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Abstract—Historically, patient datasets have been used to
develop and validate various reconstruction algorithms for
PET/MRI and PET/CT. To enable such algorithm development,
without the need for acquiring hundreds of patient exams, in this
article we demonstrate a deep learning technique to generate syn-
thetic but realistic whole-body PET sinograms from abundantly
available whole-body MRI. Specifically, we use a dataset of 56
18F-FDG-PET/MRI exams to train a 3-D residual UNet to predict
physiologic PET uptake from whole-body T1-weighted MRI. In
training, we implemented a balanced loss function to generate
realistic uptake across a large dynamic range and computed
losses along tomographic lines of response to mimic the PET
acquisition. The predicted PET images are forward projected
to produce synthetic PET (sPET) time-of-flight (ToF) sinograms
that can be used with vendor-provided PET reconstruction algo-
rithms, including using CT-based attenuation correction (CTAC)
and MR-based attenuation correction (MRAC). The resulting
synthetic data recapitulates physiologic 18F-FDG uptake, e.g.,
high uptake localized to the brain and bladder, as well as uptake
in liver, kidneys, heart, and muscle. To simulate abnormalities
with high uptake, we also insert synthetic lesions. We demon-
strate that this sPET data can be used interchangeably with real
PET data for the PET quantification task of comparing CTAC
and MRAC methods, achieving ≤ 7.6% error in mean-SUV com-
pared to using real data. These results together show that the
proposed sPET data pipeline can be reasonably used for devel-
opment, evaluation, and validation of PET/MRI reconstruction
methods.

Index Terms—Digital phantoms, full-convolutional neural
networks, PET/MRI qualification, standardized uptake value
(SUV) quantification.
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I. INTRODUCTION

THERE is currently an unrealized potential for PET/MRI
systems in synergistic and quantitative reconstructions

that account for and leverage simultaneous data acquisition
of PET, which provides functional tissue information, and
MRI, which provides excellent anatomic information, to cor-
rect for artifacts, motion, and improve localization [1]. An
example of one of the challenges is quantitative PET recon-
struction, which requires accurate attenuation maps that are not
directly measured by MRI. This affects the quantification of
PET from reconstructed imagery, since the photon attenuation
map is embedded in the forward system model. As a result,
the development of novel attenuation correction methods and
other advanced PET/MRI reconstructions requires real or real-
istic data, which can be difficult and/or expensive to obtain.
With increased PET/MRI adoption, it is necessary to establish
standards for the quality of reconstruction, which can vary
based on subtleties of PET data collection, including scan-
ner geometry and detector nonidealities, but also the choice
of reconstruction algorithm, attenuation correction method,
and patient anatomy (e.g., scattering and hyper-attenuation).
Simulating the whole range of patient variability in terms of
anatomy and patient-specific radiotracer uptake is infeasible,
e.g., using purely digital phantoms and Monte Carlo simula-
tion [2], [3], necessitating the acquisition of real patient PET
data. For PET/CT systems, qualification methods are estab-
lished by the American College of radiology (ACR) using
qualitative evaluation of whole-body clinical scans and quan-
titative evaluation using a ACR PET Phantom, a cylinder
based on the Jaszczak Deluxe Flangeless ECT phantom with
the spheres removed, a PET faceplate composed of several
fillable cylinders, and acrylic rods of various diameters [4].
PET reconstruction performance can also be measured using
the NEMA phantom, which is composed of multiple fillable
spheres and cylindrical inserts that aim to mimic attenuation
and activity found in different parts of the human body [5].

Unfortunately, phantoms used for PET/CT are insufficient
for evaluating PET/MRI reconstruction performance because
they cannot evaluate modern MR-based attenuation correc-
tion (MRAC) methods that rely on detecting typical human
anatomy from MRI data. These methods include vision-based
atlas techniques [6], [7], [8], joint-reconstruction of attenuation
and activity [9], [10], and direct prediction of pseudo-CT via
deep learning-based domain translation [11], [12], [13], [14].
A physical PET/MRI phantom to evaluate reconstruction
performance would require an anthropomorphic distribution
of materials with properties that match both 511-keV photon
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Fig. 1. 3-D residual UNet architecture for generating sPET from MRI, requiring only paired (registered) PET/MRI data without annotation.

attenuation as well as MRI properties of proton density, T1,
and T2, which is extremely challenging especially for bone
due to its high attenuation but rapid T2 decay rate [15].

Consequently, the standard approach to evaluating PET/MRI
performance is to utilize human subject datasets acquired
on PET, CT, and MR [11], [16]. This allows for a relative
performance measure, by comparing the standardized uptake
value (SUV) of MRAC-based PET reconstructions relative
to PET reconstructions utilizing CT-based attenuation cor-
rection (CTAC) [16]. However, for sites to conduct such
evaluations, numerous PET/CT/MR scans are required to char-
acterize scanner and algorithm performance at operating points
exhibiting natural imperfections that impact the physics of
PET collection, such as those arising from detector character-
istics, scattering, or unexpected attenuation [17]. This patient-
specific data is expensive to collect, hindering new PET/MRI
algorithm development that normally requires recollecting
PET data.

In this article, we present a method for generating synthetic
PET data using routinely collected and abundantly available
MRI that naturally captures important scanner and detec-
tor imperfections, adapts to varied tracer distributions and
anatomy, and allows for insertion of synthetic lesions. We
believe this will allow for the creation of large and diverse
synthetic data for development, evaluation, and validation of
PET reconstruction algorithms. Our approach leverages recent
work in deep learning-based domain translation using fully
convolutional networks (FCNs) and in Section II we describe
how to train a 3-D residual UNet to predict SUV-normalized
synthetic PET (sPET) imagery from whole-body postconstrast
T1-weighted MRI (Fig. 1). This requires only paired input and
output image examples, and—crucially—no additional annota-
tion or scanner geometry details. For this problem, we assume
a supervised setting, where the absolute and relative error
between the measured (reconstructed) and FCN-generated vol-
umes provide a quantitative measure of performance, albeit at
different scales that must be balanced. Note that an approach
based purely on generative adversarial networks (GANs) is not
desirable here, since we require the sPET volumes to corre-
spond anatomically to the MRI volumes to support PET/MRI
reconstruction research. To this end, in Section III, we show

that the predicted sPET imagery can be forward projected to
generate sPET time-of-flight (TOF) sinogram data that can be
used interchangeably with real PET sinogram data in vendor-
provided reconstruction algorithms. We further evaluate this
capability for qualification research by performing a classical
PET-SUV quantification experiment, comparing reconstruc-
tions with CT- and 2-point MR-Dixon-based AC maps, using
both synthetic FDG-PET and measured FDG-PET sinograms.
Our results show that evaluation using sPET can achieve < 8%
quantification error in mean-SUV in synthetically inserted
lesions compared real PET data (averaged over a several syn-
thetic lesions in a cohort of patients), suggesting the wide
applicability of domain-translated sPET for PET reconstruc-
tion algorithm development and qualification research. The
role of synthetic lesions as proposed and demonstrated in this
study is to provide methods for evaluation and optimization
of image reconstruction algorithms. These algorithms con-
tinue to change and, with the introduction of deep learning/
AI methods for image reconstruction and denoising algo-
rithms, many new parameters are being introduced and more
robust methods for evaluation and optimization are needed
to demonstrate the clinical impact of the image processing
algorithms

A. Prior Work

Prior work in deep learning-based domain translation has
demonstrated that FCNs based on UNet-like encode-decoder
architectures are widely applicable to a range of 2-D and
3-D cross-modality medical image translation tasks, includ-
ing MRI-to-CT [11], PET-to-CT [18], and MRI-to-MRI [19].
These architectures are typically trained independently for
each anatomical region (e.g., head, chest, and pelvis) of
interest. For PET/MRI specifically, a major focus has been in
MRI-to-CT domain translation for enhanced attenuation cor-
rection maps, which are ultimately combined with measured
PET sinogram data for enhanced image reconstruction [11],
[13], [18]. Recently, such architectures have been applied to
the reconstruction and denoising of low-dose PET imagery,
including using supervised [20], [21] and unsupervised [22]
methods, and extensions to dynamic PET reconstruction [23].
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In some cases, these image-enhancement techniques have been
shown to successfully improve diagnostic interpretability [24].

In contrast to these works, the focus of this article is domain
translation of whole-body MRI-to-PET without any initial PET
data, i.e., to produce a novel image series we refer to as
synthetic PET (sPET). While previously in-silico PET image
generation has been explored using physics-based simulation
tools such as GATE [25] with Monte Carlo techniques, such
as PENELOPE [26] and SimPET [3] to reproduce realistic
image quality, a predominant issue here is knowing realis-
tic spatial distribution of physiologic PET uptake to seed the
simulation. Our work addresses this issue by using a neural
network to learn from real PET scans, such that realistic phys-
iologic uptake can be inferred from abundantly available MRI.
This is an important point since we do not believe sPET can
accurately predict patient-specific functional information for
diagnosis.

B. Contributions

Thus, our contributions are as follows.
1) We introduce a deep learning method for generating

whole-body 3-D sPET volumes from one or more rou-
tinely collected MRI series, including a balanced loss
function that improves reconstruction of both low- and
high-SUV regions.

2) We evaluate the utility of sPET in a downstream devel-
opment task involving the quantification of PET SUV
in images reconstructed using MR- and CTAC, demon-
strating that sPET sinograms can be used seamlessly in
place of real PET data for PET/MRI qualification with
minimal impact to the observed quantification error in
synthetically inserted lesions.

II. SYNTHETIC PET VIA DOMAIN TRANSLATION

Although the physics and acquisition are fundamentally dif-
ferent, MRI and PET imagery share a great deal of structural
similarity due to contouring of patient anatomy by physiologic
uptake. This similarity can be exploited by FCNs to efficiently
and implicitly implement the codebook C : R

n
MR → R

n
PET

mapping MRI to PET-SUV imagery using a cascade of non-
linear filters, avoiding explicit storage of input–output pairs
(x, y) in a database. Note that this map C describes a statisti-
cal relationship between MRI and PET, and not a causual or
functional one. Besides being differentiable and amenable to
backpropagation-based optimization using historical PET/MRI
datasets, FCNs have strong spatial regularization properties
that reduce degeneracy across image patches to create seam-
less and realistic anatomy-conforming 3-D PET imagery from
MRI.

Here, degeneracy refers to the typical inconsistencies in
the codebook arising from the fact that PET and MRI con-
tain different (orthogonal) information about a patient. The
inverse image C−1(y) of a 3-D PET patch y ∈ Z

n
PET may

not be unique, since different anatomical regions can expe-
rience the same uptake. Conversely, a given 3-D MR patch
x ∈ R

n
MR may have multiple images C(x) ∈ Z

n
PET, corre-

sponding to various patterns of PET uptake across individuals.

Thus, the map C is general, which frustrates conventional atlas
and dictionary-based implementations that must keep track of
this in R

n
MR [27]. In comparison, due to the supervised train-

ing process, FCNs naturally choose y ← E [C(x)] for sPET
given input MRI x. In this respect, the task of predicting PET
from MRI is distinct from approaches predicting full-dose PET
imagery from low-dose PET imagery, since those models are
responsible for enhancing the signal-to-noise ratio (SNR) of
existing activity images [20], [21], rather than directly learn-
ing anatomy-conforming physiologic biodistributions of PET
uptake.

A. Assumptions

In this article, we assume the availability of historical
PET/MRI datasets of patients receiving a calibrated (full) dose
of the same PET radiotracer. Although the proposed method
is applicable to varying dose levels, low-dose PET imagery
exhibits lower SNR, and is therefore not ideal for training.
In this work, we register scanner-reconstructed whole-body
18F-FDG-PET and post-contrast T1-weighted MRI volumes,
collected on a 3.0 T ToF PET/MRI scanner (Signa, GE
Healthcare, Waukesha WI), to the MRI image space and
resample to 1-mm isotropic resolution using the ANTS toolbox
interface provided via Nipype [28]. To increase the regularity
and identifiability of MR structures, we apply contrast-limited
adaptive histogram normalization to the resampled MRI vol-
umes, using a kernel-size of 100 mm and clipping limit of
0.05 [29]. For consistency, we convert the raw PET intensity
values (counts) to SUV using known radiotracer dose, half-
life, positron fraction, elapsed time, and patient weight [30].
Finally, we split our dataset into 40 whole-body PET/MRI
training exams, 16 whole-body PET/MRI testing exams, and
20 independent pelvic PET/MRI testing exams where corre-
sponding CT was available (discussed in Section III). We make
no explicit assumption of age, race, gender, or ailment, other
than through the image characteristics of the acquired dataset.

B. Model Architecture

By fiat, we choose a 3-D residual UNet architecture that
combines the well-studied 2-D/3-D UNet [31] with residual
(skip) connections [32] and convolutional upsampling (Fig. 1).
In our implementation, we take a one-channel 3-D MRI vol-
ume as input, and employ 3 × 3 × 3 convolutional kernels
followed by 2 × 2 × 2 maxpooling in each layer of the
encoder (channel dimensions: [32, 64, 128, 256, 512]), and
3 × 3 × 3 convolutional upsampling kernels in each layer of
the decoder (channel dimensions: [256, 128, 64, 32]), ulti-
mately resulting in a one-channel 3-D output. This architecture
can be adapted to multichannel inputs (multicontrast MRI)
and outputs (multiple PET radiotracers and/or dose levels) by
modifying the first and last layers of the network, respectively.

Inference is performed by breaking large whole-body MRI
volumes into smaller overlapping volumetric patches with
dimensions divisible by 32 (e.g., [128 × 128 × 128] mm,
with 50% overlap) prior to applying the 3-D UNet, and tak-
ing the sample mean of the resulting outputs at each 3-D grid
position to assemble the full whole-body volume. While the
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Fig. 2. Histogram distribution of a whole-body PET exam reveals disparate levels of physiologic activity across different anatomy.

aforementioned resampling ensures MRI is processed at nearly
native resolution to allow recognition of fine structural details,
the PET groundtruth is considerably upsampled, especially in
the z dimension. This can be remedied by resampling the pre-
dicted volumes to the native PET image space and resolution,
e.g., prior to performing PET/MRI reconstruction (Section III).

C. Learning

One of the primary challenges with domain translation of
MRI to PET is maintaining high accuracy across the full
dynamic range of PET. Although SUV scaling does provide
a more consistent and intuitive numerical range, we find that
explicit control in the objective function is required to prevent
smoothing over suitable minima. For example, the histogram
distribution of a whole body 18F-FDG-PET exam (Fig. 2)
reveals that different tissues differ in the amount of physiologic
uptake. For example, in the lungs, heart, and liver there is often
increased activity between [1, 4] SUV, and in regions, such as
the bladder and brain the recorded SUV can be greater than 20.
In particular, since we are interested in using the predictions
of our model for PET quantification studies, we require high
accuracy across all relevant scales. This precludes the use of
simple p-norm objective functions, such as the mean absolute
error (MAE), that may be dominated by the high absolute or
relative error in one or more histogram bins.

To address this, we minimize the balanced objective

Jtotal = J + λJLOR (1)

where JLOR represents a regularization function with param-
eter λ, and J is a linear combination of absolute and relative
errors across B different histogram bins, expressed as follows:

J =
B∑

j=1

αj

|hj|
∑

E[
hj

]+
B∑

k=1

βk

|hk|
∑ E[hk]

y[hk]+ ε
(2)

where E = |F(x)− y| is the conventional voxel-wise absolute
error, x is the MRI input volume, y is the groundtruth PET vol-
ume, and F(x) represents the predicted synthetic sPET. In (2),
hj represents an indicator variable selecting the voxels belong-
ing to bin j of the B-bin histogram of y, and ε is chosen as
1e-3 to prevent overflow. The histogram bins (Fig. 2) and cor-
responding weights (ᾱ = [1, 1, 1, 1, 0], β̄ = [0, 0, 1, 1, 1])
were chosen based on empirical observation to prevent dom-
ination of J by high absolute errors in high-SUV regions or
by high relative errors in low-SUV regions. The intention of
this flexible formulation with ᾱ and β̄ is to define a family
of functionals that can be tailored to different patient datasets,
PET tracers, and anatomic regions.

To further improve both the perceptual image quality and
convergence, during training we integrate and compare the
groundtruth PET y and the predicted sPET ŷ = F(x) along
random angles using a projection operator Rθ,φ , mimicking
tomographic data collection in a uniform, isotropic attenuating
media along hypothetical PET lines of response (LOR), as
follows:

JLOR =
∥∥Rθ,φ · (F(x)− y)/(y+ ε)

∥∥
2. (3)

In addition to tying together the performance of different
tomographically related voxels, JLOR measures the error in the
coarse scale of predictions on a line-by-line basis. For exam-
ple, if a 3-D image patch shows little to no activity, ‖Rθ,φy‖2
will be nearly zero, whereas a patch from a region with high
uptake may yield either high- or low-valued ‖Rθ,φy‖2. This
improves convergence and combats overfitting by supervising
the spatial distribution of sPET without explicit assumptions
of patient anatomy.

For all results shown in this article, we used the Adam opti-
mizer with an initial learning rate of 1e-4, weight decay of
1e-3, and effective batchsize of 16 [128×128×128] mm vol-
umetric patches generated systematically (in a random order)
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TABLE I
TEST-SET PERFORMANCE ± 1 STDEV USING DIFFERENT SUPERVISED

MR-TO-PET DOMAIN TRANSLATION TRAINING OBJECTIVES

from the aforementioned whole-body 18F-FDG-PET/MRI
dataset.

To improve convergence during training, we defined a
custom 3-D image patch sampler that performs round-robin
sampling of different PET/MRI phenotypes present in the
training dataset. These phenotypes were determined by first
cataloging all the volumetric patches in the training dataset
and computing their intensity histograms. Using k-means clus-
tering (K = 10), we computed a semantic grouping of these
histograms that defined the different PET/MRI phenotypes that
were sampled cyclically during model training.

D. Image Quality Metrics

We measure the quality of predicted sPET using quantita-
tive error metrics, including the MAE, mean relative absolute
error (MRAE), and the 3-D structural similarity index measure
(SSIM). For each exam we compute MAE over all voxels N,
as follows:

MAE = 1

N

∑

n

‖yn − ŷn‖1 (4)

while we compute MRAE only over voxels K of at least 0.1
SUV, as follows:

MRAE = 1

K

∑

k

‖yk − ŷk‖1
yk

. (5)

The 3-D-SSIM captures this information in a different way,
accounting for differing scales and magnitudes through a
measure of correlation within a 3-D window, as follows:

SSIM(x, y) =
(
2μxμy + c1

)(
2σxy + c2

)
(
μ2

x + μ2
y + c1

)(
σ 2

x + σ 2
y + c2

) (6)

where μx and σ 2
x represent the mean and variance of volume

x, μy and σ 2
y represent the mean and variance of volume y,

σxy represents the covariance of x and y, and c∗ is chosen
proportional to the dynamic range of pixel values [33].

E. Results on Whole-Body 18F-FDG PET-MR Datasets

We find that prediction of synthetic FDG-PET, domain
translated from T1-weighted post-contrast MRI, works well
despite the lack of salient tracer specific or functional
information in MRI (Fig. 3). Numerical results comparing the
effect of different training objectives on test-set performance is
shown in Table I. Qualitative analysis reveals that physiologic
uptake is predicted accurately and reconstructed seamlessly
throughout the body without obvious spatial artifacts, except
in regions where we expect variable uptake (e.g., heart and
bladder). In the myocardium, for example, FDG-PET uptake
depends on patient metabolism, which can vary across exams
for even a single patient. Similarly, in the bladder PET uptake

is often dependent on a patient’s water consumption and timing
of voiding [34].

The MAE and MRAE results show that incorporation of
both balanced histogram losses and tomographic projection-
based losses can significantly reduce the quantitative error in
the prediction of sPET from MRI. The SSIM results show that
this reduction in error boosts the image quality of the sPET
image relative to the real PET image. The inclusion of SSIM
is important to assess the realness of sPET, in lieu of report-
ing MAE and MRAE within different organs and anatomical
structures.

III. PET QUANTIFICATION USING SYNTHETIC PET

PET/MRI quantification is important for establishing the
accuracy and reproducibility of PET reconstructions when
the photon attenuation maps are inferred entirely from MRI.
As the error in PET/MRI reconstruction is composed of
errors involving prediction of the attenuation map and errors
involving the reconstruction (e.g., choice of the objective
function), a standard approach is to measure the compound
effect caused by the AC map by directly comparing PET vol-
umes reconstructed with MRAC and CTAC voxel-wise and
regionally [16], [35].

Specifically, we evaluate the applicability of our MR-
derived sPET imagery for algorithm development by repli-
cating an MRAC versus CTAC PET SUV quantification
task using sPET data in place of real list-mode PET data.
To achieve this we forward project sPET data into sino-
gram space using vendor-provided software that incorporates
scanner geometry, detector response, and normalization.

A. Reconstruction Model and Parameters

For time-of-flight PET (ToF-PET), the measured sinogram
data is modeled within the forward model as follows [36]:

ypt = Aptx+ bpt (7)

where ypt represents the ToF projection data measured by the
scanner, x is the PET image to be found, and the system matrix
A models the probability of an event emitted in voxel m to
be detected by detector pair p within the signed timing bin
number t, summarizing the attenuation of the media along
PET LoR, patient-scanner geometry, and detector efficiencies.
bpt corresponds to the background counts of the timing bin
t and detector pair p. For this model, a basic reconstruction
approach is to solve the optimization problem

x̂ = min
x
||Ax− b||2 +R(x) (8)

where R is a regularization function (e.g., total varia-
tion). In practice, vendor-provided ordered-subset expectation-
maximization (OSEM) or ToF-OSEM with point-spread-
function (PSF) modeling are used for clinical imaging [36],
[37]. In our experiments, we utilize clinical image reconstruc-
tion parameters for the GE Signa PET/MRI (Table II).

B. Synthetic Sinogram Generation and Lesion Insertion

For a given system matrix A, a reconstructed PET image
x can be projected into the sinogram domain by applying
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Fig. 3. (a) and (b) Test-set evaluation of whole-body MR-based synthetic FDG-PET (sPET) in comparison to real 18F-FDG-PET/MRI. sPET mimics the
typical physiologic uptake of FDG, showing high uptake in the brain and bladder as well as moderate uptake in liver, kidneys, heart, and muscle. High
relative error with the real PET data is expected in many regions where there is typically high physiologic variability between subjects (e.g., tumors, heart,
and bladder). While (a) and (b) represent patient exams from the intentionally withheld test set, (c) represents an exam from the additional validation set (with
corresponding Pelvic PET/CT) exhibiting significant stitching artifacts (blue arrows) in the T1w-MRI between bed positions as well as loss in resolution in
the head (green arrows). Various transverse slices in the abdomen are shown for comparison on the right of (c). Evaluation and inclusion of this exam in
the validation cohort demonstrates that the proposed 3-D UNet is able to recover reasonable FDG-uptake even in the presence of significant domain shift, a
common issue when applying deep learning algorithms to clinical data acquired on a different scanner, or with different imaging protocols and image quality
checks.

the forward model (7) to yield ysimulated. The forward pro-
jection tool provided with the Duetto toolbox (v02.03, GE
Healthcare) performs this operation on a synthetic volume of

dimension equal to the reconstructed volume, to generate a
synthetic lesion sinogram that is added to the sinogram corre-
sponding to x. Image reconstruction can then be performed on
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TABLE II
SUMMARY OF PET RECONSTRUCTION HYPERPARAMETERS

Fig. 4. Measured and simulated sinograms representing different PET sources
with corresponding synthetically inserted lesion sinograms. The annotation
(yellow arrow) highlights a region affected by lesion insertion.

this “lesion-inserted” sinogram, as if it were the real sinogram,
using a variety of methods (e.g., ToF, PSF, and regularization).

We exploit this mechanism to generate sPET sinogram data
from domain-translated sPET imagery. However, as Duetto
currently does not incorporate scatter simulation, we perform
reconstructions with scatter estimation and correction turned
off. As this introduces an additional discrepancy between real
PET and sPET reconstructions, in both cases we start by
forward projecting a 3-D “source” volume xsource to yield
a simulated ToF-sinogram that is subsequently inserted with
synthetic lesions (Fig. 4).

C. Quantification Experiment Summary

The pelvic CTAC versus MRAC FDG-PET reconstruction
and SUV quantification experiment can be summarized as
follows.

1) Forward project xsource using a registered CT-based
attenuation map to yield sinogram ysimulated. To eval-
uate the applicability of different sPET sources for this
pipeline, we choose xsource as follows.

a) Real PET xreal: The true patient activity distri-
bution, corresponding to measured patient sino-
gram yreal.

b) Reconstructed Patient Phantom xlive: A PET/CT
image volume, reconstructed from measured PET
sinogram data with a CT-based attenuation map.

c) Uniform SUV∼1 xuniform: We threshold a T1-
weighted postcontrast MRI volume to define a
body-mask filled with activity corresponding to
SUV 1.

d) Synthetic sPET xsynthetic: An sPET volume gener-
ated from a T1-weighted postcontrast MRI using
the aforementioned 3-D UNet.

2) Forward project synthetic lesions specified by a 3-D vol-
ume xlesion to yield ylesion-simulated. In our experiments, a
board-certified radiologist annotated four sites for lesion
insertion in each pelvic MR exam: a) in the acetabulum;
b) sacrum; c) rectum; and d) lymph nodes. These loca-
tions were specifically identified to challenge the ability
of MR-based reconstruction to reproduce activity sur-
rounded by soft tissue and bone. For each location, a
spherical lesion with diameter 12 mm and activity cor-
responding to SUV 8 was added to a zero-filled xlesion
volume.

3) Reconstruct lesion-inserted sinograms using vendor-
provided CTAC and MRAC methods (with parameters
specified in Section III-A), resulting in PET images x̂CT
and x̂MR, respectively, for each xsource.

4) Evaluate voxel-wise and regional absolute and relative
error between x̂CT and x̂MR in each lesion volume of
interest (VOI) for each xsource for each exam. Evaluation
within each VOI can also provide a quantitative mea-
sure of accuracy, since the activity was synthetically
inserted.

In particular, we evaluate the ability of different synthetic
sinograms (corresponding to a choice of xsource) to reproduce
the CTAC versus MRAC “quantification error” 	quant, nor-
mally estimated using real measured PET sinogram data. We
quantify this by computing and comparing deviation of error
in mean-, max-, and peak-SUV between x̂CT and x̂MR for each
xsource in each VOI compared to using real PET sinogram data.
That is, for each xsource we compute

	quant,source =
∥∥∥quant

(
x̂CT[V]

)− quant(
x̂MR[V]

))∥∥∥
1

(9)

δquant, source =
∣∣	quant, true −	quant, source

∣∣ (10)

γquant, source = |	quant, true −	quant, source|
	quant, true

× 100% (11)

where V represents an indicator function for voxels in a VOI,
quant represents the mean-, max-, or peak-SUV computa-
tion in a VOI, we take 	true as the corresponding mean-,
max-, or peak-SUV quantification error computed using the
reconstruction patient phantom xlive as the source, and δ

and γ represent absolute and relative quantification error,
respectively. To benchmark systematic error arising from the
reconstruction and reprojection in the experimental proce-
dure, we also compare to the quantification error arising from
using measured sinogram data yreal corresponding to the true
patient distribution xreal (i.e., following the standard approach
in [16]).
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Fig. 5. Example evaluation of synthetically inserted lesions into 3-D reconstructions using various PET data sources (anterior is superior in our presentations).
For the PET data source (columns), we compute a reconstruction using CTAC and MRAC, and compute the absolute and relative errors for each slice. Shown
here is a single slice from a single patient with contributions from three synthetically inserted lesions. The error in the sPET prediction is considerably lower
than using the phantom with SUV∼1, and has a similar distribution to using real PET data.

For each patient exam, we select five different VOIs:
lesion voxels corresponding to the four annotated regions
(acetabulum, sacrum, rectum, and lymph), and “background,”
representing all nonzero voxels outside of the synthetic lesions.
Quantification error is computed for each VOI by compar-
ing mean-, max-, and peak-SUV between CTAC-based and
MRAC-based reconstructions. Subsequently, we compare the
quantification error predicted by each PET data source to that
predicted by the aforementioned reconstructed PET/CTAC live
phantom. The absolute error is quantified for the background
pixels, but the relative error is not since many voxels are
devoid of any activity, positively skewing (overestimating) the
mean relative error computation. In lieu of individual regions
within the pelvis, the relative error in background voxels is bet-
ter evaluated qualitatively by comparing slices in the transverse
plane (Fig. 5).

D. Results on Pelvic 18F-FDG PET/MR/CT Datasets

Numerical results presented in Tables III and IV indicate
that domain-translated MR-based sPET can achieve low abso-
lute and relative deviation in quantification error compared to
the quantification error predicted by the live PET/CTAC phan-
tom source for synthetically inserted pelvic lesions. Table III
shows that sPET-based evaluation to compare CTAC and
MRAC-based reconstruction achieves SUV errors that were
very similar to the measured PET-based evaluation across
inserted lesions and in the background. The percent quantifi-
cation errors in Table IV shows that sPET-based evaluation
was more similar to measured PET-based evaluation than uni-
form SUV∼1-based evaluation, outperforming for mean-SUV
evaluations across lesion types. This suggests the applicability
of synthetic sPET as a suitable replacement for real measured
PET in PET-SUV quantification tasks. In the supplementary
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TABLE III
ABSOLUTE ERRORS BETWEEN CTAC- AND MRAC-BASED RECONSTRUCTIONS FOR VARIOUS REAL AND SPET DATA SOURCES

TABLE IV
DEVIATION IN PREDICTED QUANTIFICATION ERROR (LOWER IS BETTER) FOR VARIOUS REAL

AND SPET DATA SOURCES. ± INDICATES ONE STANDARD DEVIATION

material (Figs. 6 and 7), we provide the Bland–Altman plots
that compare the CTAC-versus MRAC error computed by the
various types of phantoms and the Live Phantom. Each col-
umn represents a different sPET phantom. Each row represents
a different error metric (absolute error or relative error in
mean-SUV, peak-SUV, or max-SUV). This analysis shows no
significant differences between sPET and measured PET using
the aforementioned figures of merit.

IV. DISCUSSION

Overall, we have shown that MR-derived synthetic FDG-
PET accurately captures the background physiologic distri-
bution of PET imagery, creating images with realistic spatial
distributions, and that it can be combined with synthetic lesion
insertion to provide data for the evaluation of PET quantifica-
tion methods. However, the main limitation we observed is that
it is smoother than corresponding full-dose imagery, perhaps
due to the implicit regularization properties of convolutional
networks (e.g., exploited by DIP techniques [22]). While this
is desirable for enhancing low-dose or noisy PET/MRI, it
is not entirely beneficial for our application due to mis-
matches in the intensity distribution used in the quantification
experiment.

This is a good opportunity for future works that make
use of GANs, which may seek to better match the statistical
distribution of sPET and PET to increase its realism, rather
than simply regressing by value. Note that a pure GAN
approach based on noise vectors is not valid here because it
may not provide anatomic conformity between the MRI and
sPET image, which is important to maintain for PET/MRI
reconstruction algorithm research. Instead, adversarial losses
may be added to the existing approach to increase realism and
to help reduce artifacts in the regions where variable uptake
is expected, or where patch-based inference lacks sufficient
context to prevent gridding or stitching artifacts (although the
effect of these artifacts is often reduced after forward pro-
jection to sinogram space). In this respect, the physics-based
tomographic LOR loss utilized in this article not only works to
increase the realism of sPET but also improves its quantitative
accuracy.

We believe that such physics-based approaches are cru-
cial for the development of quantitative imaging and dataset
generation techniques based on neural networks. While the
tomographic LOR loss used in this work improves the quan-
titative error rates and qualitative realism (partially captured
by SSIM) associated with sPET, advanced physics-based
modeling could further improve both the realism as well as
the applicability of the developed approach to more PET/MRI
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systems, e.g., by utilizing their system matrix to optimize
directly in the singoram domain, or measure congruence after
image reconstruction.

Results from the downstream PET SUV quantification
experiment indicate that sPET can serve as an adequate sur-
rogate for real data in an MRAC versus CTAC quantification
experiments. This experiment also indicates that the PET back-
ground distribution does not significantly impact quantification
performance when using synthetically inserted lesions and
without any scatter and randoms simulation. Thus, further
investigation of a more complete reconstruction is required
to determine whether the PET background distribution affects
quantification for real lesions. Based on the realistic appear-
ance of sPET, we believe it will be an important tool in
evaluations when accurate background distribution is required.

Although in some cases the estimate based on sPET under-
estimates the benchmark (reconstructed patient phantom) error,
the strong agreement over a number of exams (N = 20) and
lesions indicates that sPET may be used as a qualification
method when a large number of exams is required. This is
precisely the domain for which sPET was designed, as large
MRI/CT databases can be retrospectively utilized to establish
a large sPET/MRAC/CTAC dataset for scanner and algorithm
qualification. Interestingly, in many cases the quantification
error predicted by the synthetic sPET phantom more closely
matches the quantification error predicted using real PET sino-
gram data, compared to even that of the live PET/CT phantom.
However, for most VOIs and phantom types, the deviation
in quantification error is minimal. Here, synthetic sPET has
an advantage over the uniform SUV∼1 phantom, because
it a represents a realistic, anthropomorphic PET uptake
pattern.

One limitation of our methodology is that it does not directly
model noise or count statistics associated with PET data col-
lection, which has been shown to impact the performance of
PET reconstruction algorithms [38], [39], [40]. To address this,
we note that the MR-based sPET images proposed in this arti-
cle can be treated simply as an ideal source volume and, thus,
readily combined with Monte Carlo PET simulators, such as
with GATE [25], SIMSPET [41], or SimPET [3]. An alterna-
tive data-driven approach to address this issue may be to utilize
a adversarial training, which can increase the realism of sPET,
thereby indirectly capturing statistical noise properties of PET
acquisition in the image domain.

V. FUTURE WORK

Detailing the generation of sPET from 3-D MRI and, impor-
tantly, demonstrating its utility in downstream qualification
research, opens the path to new research directions that can
enable us to study new PET image reconstruction algorithms
that can address important clinical questions. For example, vir-
tual PET clinics have been previously proposed as a technique
to evaluate PET detector systems and patient studies in a vir-
tual simulation environment [2]. This could also be extended
to address 4D PET/CT and PET/MRI modalities [42], enabling
new approaches to diagnose cancers, such as the identification
of recurrent gliomas using FET PET [43], [44]. In another

vein, sPET can also be used to directly improve image recon-
struction algorithms themselves, e.g., by generation of a deep
learning prior image that can help regularize PET image recon-
struction [45]. These applications provide a strong motivation
for future work in curating large databases of PET/MRI with
multiple MRI contrasts and PET radiotracer images, which
could mirror and complement the impact of other synthetic
MRI [46], [47]. In this respect, the methods developed in this
article provide the framework and context necessary for such
development.

VI. CONCLUSION

In conclusion, we have demonstrated a method using deep
learning to generate realistic, synthetic whole-body PET data
from MRI, and that it is a suitable substitute for real PET
data in a reconstruction evaluation task. The sPET data,
which mimics physiologic tracer distribution, can be combined
with synthetic lesion insertion to mimic abnormal regions of
high update. We demonstrated its equivalent performance to
real PET data for comparing CTAC and MRAC for PET
reconstruction, and believe this result combined with the
apparent realism of the synthetic images will make this
method broadly applicable for evaluating the robustness of
PET/MRI reconstructions and component techniques, includ-
ing attenuation correction, scatter correction, and MR-guided
reconstruction algorithms, using large and diverse patient
datasets.

All source code for this article, including sPET
training code, PET reconstruction wrappers, and quan-
tification experiments, is available freely at: https://gitlab
.com/abhe/SyntheticPET-TRPMS22https://gitlab.com/abhe/
SyntheticPET-TRPMS22
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