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Abstract—This study aims to investigate robust attenuation
correction (AC) by generating attenuation maps (µ-maps) from
nonattenuation-corrected (NAC) brain SPECT data using transfer
learning (TL). Four sets of brain SPECT data (4×30) were
retrospectively collected: S-TRODAT-1, S-ECD, G-TRODAT-1,
and G-ECD. A 3-D attention-based conditional generative
adversarial network was pretrained using 22 paired 3-D NAC
SPECT images and corresponding CT µ-maps for four patient
groups. Various numbers (n = 4–22) of paired NAC SPECT and
corresponding µ-maps from S-TRODAT-1 were then used to fine-
tune (FT) the other three pretrained deep learning (DL) networks,
i.e., S-ECD, G-TRODAT-1, and G-ECD. All patients in S-TRODAT-
1 group were tested on their own network (DL-AC), and on the
pretrained models with FT (FT-AC) and without FT (NFT-AC).
The FT-AC methods used 22 (FT22), 12 (FT12), 8 (FT8), and 4
(FT4) paired data for FT, respectively. Our results show that FT22
and FT12 could outperform DL-AC for cross-tracer S-ECD and
cross-scanner G-TRODAT-1 using CT-based AC (CT-AC) as the
reference. FT22 also outperforms DL-AC for cross-tracer+cross-
scanner G-ECD. FT8 performs comparably to DL-AC, while FT4
is worse than DL-AC but still better than NAC and NFT-AC in each
group. Attenuation map generation is feasible for brain SPECT
based on cross-tracer and/or cross-scanner FT-AC using a smaller
number of patient data. The FT-AC performance improves as the
number of data used for FT increases.

Index Terms—Attenuation correction (AC), brain SPECT,
99mTc-TRODAT-1, 99mTc-ECD, transfer learning (TL).

I. INTRODUCTION

THE PREVALENCE of neurodegenerative diseases, such
as Parkinson’s disease (PD) and Alzheimer’s disease
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(AD), is increasing yearly, posing substantial economic and
societal burdens [1]. Early and accurate diagnosis is crucial
for the patient management of neurodegenerative diseases.
Dopamine transporter (DAT) SPECT has been widely used
in the early diagnosis of PD [2], [3], [4] due to its
ability to detect nigrostriatal dopaminergic cell neurons accu-
rately [5]. Commonly used radiopharmaceuticals for DAT
SPECT include 123I-FP-CIT [6] and 99mTc-TRODAT-1 [7],
while the latter is a more cost-effective approach without
the need for a cyclotron. Visual assessment combined with
quantification matrices, e.g., specific binding ratio (SBR) and
the asymmetry index (ASI) of the left and right striatal uptake,
is a standard clinical practice for PD diagnosis [8]. On the
other hand, 99mTc-ECD provides a noninvasive and quantita-
tive measure of regional cerebral blood flow [9], [10]. It has
been used for differential diagnosis [11], disease progression
monitoring [12], and assessment of treatment efficacy [13]
in various neurodegenerative diseases, such as AD. However,
photon attenuation limits the quantitative accuracy for tracer
uptake in SPECT, and this effect is more pronounced in the
center of the field of view. Therefore, attenuation correction
(AC) is essential for brain SPECT [14].

CT-based AC (CT-AC) is feasible for brain SPECT when
bimodal SPECT-CT is available [15], while it is unavail-
able for standalone SPECT or dedicated SPECT scanners
for organ-specific imaging [16]. Moreover, CT and SPECT
registration may be affected by the voluntary and involuntary
head movements of neurodegenerative patients [17], [18].
CT radiation may also increase cancer risk [19]. Chang’s
method [20] was developed for CT-less brain SPECT
AC (Chang-AC), assuming homogenous tissue distribution.
However, Chang-AC does not consider the substantial atten-
uation from the skull bone and the head-holder of the
scanner, leading to inferior performance as compared to
CT-AC. Nutys et al. [21] proposed a maximum-likelihood
reconstruction of attenuation and activity (MLAA) method
to simultaneously reconstruct tracer activity and attenuation
maps (μ-maps) without CT or transmission scan. However,
this method is limited by image artifacts and high noise due
to crosstalk between the estimated attenuation and activity
distribution.

Deep learning (DL) has shown promise for SPECT and PET
AC [22], [23]. Two DL-based AC strategies have been used for
brain SPECT, including attenuation map generation [24], [25]
and attenuation-corrected SPECT image generation [26], [27].
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TABLE I
PATIENT DEMOGRAPHICS, SPECT/CT IMAGE ACQUISITION, AND RECONSTRUCTION SETTINGS

Previous studies have shown that using DL to generate
attenuation maps is superior to using DL to directly generate
attenuation-corrected images in cardiac SPECT [28]. Thus, the
former strategy is further investigated in this study. However,
standard DL methods usually require a large number of train-
ing datasets from the same scanner and tracer. It is particularly
challenging for brain SPECT, where clinical data are relatively
limited [29]. Transfer learning (TL) has been introduced to
alleviate the limited data problem for model training, using
a small set of target data for training based on an existing
source model. Fine-tuning (FT) is an important strategy in
TL that reuses a pretrained model for new related tasks [30].
Chen et al. [31] reported that FT-based AC improved the DL-
based AC performance, facilitating the clinical adoption of
DL-based AC on new scanners and tracers for myocardial
perfusion SPECT. However, the effect of the number of FT
data on the performance of FT-based AC methods and the
evaluation of different data types for network pretraining are
yet to be investigated. The robustness of FT-based AC on brain
SPECT also needs further validation.

In this study, we developed a 3-D attention-based condi-
tional generative adversarial network (AttGAN) to estimate
μ-maps from nonattenuation-corrected (NAC) SPECT images
for brain SPECT using DL-based and FT-based AC strate-
gies. The attention mechanisms effectively capture long-range
dependencies in structural information across large regions
to enhance interslice and intraslice attention [32]. We

demonstrated the feasibility of generating μ-maps for brain
SPECT using FT-based AC with a smaller number of cross-
tracer and/or cross-scanner patient data as compared to
DL-based AC. Qualitative and quantitative assessments for
different AC methods were performed using CT-AC SPECT
as the reference.

We made notable enhancements in this work compared to
our preliminary conference abstract [33].

1) We further optimized the network architecture and loss
function to improve the network model performance,
leading to enhanced image quality and quantitative accu-
racy of the generated μ-map and reconstructed SPECT
images.

2) We performed additional qualitative and quantitative
assessments, particularly for clinical indicators, such as
SBR and ASI, which were not evaluated before.

3) Based on a more comprehensive qualitative and quan-
titative assessment, we revised the conclusions of our
preliminary work.

II. MATERIALS AND METHODS

A. Patient Information and Image Acquisition

One hundred and twenty anonymized patients from two
affiliated hospitals were retrospectively recruited under local
ethics approval (SCMH_IRB No. 1110704). Half of the
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Fig. 1. Schematic of the 3-D AttGAN architecture.

patients (n = 60) were injected with 1110 MBq 99mTc-
TRODAT-1, while the other half were injected with the same
dosage of 99mTc-ECD. For each tracer group, half of the
patients (n = 30) were imaged with scanner G (Infinia, GE
HealthCare, USA), while half of them were imaged with
scanner S (Symbia, Siemens Healthineers, Germany). Thus,
there were a total of four groups of data: S-TRODAT-1,
S-ECD , G-TRODAT-1, and G-ECD. Patient demographics
and acquisition protocols of the two scanners are shown in
Table I. For each scanner, low-dose CT was acquired after
the SPECT scan and converted to the attenuation map using
a bilinear model [34]. SPECT projections were reconstructed
using the ordered subset expectation maximization (OS-EM)
algorithm, followed by a 3-D Gaussian post-reconstruction
smoothing with or without CT-AC. The attenuation map
was registered to the corresponding SPECT data with no
mismatches observed.

B. Image Preprocessing

All image data were resampled to a matrix size of
128×128×128 with a voxel size of 2.697×2.697×2.697 mm3,

the same as the scanner S default settings for the sub-
sequent network training. The voxel values of all NAC
SPECT images were normalized to [0, 0.1] to match
the image intensity range of μ-maps. Subsequently, paired
3-D NAC SPECT images and μ-maps were multiplied
by an empirical value of 100 to stabilize the network
training [35]. Four kinds of data augmentation were
performed for all training data using the Augmentor3D pack-
age (https://github.com/amogh3892/Augmentor3D), including
rotation with 10◦, horizontal flipping, translation with (5, 5, 0)
voxels, and shearing with (0.05, 0.05) magnitude.

C. Network Architectures

Inspired by [36], we implemented a 3-D AttGAN, which
includes a discriminator D and a generator G, as shown in
Fig. 1. The generator loss LG and the discriminator loss LD

are defined as follows:

LG(x, y) = Ladv(x) + λSL1(G(x), y) (1)

LD(x, y) = 1

2
((D(x, y) − Treal)

2 + (D(x, G(x)) − Tsynthetic)
2)

(2)
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Fig. 2. Schematic of (a) DL-AC, NFT-AC, and FT-AC methods, and (b) striatum ROIs (red mask) and background (blue mask) used in this study.

where x is the NAC SPECT image, and y is the target μ-map.
Ladv is the adversarial loss function of the generator, SL1 is
the smooth L1 loss function, which combines the advantages
of L1 and L2 loss [37]. Ladv and SL1 are defined as

Ladv(x) = 1

2
(D(x, G(x)) − Treal)

2 (3)

SL1(x, y) =
{

0.5(y − G(x))2, |y − G(x)| < 1
|y − G(x)| − 0.5, otherwise

(4)

where Treal = 1 and Tsynthetic = 0 are labels for the
discriminant results of real and synthetic images, respectively.
λ is the weight for SL1 loss and is set to 10 in this study [38].
We implemented the 3-D AttGAN using Pytorch on a Linux
workstation with an NVIDIA RTX A6000 GPU (48 GB). The
generator G in this work consisted of a 3-D U-net with three
encoder–decoder layers and a Resnet with two blocks. The
encoder and decoder consisted of three layers with 3×3×3
convolutional kernels, each followed by an instance normal-
ization (IN) layer and a rectified linear unit (ReLU) activation
function. A convolution layer with a stride of 2 and 3×3×3
kernels was used for downsampling. The number of feature
channels was doubled in each downsampling step. A nearest
neighbor interpolation was used for each upsampling step,
followed by a convolutional layer with 3×3×3 kernels, and
the number of feature channels was halved. Attention modules
were incorporated along with skip connections between the
output of the 2nd and 3rd layers in the encoder and the
corresponding layers in the decoder. The residual blocks were
used to extract the deep features after two downsampling
steps with a 0.5 dropout ratio. The discriminator was a
convolutional neural network (CNN) architecture consisting
of four convolutional layers, a fully connected layer and a

sigmoid layer. The first convolution layer of the discriminator
consisted of 64 3×3×3 kernel convolutions with a stride of 2,
followed by the leaky ReLU (LReLU) function. The 2nd to 4th
convolutional layers consisted of 3×3×3 kernel convolutions
with a stride of 2, followed by a batch normalization (BN)
layer and the LReLU function. The slope of the LReLU
function is 0.2. The number of convolution kernels in the
following layers was twice that of the previous convolution
layers.

D. Network Training

The 3-D AttGAN was pretrained by 22 paired 3-D NAC
SPECT images and corresponding μ-maps for each of the four
datasets, respectively. The pretrained network using paired
S-TRODAT-1 data served as the baseline (DL-AC) and was
tested by fivefold cross-validation in this study. NAC SPECT
images and corresponding μ-maps from 22, 2, and 6 patients
were used for training, validation, and testing the network
in each fold. Various numbers (n = 4–22) of paired NAC
SPECT and corresponding μ-maps from S-TRODAT-1 were
then used to FT the other three pretrained DL networks,
i.e., S-ECD, G-TRODAT-1, and G-ECD. All patients in the
S-TRODAT-1 dataset were tested on the FT networks (FT-AC)
as well as on pretrained networks without FT (NFT-AC) from
cross-validations. The FT-AC methods used 22 (FT22), 12
(FT12), 8 (FT8), and 4 (FT4) paired data for FT, respec-
tively. FT22 was tested using fivefold cross-validation, with
2 and 6 patient datasets in each fold used for validation
and testing, respectively. FT12, FT8, and FT4 were tested
using twofold cross-validation, where two patient datasets
were used for validation, and the remaining patient datasets
were used for testing in each fold. S-TRODAT-1 projections
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Fig. 3. Representative results of an 80-year-old female patient. Sample axial (a) NAC SPECT image and μ-maps images of (b) CT-AC, (c) DL-AC, NFT-AC,
and FT-AC methods with different numbers of FT data for the tested S-TRODAT-1 data using (d) S-ECD (cross-tracer), (e) G-TRODAT-1 (cross-scanner), and
(f) G-ECD (cross-tracer+cross-scanner) as the pretrained network. The corresponding error map as compared to CT-AC is shown under each DL-generated
μ-map image, respectively.

were then reconstructed with the μ-maps generated from
different networks. Fig. 2(a) shows the schematic of DL-AC,
NFT-AC and FT-AC. All network models were trained for 500
epochs with a mini-batch of two images. An adaptive learning
rate with an initial value of 0.0001 was used for DL-AC and
FT-AC.

We performed an ablation study to evaluate the effec-
tiveness of the use of attention modules. DL-AC, NFT-AC,
and FT-AC were implemented using a 3-D AttGAN and
a standard 3-D conditional generative adversarial network
without attention modules (cGAN). The NFT-AC and

FT-AC were evaluated using G-TRODAT-1 as the pretrained
model.

E. Evaluation Metrics

For voxel-based analysis, normalized mean-square error
(NMSE) and structural similarity index (SSIM) were
quantified on different methods using CT-AC as the reference

NMSE =
N∑

i=1

(x(i) − y(i))2/

N∑
i=1

(y(i))2 (5)
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Fig. 4. Representative results of an 80-year-old female patient. Sample axial SPECT images of (a) CT-AC, (b) NAC, (c) DL-AC, NFT-AC, and FT-AC
methods with different numbers of FT data for the tested S-TRODAT-1 data using (d) S-ECD (cross-tracer), (e) G-TRODAT-1 (cross-scanner), and (f) G-ECD
(cross-tracer+cross-scanner) as the pretrained network. The corresponding error map as compared to CT-AC is shown under each SPECT image, respectively.

SSIM = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
(6)

where x indicates the predicted image, y indicates the reference
image, N indicates the total number of voxels, whereas i
is the voxel index. μx and μy denote the mean value of
the predicted image and the reference image. σ 2

x and σ 2
y

are the variances of the predicted image and the reference
image, whereas σxy indicates their covariance. The parameters
C1 = (k1I)2 and C2 = (k2I)2 with constants k1 = 0.01

and k2 = 0.03 were used in this work [39], and I represents
the maximum intensity of the reference image. A paired
t-test with Bonferroni correction was used to evaluate the
NMSE and SSIM results for different AC methods. A p-value
<0.05 indicates a significant difference. All statistical analyses
were performed using IBM SPSS Statistics 26 software (IBM
Corporation, Armonk, NY, USA).

The 3-D left and right striatum and 2-D background
masks [Fig. 2(b)] were manually drawn on SPECT images
of different AC methods by a nuclear medicine physician
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Fig. 5. Representative results of an 81-year-old male patient. Sample axial (a) NAC SPECT image and μ-maps images of (b) CT-AC, (c) DL-AC, NFT-AC,
and FT-AC methods with different numbers of FT data for the tested S-TRODAT-1 data using (d) S-ECD (cross-tracer), (e) G-TRODAT-1 (cross-scanner), and
(f) G-ECD (cross-tracer+cross-scanner) as the pretrained network. The corresponding error map as compared to CT-AC is shown under each DL-generated
μ-map image, respectively.

with ten years of experience. The size of 2-D background
mask (10 pixels × 6 pixels) was chosen for in the cerebellum
region, excluding ventricular regions. SBR of the whole
striatum to the background region, and ASI of the left and
right striatal uptake were evaluated for different AC methods
using CT-AC as the reference

SBR = Meanstr − Meanbg

Meanbg
(7)

ASI =
∣∣∣∣SBRleft − SBRright

SBRleft + SBRright

∣∣∣∣ × 100% (8)

where Meanstr is the mean count of the striatum and Meanbg
is the mean count of the background region. SBRleft is the
SBR value of left striatum while SBRright is the SBR value of
right striatum. Bland–Altman plots were applied on SBR and
ASI results to evaluate the difference of different AC methods
as compared to CT-AC.
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TABLE II
NMSE AND SSIM RESULTS (MEAN±SD) OF WHOLE BRAIN SPECT IMAGES FOR DIFFERENT METHODS

III. RESULTS

Figs. 3–6 show the sample results of generated μ-maps and
SPECT images of CT-AC, NAC, DL-AC, NFT-AC, and FT-AC
methods of testing S-TRODAT-1 data. The NFT-AC and FT-
AC models were based on S-ECD (cross-tracer), G-TRODAT-1
(cross-scanner), and G-ECD (cross-tracer+cross-scanner) as
the pretrained models. The corresponding error maps are
estimated using CT-AC μ-maps and SPECT images as refer-
ences. DL-AC and all FT-AC methods show improved image
quality as compared to NAC and NFT-AC. FT22 shows
the best performance for the two sample patients. NFT-AC
overestimates the μ-maps and SPECT image values for each
patient. Increasing the number of FT data improves FT-AC
performance.

Table II provides the detailed NMSE and SSIM results of
whole brain SPECT images of different methods across all
patients in the tested S-TRODAT-1 dataset, and the results
are consistent with visual image results. FT22 shows the best
performance in each group. The NMSE and SSIM of FT22 of
each group are significantly better than DL-AC (p <0.05). For
cross-scanner G-TRODAT-1, the NMSE and SSIM of FT12
are significantly better than DL-AC (p <0.05). FT8 is also
better than DL-AC but without significant difference (p >0.05).
For cross-tracer S-ECD, the NMSE and SSIM of FT12 are
better than DL-AC but without significant difference (p >0.05).
FT8 is worse than DL-AC without significant difference (p
>0.05). For cross-tracer+cross-scanner G-ECD, both FT12

and FT8 yield worse NMSE and SSIM results than DL-AC
without significant difference (p >0.05). The NMSE and SSIM
of FT4 are significantly worse than DL-AC with statistical
significance (p <0.05) in each group. NFT-AC is significantly
worse than DL-AC and all FT-AC methods, yet it outperforms
NAC in terms of NMSE and SSIM results in each group.

Fig. 7 depicts the joint histogram and linear regression
analysis results of different AC methods on whole brain
S-TRODAT-1 SPECT images across all tested patients using
CT-AC as the reference. DL-AC (slope = 1.0400, R2 =
0.984) shows a higher correlation with CT-AC than NAC
(slope = 0.3667, R2 = 0.888). For cross-tracer S-ECD and
cross-scanner G-TRODAT-1, FT22 and FT12 show better
performance than DL-AC, resulting in correlation coefficients
of (slope = 1.0281, R2 = 0.990) and (slope = 1.0169, R2

= 0.987) for cross-tracer S-ECD, (slope = 0.9990, R2 =
0.990) and (slope = 1.0299, R2 = 0.989) for cross-scanner
G-TRODAT-1, respectively. For cross-tracer+cross-scanner
G-ECD, FT22 (slope = 1.0099, R2 = 0.989) is better than
DL-AC while FT12 (slope = 1.0265, R2 = 0.980) is worse
than DL-AC. FT8 and FT4 are worse than DL-AC except
for FT8 of cross-scanner G-TRODAT-1, yet all FT results
are better than NAC and NFT-AC. NFT-AC shows better
performance than NAC in each group.

Fig. 8 shows the Bland–Altman plots of SBR and ASI
results of different AC methods across all S-TRODAT-1
patients using CT-AC as the reference. NAC shows lower
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Fig. 6. Representative results of an 81-year-old male patient. Sample axial SPECT images of (a) CT-AC, (b) NAC, (c) DL-AC, NFT-AC, and FT-AC
methods with different numbers of FT data for the tested S-TRODAT-1 data using (d) S-ECD (cross-tracer), (e) G-TRODAT-1 (cross-scanner), and (f) G-ECD
(cross-tracer+cross-scanner) as the pretrained network. The corresponding error map as compared to CT-AC is shown under each SPECT image, respectively.

SBR values (mean %Difference of −44.86) than CT-AC.
DL-AC shows a narrower distribution (mean %Difference
of 0.4228) with a smaller 95% confidence interval (CI) of
[−8.754, 9.600] than NAC. For cross-tracer S-ECD, FT22
and FT12 show better performance than DL-AC with a
smaller 95% CI of [−7.639, 7.333] and [−7.904, 10.18],
respectively. For cross-tracer G-TRODAT-1, FT22, FT12 and
FT8 outperform DL-AC, showing the 95% CIs of [−5.230,
7.886], [−5.037, 10.32], and [−4.757, 12.04], respectively. For
cross-tracer+cross-scanner G-ECD, FT22 outperforms DL-AC

with 95% CIs of [−6.825, 8.741], but FT12 is worse than
DL-AC with 95% CIs of [−8.588, 11.30]. FT8 of cross-tracer
S-ECD and FT8 of cross-tracer+cross-scanner are both worse
than DL-AC. FT4 is worse than DL-AC in each group, yet
better than NFT-AC. NFT-AC shows worse performance than
DL-AC and all FT-AC methods in each pretrained model,
but it is better than NAC in each group. Overall, cross-
scanner FT-AC shows better performance than cross-tracer
FT-AC, while both perform better than cross-tracer+cross-
scanner FT-AC in terms of SBR assessments. DL-AC is better
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Fig. 7. Joint histogram and linear regression analysis of NAC, DL-AC, different FT-AC, and NFT-AC methods on whole brain S-TRODAT-1 SPECT images
across all tested patients using CT-AC as the reference.

than NAC for the ASI results, with a smaller 95% CI of
[−3.566, 4.144] versus [−5.505, 10.75]. FT22 shows the best
performance in each group. FT22 and FT12 are better than
DL-AC with smaller 95% CIs of [−2.711, 3.289] and [−2.985,
3.896] for cross-tracer S-ECD, as well as [−2.740, 3.208] and
[−2.960, 3.362] for cross-scanner G-TRODAT-1, respectively.
For cross-tracer+cross-scanner G-ECD, FT22 is also better
than DL-AC with a smaller 95% CI of [−3.315, 3.693]. FT8
(95% CI of [−2.925, 3.800] and FT4 (95% CI of [−4.024,
3.053] outperform DL-AC in cross-scanner G-TRODAT-1.
While for cross-tracer S-ECD and cross-tracer+cross-scanner
G-ECD, FT8 and FT4 are both worse than DL-AC. NFT-AC
performs worse than DL-AC and all FT-AC in each pretrained
model, yet better than NAC for cross-scanner G-TRODAT-1
and cross-tracer+cross-scanner G-ECD. For the ASI assess-
ments, cross-scanner FT-AC outperforms cross-tracer FT-AC,
while both are superior to cross-tracer+cross-scanner FT-AC.

In terms of the effectiveness of attention modules, the abla-
tion study demonstrates that AttGAN outperforms cGAN for
brain SPECT AC (Table S1 and Fig. S1 in the supplementary
data).

IV. DISCUSSION

This work demonstrates the feasibility of attenuation map
generation for brain SPECT based on cross-tracer and/or cross-
scanner FT-AC using a smaller number of specific patient

data for FT as compared to DL-AC. FT-AC performance
improves as the number of data used for FT increases. FT-
AC can perform accurate AC and even outperform DL-AC
for brain SPECT when the number of FT data is ≥8 in this
study. Additionally, all FT-AC outperform NFT-AC, showing
the effectiveness of the FT strategy. Cross-scanner FT-AC is
better than cross-tracer FT-AC, while both are better than
cross-tracer+cross-scanner FT-AC.

DL-AC approaches usually require a large number of
datasets from the same scanner and tracer to generate robust
models, which may not be applicable for real clinical imple-
mentation due to the availability of limited datasets [40], [41].
Determining an exact threshold of data sufficiency for
DL-AC models tailored to specific tracers or scanners or
DL-models for other applications remains challenging in
general. However, by closely monitoring the convergence of
training and validation losses and ensuring that the generated
images meet clinical diagnostic requirements [26], [28], we
can generally infer that the quantity of data employed for
training the AC model (n = 30 in this study) is sufficient.
Compared to DL-AC, FT-AC reuses a pretrained DL-AC
model from other existing data instead of starting the training
from scratch. FT12 and FT8 could achieve comparable or
better performance than DL-AC, proving the potential for
generalizable brain SPECT μ-maps generation without the
need to collect a large number of specific data and retraining
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Fig. 8. Bland–Altman plots of (a) SBR and (b) ASI results of NAC, DL-AC, different FT-AC, and NFT-AC methods across all patients in the S-TRODAT-1
dataset using CT-AC as the reference.

on new networks. Unlike the conventional FT method that
uses a small amount of data, FT22 uses the same amount of
data for FT as compared to the baseline DL-AC and further
improves DL-AC performance. This may indicate that instead
of directly mixing different data types to increase the sample
size for ensemble training, with inferior results observed in
our previous study [42], the use of FT strategies could be more
promising to improve the model generalizability.

Our experimental results show that AC for 99mTc-TRODAT-
1 brain SPECT would be essential for diagnostic purposes as it
is difficult to distinguish between the striatum and background
regions in NAC SPECT images. AC is also essential for
absolute quantification of 99mTc-TRODAT-1 brain SPECT [43]

as NAC significantly underestimates SBRs by a mean of
44.86% and shows [−5.505%, 10.75%] ASI difference as
compared to the reference CT-AC. Compared with NAC,
FT-AC and DL-AC can better differentiate the striatum and
background regions on SPECT images with closer SBR and
ASI results to the reference CT-AC. FT-AC shows better
performance than DL-AC for visual images and SBR and ASI
assessments when the number of FT data is sufficient.

In terms of various qualitative and quantitative assessments,
cross-scanner FT-AC shows better performance than cross-
tracer FT-AC, yet both outperform cross-tracer+cross-scanner
FT-AC. Generally, the closer the pretraining data are to the
test data, the better the pretrained network model performs.
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Though the image acquisition and reconstruction settings of
S-TRODAT-1 differ from G-TRODAT-1, the image features of
S-TRODAT-1 were still similar to G-TRODAT-1. Moreover,
we implemented the resampling step to make the matrix size
and voxel size consistent for the two scanners, which should
mitigate the differences between data acquired from differ-
ent scanners. As expected, cross-tracer+cross-scanner FT-AC
performs relatively inferior as compared to the other two
pretrained models, given that G-ECD data may deviate more
from S-TRODAT-1 compared to S-ECD and G-TRODAT-1.

Compared to our previous work [44], this work estimates
μ-maps from NAC PET images instead of directly estimating
CT-AC images for better DL-AC performance [28]. We have
further optimized our network architecture for our targeted
application, including the use of attention modules, enhanced
loss function (smooth L1 instead of L1), an additional down-
sampling and upsampling layer, and reduced ResNet blocks.
This work also explores the performance of the use of different
numbers of FT data and investigates a different application
on cross-tracer, cross-scanner, and cross-tracer+cross-scanner
brain SPECT datasets.

One limitation of FT-AC is the need for sufficient pre-
training data. The inadequately pretrained networks may
propagate errors to the FT network model, causing image
artifacts [45]. TL based on simulation data may be an effective
solution in the case of insufficient pretraining data [46].
Besides, Guo et al. [47] proposed to integrate domain knowl-
edge in DL for CT-free PET imaging, achieving efficient
and robust performance of attenuation and scatter correc-
tion on cross-scanner or cross-tracer PET data. Federated
learning has shown great potential for multi-institutional
PET attenuation and scatter correction [48], which could
be adopted for cross-tracer and/or cross-scanner SPECT
data.

Another limitation of this study is that the number of
data used for FT may not be generalizable to other TL
tasks in SPECT AC. In our study, all NMSE and SSIM
results of FT8 and FT12 showed no statistically significant
differences compared to DL-AC. This suggests that when the
amount of target domain data exceeds 36% of the large-
scale target domain data, the target domain SPECT AC model
obtained through TL can achieve performance comparable to
a model trained with large-scale target domain data. However,
Chen et al. [31] found that even with FT data (ten stud-
ies) accounting for 1/7 of the test data (70 studies), the
resulting network model was also considered acceptable. The
effectiveness of TL could be influenced by the differences
between the source and target domains. Hence, determining
the required amount of target domain data for TL in a
specific tracer or scanner could be task-dependent and needs
further evaluation. The datasets used in this work are still
relatively small, though a fivefold data augmentation technique
is implemented. However, it also represents the need for TL in
cross-scanner and cross-tracer data for brain SPECT, which is
an application lacking a large number of patient datasets. More
patient cohorts from different centers are warranted for further
evaluation. More effective network architectures are also
warranted.

V. CONCLUSION

In this study, we demonstrate the feasibility of attenuation
map generation for brain SPECT based on cross-tracer and/or
cross-scanner FT-AC. Qualitative and quantitative results show
that FT-AC could even outperform DL-AC for brain SPECT,
showing a great value for the use of general brain SPECT data
for TL-based AC. We also observe that cross-scanner FT-AC
outperforms cross-tracer FT-AC, which both outperform cross-
tracer+cross-scanner FT-AC.
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