) and ASI correlation (Pearson
correlation coefficient, 0.81). The proposed DL-based cross-
modality striatum segmentation method is feasible for clinical
DaT SPECT in PD.

Index Terms—Cross-modality, deep learning (DL), Parkinson’s
disease (PD), SPECT, striatum segmentation.

I. INTRODUCTION

HE incidence and prevalence of Parkinson’s disease (PD)
T are rapidly increasing worldwide [1], and PD is the sec-
ond most common neurological disorder [2], [3]. Dopamine
transporter (DaT) SPECT imaging is useful for the precise
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diagnosis and clinical management of PD [4], [5], especially
with the use of the U.S. FDA approved '»I-Ioflupane ligand
tracer [6]. The striatum uptake of PD patients can be observed
noninvasively via DaT SPECT at a single time point, with
uptake reduction and asymmetry relate to disease severity [7],
while disease progression can be monitored by longitudinal
SPECT. PD diagnosis from DaT SPECT is usually based on
visual assessment, which is subjective and could be biased by
intra- and inter-reader variability [8].

A reliable quantitative analysis on DaT SPECT requires
accurate segmentation of the striatal region. However, seg-
menting individual striatal compartments, i.e., left caudate
(LC) and left putamen (LP), right caudate (RC) and right
putamen (RP), on SPECT is challenging due to the infe-
rior spatial resolution from current general-purpose scanners.
Thresholding-based techniques [9], clustering-based algo-
rithms [10], and region-based active contour methods [11]
have been developed to assist SPECT segmentation, while
their inability to measure uptake of individual striatal com-
partments limit their clinical indications [12]. On the other
hand, MRI provides high spatial resolution and excellent
soft tissue contrast for the striatum segmentation and sub-
sequent quantitative analysis, which is regarded as the
ground truth [13], [14]. Although there are existing automatic
or semi-automatic MR image segmentation tools, such as
FreeSurfer [15] and FMRIB Software Library [16], manual
segmentation is still the gold standard for striatal analysis.
However, it is very time-consuming and labor-intensive. In
addition, integrated SPECT/MR systems are not yet com-
mercially available, so precise registration between the MR
and SPECT images is still required if MR is used to guide
the SPECT segmentation. Some patients also do not have
prior MR scans. Therefore, an automatic cross-modality seg-
mentation method for SPECT is desirable, to obtain the
corresponding MR striatum contour maps.

Recently, deep learning (DL)-based segmentation meth-
ods have been extensively developed for various medical
images [17], and preliminarily applied on simulated DaT
SPECT [18], while it is clinically relevant to explore DL meth-
ods for cross-modality striatum segmentation on the clinical
SPECT data. Existing works using cross-modality image seg-
mentation mainly focus on structural imaging, such as MRI to
CT or CT to MRI [19], [20], and some works use CT, MR, and
PET images for multimodality image segmentation [21], [22].
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TABLE I
PATIENT CHARACTERISTICS IN THIS STUDY

Training Validation Testing
data data data Total
Number of 136 24 40 200
subjects
Gender
(Male/Female) 89/47 17/7 25/15 131/69
Age* 61.14+ 60.43+ 60.43+ 60.91+
(Year) 9.39 9.78 10.49 9.67
D1a ﬂOSiS PD PD PD PD
N %n bor (104,76%)  (18,75%)  (30,75%) (152, 76%)
» u o HC HC HC HC
ereentage) (35 5405 (6,25%)  (10,25%)  (48,24%)

*Data are presented as mean + standard deviation.

Similar techniques should also be applicable to SPECT.
Among the existing DL methods, U-Net is a classic and
widely used segmentation network for medical images [23].
It adopts a symmetric encoder—decoder structure and fuses
multiscale features through skip connections [24]. In addition,
generative adversarial network (GAN) is also gradually widely
used in medical image segmentation, such as using conditional
GAN (cGAN) for breast mass segmentation [25] and attention-
assisted GAN for cerebrovascular segmentation [26]. However,
adversarial models often face the challenge of training insta-
bility [27]. On the other hand, nnU-Net is an improved and
extended network based on the U-Net model [28], which
is more stable than the adversarial models. It retains the
basic architecture of U-Net, while introducing some key
improvements, such as a self-configuring network structure
and various built-in preprocessing and post-processing tech-
niques. nnU-Net exhibits stronger generalization performance
through a series of improvements as compared to U-Net [29],
especially in MR brain image segmentation [30]. However, it
has not been applied to SPECT images as well as for cross-
modality image segmentation. In this study, we propose an
nnU-Net-based cross-modality striatum segmentation method
to estimate MR striatum contour maps from clinical DaT
SPECT images, and compare it with 1) SPECT thresholding-
based segmentation (THR-Seg) method; 2) standard U-Net;
3) cGAN [31]; and 4) squeezed-and-excitation attention-based
cGAN (Att-cGAN) [32] models.

II. MATERIALS AND METHODS
A. Patient Data Set

123 Ioflupane DaT SPECT and T1-weighted MR images
from 200 anonymized subjects [152 PD and 48 healthy con-
trols (HCs)] were analyzed from the Parkinson’s progression
markers initiative (PPMI) database (http://www.ppmi-
info.org, [33]). All human subject research procedures and
protocols were exempt from review board approval. The
patient data were divided for training, validation, and testing
(136: 24: 40), while keeping the similar proportion (~3:1) of
the PD and HC in each group (Table I).

The image size of the DaT SPECT data was 91 x 109 x 91
and the voxel size was 2 x 2 x 2 mm>. The matrix sizes

of MR images varied, including nine types, such as 176 x
240 x 256, 256 x 240 x 160, and 256 x 256 x 176, etc.,
with a voxel size of 1x1x1 mm?>. The SPECT images were
first rigidly co-registered to their corresponding MR images
automatically using the ITK-SNAP [34], i.e., using MR as
the fixed images and then refined manually. Four individual
striatal compartments, i.e., LC, RC, LP, and RP, were manually
delineated from the MR images, serving as the gold standard.
The registration, resampling, and segmentation processes were
all performed by a nuclear medicine physician with ten years
of experience [Fig. 1(a)]. To ensure a consistent input image
size for the network model and efficiency of training, all MR
and SPECT images were converted to a matrix size of 128 x
128 x 48 and a voxel size of 1 x 1 x 1 mm?, extracting the
striatum region for further analysis.

In addition, the activity uptake within caudate and putamen
varied in clinical SPECT images for different PD stages. We
further stratified the testing dataset according to SPECT visual
interpretation assessment scheme [35] (Fig. S1 in the sup-
plementary material): 1) normal category (NC); 2) abnormal
category 1 (ANC1); 3) abnormal category 2 (ANC2); and
4) abnormal category 3 (ANC3). Moreover, in the clinical
practice, the patient head orientations could be different across
different DaT SPECT scans. We investigated this variation by
rotating the testing patient datasets from 0° to 180°, with an
interval of 10°.

Z-scoring normalization and various data augmentations,
such as scaling, rotation, and Gaussian blur were used to
preprocess the SPECT brain images for nnU-Net. Based
on our ablation experiment, Gaussian blur improved our
segmentation model performance (Table S1 in the supple-
mentary material), while mirror flipping misclassified the
left or right striatal components, degrading segmentation
performance (Table S2 in the supplementary material). Thus,
mirror flipping augmentation was not used in this study.
Unlike nnU-Net, the baseline networks did not build-in a
self-configuring network structure with various pre- and post-
processing techniques. Therefore, min-max normalization and
four times rotation-based augmentation were implemented for
the baseline networks. All processed SPECT images were
then paired with MR-based striatal contour maps (containing
LC and LP, RC and RP) before inputting to the networks as
supervised learning [Fig. 1(b)]. For THR-Seg, the threshold
was set to be 67% of the maximum intensity of the SPECT
images for each subject [36], [37].

B. Deep Learning Method

A 3-D nnU-Net was used for cross-modality striatum
segmentation [Fig. 1(c)]. Similar to a standard 3-D U-Net, the
network included a down-sampling encoder followed by an
up-sampling decoder. In the down-sampling path, the input
image first underwent one layer of two 1 x 3 x 3 convolution
operations, and then went through five layers of two 3 x
3 x 3 convolutions. Each convolution was followed by an
instance normalization (IN) layer and a leaky rectified linear
unit (LReLU) activation function. The up-sampling process
was implemented by a transposed convolution. Four layers of
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Fig. 1.

Workflow and nnU-Net model used in this study. (a) Data acquisition from PPMI database. (b) Data pre-processing of down-sampling, normalization

and augmentation. (c) Deep learning model architecture in the training and validation process. (d) Model testing and evaluation metrics.

two 3 x 3 x 3 convolutions were performed first, and one
layer of two 1 x 3 x 3 convolutions were followed. Each
convolution was also followed by an IN layer and an LReLU
activation function, similar to the down-sampling process.
An 1 x 1 x 1 convolution and softmax activation function
were added in each up-sampling layer (except the first two
layers). Their convolution output was mapped to a probability
distribution to calculate the deep supervision loss (L) and was
used to incorporate feature information from deeper layers
to shallow layers for training the network. L integrated Dice
loss and cross-entropy loss between the layers output and
the corresponding down-sampled MR labels, and it was the

weighted sum of the losses output by the decoders, i.e., L =
wi X Ly + wy X Ly + w3 X L3 + wg X L4, the weights
(w) were sequentially halved as the feature map decreases,
ie, wp = 8/15, wp = wy/2 = 4/15, w3 = wp/2 = 2/15,
ws = w3/2 = 1/15, and the sum of all weights was 1. The
four individual striatal compartments correspond to the four
channels of model output, and L was calculated independently
for each channel. We implemented the network using the
PyTorch which ran on a NVIDIA RTX A6000 GPU. The
stochastic gradient descent (SGD) with a Nesterov momentum
optimizer was used to optimize the segmentation model with
an initial learning rate of 0.01, running up to 1000 epochs. The
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Fig. 2. Comparison of different striatal segmentation methods. Sample images for one HC and one PD subjects. Grey: MR striatal labels. Purple: WS. Green:

RC. Yellow: RP. Red: LC. Blue: LP.

experimental environment, basic network parameter settings,
training, validation, and testing data of the baseline networks
were consistent with those of the nnU-Net model. The model
training time was 16.6 h for nnU-Net, 18.5 h for U-Net, 22.5 h
for cGAN, and 24 h for Att-cGAN.

C. Data Analysis

Physical metrics, i.e., Dice [38] (1), Hausdorff dis-
tance (HD) 95% [39] (2-1) and relative volume difference
(RVD) [40] (3) were employed to evaluate the segmentation
performance between segmented striatal maps of different
algorithms and MR labels

. 2 x |ANB]|
Dice = —— (D
|A] + |B]
HD 95% = max(h(A, B), h(B, A)) x 95% 2-1)
h(A,B) = max{min lla — b||} 2-2)
acA | beB
h(B,A) = max {min 16— a||} (2-3)
beB | acA
RVD — |Volumep — Volumey | 3)

Volumey4

where A is the MR label and B is the segmented striatal map.
||I-|| means the Euclidean distance between point a and point b.
Metrics of the whole striatum (WS) and individual striatal
compartments were presented in violin plots.

For the clinical evaluation, striatal binding ratio (SBR)
was used to quantify the binding of '*’I-Ioflupane in the
striatum [14] (4). The striatal asymmetry index (ASI) was used

to assess the asymmetry of uptake between the left and right
striatum [13] (5)

Mean_Countsgo; — Mean_Countsp,ckground

SBR = 4)

Mean_Countspackground
SBRiert Ro1 — SBRiight ROI

SBRieft RO1 4+ SBRyight ROT

ASI =

x 100% (5)

where the regions-of-interest (ROIs) include the WS and
individual striatal compartments. The background area was
chosen from a uniform cerebellum region (20 x 10 x n, n =
13 — 18, depending on the size of the striatum), excluding
ventricular regions [Fig. 1(d)]. The SBR differences, 95%
confidence interval (CI) and mean absolute difference (MAD)
between the striatal compartments from different segmentation
methods were compared with the MR labels, presented in
Bland-Altman plots. A paired two-tailed student t-test was
used to assess the statistical difference between different
segmentation methods and MR labels, with a p-value of <0.05
indicated statistical significance. Meanwhile, the ASI of the
segmented striatal maps was also correlated with the MR
labels. R? and Pearson correlation coefficient (PCC) were
obtained in the scatter plots.

III. RESULT

Sample SPECT images, MR labels and segmentation results
from one HC and one PD subjects are shown in Fig. 2. For
the THR-Seg method, the uptake in the striatum in the SPECT
image can be directly obtained, but the caudate and putamen
cannot be separated. For the DL-based methods, four striatal
compartments, including LC, RC, LP, and RP, can be well
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Fig. 3. Violin plots of physical metrics between MR labels and maps segmented by different methods for WS and individual compartments. The lines from
top to bottom in the plots represent the first quartile, median, and third quartile. (a) WS. (b) LC. (¢) RC. (d) RP. (e) LP.

separated, and the segmented striatum maps are relatively
similar to the MR labels for these two patients.

Fig. 3 shows the physical evaluation results of the WS and
four striatal individual compartments of 40 tested subjects,

including Dice, HD 95%, and RVD, and is presented as
a set of violin plots. For the WS, DL-based segmentation
methods are obviously superior to the THR-Seg method, with
higher Dice, lower HD 95%, and RVD. For each striatal
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Fig. 4. Bland-Altman plots of SBR between MR labels and maps segmented by different methods for WS and individual compartments. The MAD and

p-values are also shown. LC: left caudate. RC: right caudate. RP: right putamen. LP: left putamen.

compartment, it cannot be segmented by THR-Seg, so the
corresponding physical indices cannot be obtained. Compared
to other networks, nnU-Net achieves better Dice (~0.7), HD
95% (~1.8), and RVD (~0.1).

Fig. 4 analyses the consistency of the clinical indicator, i.e.,
SBR between the MR labels and maps segmented by different
methods for the WS and individual compartments using
the Bland-Altman plots. The MAD and p-values between the
labels and segmented striatal maps are also presented. For the
WS, nnU-Net exhibits better consistency (95% CI of [—0.183,
0.160]) as compared to THR-Seg ([—1.185, 0.109]), U-Net

([—0.493, 0.235]), cGAN ([—0.217, 0.147]), and Att-cGAN
([—0.227, 0.144]). The SBR difference between the THR-
Seg and MR label is relatively large (—0.538) and not shown
on the plot. Meanwhile, nnU-Net also obtains the lowest
9%MAD (6.79 £ 5.47), and there is no significant difference
(p = 0.398) between striata segmented by the nnU-Net and
MR labels. The segmentation performance of both the GAN-
based methods (cGAN, %MAD, 7.42 4+ 6.43 and Att-cGAN,
9%MAD, 7.81 £ 6.58) is better than the U-Net (%MAD, 15.26
4 16.39). For the caudate and putamen components, nnU-Net
also achieves better consistency and lower MAD than others.
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Fig. 5. Scatter plots of ASI between MR labels and maps segmented by different methods for WS and individual compartments. The solid lines represent

the best-fit lines and the dotted lines represent the 95% confidence bands of the fitted lines.

Fig. 5 illustrates the correlation assessment of the another
clinical indicator, i.e., ASI between MR labels and maps
segmented by different methods using scatter plots. Results
show stronger correlation between striata segmented by nnU-
Net and MR labels with a fitting slop of 0.74 and a PCC
of 0.81, than that of Att-cGAN (slope, 0.73 and PCC, 0.80),
c¢GAN (slope, 0.67 and PCC, 0.75), and U-Net (slope, 0.58
and PCC, 0.70). The fitting results between striata segmented
by the THR-Seg and MR label is not shown due to its inferior
performance (slope, 1.04 and PCC, 0.37). For the individual
striatal compartments, the ASI assessment results of nnU-Net
are also generally superior (PCC = 0.72 in caudate and 0.70
in putamen) to others.

We find that with the decrease of caudate/putamen uptake,
the segmentation performance of the proposed nnU-Net-based
model declines (Fig. S2, Table S3 in the supplementary
material). For example, for NC, Dice can reach 0.75, but
drop to 0.73 for ANCI1. For ANC2 and ANC3, Dice is only
0.68. Our results (Figs. S3 and S4 in the supplementary
material) also show that with head rotation starting from 50°,
the segmented striatum begins to deviate greatly from the MR
label, with the Dice begins to drop <0.6; HD 95% exceeds 3;
and RVD fluctuate relatively smoothly between 0.1-0.25.

IV. DISCUSSION

This work proposes DL-based cross-modality automatic
striatum segmentation methods to separate four individual

striatal compartments based on the clinical DaT SPECT
data. Selecting MRI striatal contours as labels for the
cross-modality segmentation is based on the following two
points.

1) The uptake of each striatal compartment can usually not

be able to be resolved on SPECT images due to its infe-
rior spatial resolution, making it impossible to conduct
quantitative analysis on each compartment which has
significant clinical impact [41]. For example, the caudate
is involved in movement control and memory formation
while the putamen is involved in action planning and
execution. The striatal compartment structures can be
discriminated on MR images to obtain SBR and ASI of
different striatal structures [13], [14].
Although SPECT THR-Seg method is also commonly
used for DaT SPECT, the segmentation accuracy highly
depends on the selected threshold. In addition, SPECT
images are more affected by the partial volume effect
due to the limited resolution, increasing the difficulty
of SPECT-based segmentation. On the contrary, the
structural boundary of the striatum in MR images are
relatively fixed along the development of the disease.
The proposed method would allow for more consistent
quantification of the DaT SPECT uptake to moni-
tor the progression of PD. However, comparison of
our proposed method with other baseline segmentation
methods for longitudinal images is beyond the scope of
this study.

2)
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In data preprocessing, the rigid registration of MR and SPECT
before manual segmentation is important as they are acquired
at different time points and under different scanners, and
should be appropriate as the head is a rigid body. However,
cross modality registration is challenging as MR and SPECT
are with different image characteristics and resolutions, which
may affect the accuracy of the registration. However, the two
images are generally well aligned after the registration based
on our visual assessment in this study. To model a more
realistic clinical scenario where patients’ head positions may
be tilted, we test SPECT images with different rotation angles.
We find that the performance of the proposed algorithm is
relatively stable within a rotation of 50°, which is applicable
for most real clinical cases.

From the visual assessment, compared with the standard
U-Net, cGAN, and Att-cGAN, the proposed nnU-Net-based
method obtains more similar shape of striatal components
with MR labels, while individual striatal compartments cannot
be separated by the SPECT THR-Seg method. Dice, HD
95%, and RVD indices are used to quantitatively evaluate the
spatial similarity and volume difference of segmented striatum.
Dice is more sensitive to the internal padding, while HD
95% pays more attention to the boundaries and RVD mea-
sures the volumetric accuracy of segmentation results. From
Fig. 3, nnU-Net yields more stable and better indices, prob-
ably attributed to the optimized network parameter selection
according to a specific task. For nnU-Net, we also considered
the difference between the volume of each segmented striatal
component and the volume of the corresponding MR label in
the loss function, but no improved segmentation performance
observed, thus it was not incorporated in the final version. On
the other hand, the physical metrics of GAN-based methods
are generally better than standard U-Net due to the adver-
sarial training characteristic of GAN, consistent with existing
studies [42].

In the PD-related clinical analysis, SBR can be used to
differentiate PD patients and HC, assess the impact of drug
efficacy, and track changes in striatal binding during disease
progression [43]. On the other hand, higher ASI values indi-
cate greater asymmetry, which may be associated with disease
progression or pathological changes [44]. The striatal map seg-
mented by nnU-Net has a strong SBR consistency (mean SBR
difference =-0.012) and ASI correlation (PCC = 0.81) with the
MR label. It is also superior to other segmentation methods by
comparing SBR difference and 95% CI, as well as ASI fitting
slope and PCC. In the correlation assessment of ASI, GAN-
based methods still exhibit better performance compared to
U-Net, which is consistent with physical evaluation.

The cross-modality segmentation task is relatively challeng-
ing. In the model testing stage, only SPECT data is input, and
the expected output is the striatal contour maps segmented
from the paired MR image, containing four individual com-
partments. There is a large gap between the input and the
output, and almost all of the structural information is obtained
through the supervised DL network, resulting a Dice of ~0.7
for the proposed method. To explore if various activity uptake
patterns in the caudate and putamen on SPECT images at
different PD stages affect the segmentation performance, we

stratify the patient data into NC and PD stages, and find that
the segmentation performance decreases with the deterioration
of PD. The attributed reason is probably that as PD progresses,
the uptake in the putamen gradually decreases (ANCI1-2),
while even the caudate uptake begins to decrease for ANC3.
Therefore, it is more difficult to learn the MR contours
from SPECT images. However, the subsequent SBR and
ASI obtained by the proposed method still have considerable
consistency and correlation with MR labels in clinical analysis,
indicating our method should be clinically relevant. The
existing automatic striatum segmentation study [18] proposes
a tissue-fraction estimation-based DL segmentation method
evaluated on simulated SPECT data, with a Dice of ~0.8.
Our results may not be directly compared as their study was
based on 580 simulated data with only normal subjects while
ours was based on 200 clinical data with both the PD and HC
subjects from multiple centers. The SPECT image of PD has
less striatal uptake and is much different to the corresponding
MR image (Fig. 2). Besides, the anatomical gold standard of
the reference study was obtained by automatic segmentation
of MR images using the Freesurfer software, while ours was
based on manual segmentation. Therefore, our task is expected
to be more challenging than the reference study and lower
Dice should be justified.

In addition to the striatum, other structures in the brain,
such as the globus pallidus and substantia nigra could also
be used for PD diagnosis [45]. The globus pallidus can
receive neuronal information from the striatum for movement
regulation, while the substantia nigra is a major dopamine-
producing region in the brain. For the proposed nnU-Net-based
model, segmenting the globus pallidus and substantia nigra
requires corresponding MR label data for supervised training.
The globus pallidus is located on the inner side of the striatum
and is smaller than the striatum; while the substantia nigra is
located in the midbrain and is smaller than the striatum and
globus pallidus. Segmenting these small and adjacent brain
structures across modalities is a greater challenge. Advanced
network models and image processing technologies to segment
these brain structures for PD analysis are warranted for further
investigations.

There are other limitations for this study. More dataset will
be warrant to verify the effectiveness of the proposed model.
Besides, although PPMI contains multicenter and multiscanner
data, more external data is still needed for model verification to
explore the generalization and robustness of the segmentation
model. In addition, the striatum maps segmented by the
proposed method still have certain discrepancies with the MR
labels, especially at the edge of the striatum. More advanced
models are warranted to further improve the segmentation
performance.

V. CONCLUSION

Our proposed DL-based cross-modality automatic striatum
segmentation method, is feasible to segment four MR-like
individual compartments on clinical DaT SPECT for PD based
on evaluation on the PPMI multicenter data. The proposed
nnU-Net-based method is superior to standard U-Net, cGAN,
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Att-cGAN, and SPECT-based THR-Seg method, both in phys-
ical (Dice, HD 95% and RVD) and clinical metrics (SBR and
ASI). The proposed DL method is promising for the clinical
DaT SPECT segmentation.
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