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Abstract—In modern large-scale positron emission tomogra-
phy (PET) systems, transferring the digitized raw detector data
at high count rates to a centralized processing unit is a challenge.
Processing data on field programmable gate arrays (FPGAs) close
to the detectors can reduce data early on and improve scalability
of the PET system. We present and evaluate an FPGA implemen-
tation of gradient tree boosting (GTB) for 1-D position estimation
of gamma interactions in the scintillator. GTB is a supervised
machine learning algorithm based on building ensembles of
binary decision trees. Models were trained offline and inferred
in an FPGA (XC7K410T-2FFG676 Kintex-7). Input features and
GTB parameters influencing both positioning performance and
model size were varied while evaluating the inferred models con-
cerning data throughput and FPGA resource consumption as
well as positioning performance. We achieved throughputs per
detector between 2.94 x 109 and 4.55 x 10% gamma interactions
per second. For an optimized GTB model, resource consump-
tion could be reduced by factors of 17 and 10 to less than
1% (2.51 x 103 look-up tables) of available logic and 1.26 %
(20 BRAMs) of memory resources, while maintaining a position-
ing performance of 98.63 % when compared to the model with the
best positioning performance. The presented framework can be
easily adapted to other photosensors and scintillator influencing.
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I. INTRODUCTION

OSITRON emission tomography (PET) is a functional,

tracer-based imaging modality, offering a high sensi-
tivity for the imaging of metabolic processes and is used
widely in clinical and preclinical applications [1], [2]. A
positron, emitted from a radioactively labeled tracer, annihi-
lates with an electron, emitting two 511-keV gamma photons.
Scintillation crystals convert these gamma photons into optical
photons, which are detected by photosensors, typically silicon
photomultipliers (SiPMs).

To perform image reconstruction, information about the
timing, energy, and spatial position of the gamma photon
interaction needs to be calculated from the acquired raw data.
The raw data can consist of the individual channel responses
of the photosensor [3] or the outputs of a multiplexing scheme
between the individual channels (e.g., row and column sum-
ming [4], [5]). The data processing can be done either using
dedicated processing servers [6], [7] or directly within the
hardware of the data acquisition system [8], [9], [10], [11]. In
the first case, this requires either large data storage solutions in
case of offline or large server solutions in case of online pro-
cessing. Especially in total-body PET [12], [13], [14] with its
large number of detectors, large amounts of data would have
to be stored and/or processed in servers, increasing system
costs significantly. Instead, the field programmable gate arrays
(FPGAs) used to collect data from a single or from multiple
detectors in the data acquisition system can be used for the
necessary processing steps for timing, energy, and position
estimation. Since costs for FPGAs with high processing power
can be significant, algorithms for data processing need to be
efficient to be implementable in small and therefore cheap
FPGAs. Furthermore, processing the PET raw data in FPGAs
reduces the amount of data early in the data acquisition system
and thereby reduces the system complexity needed to transfer
large amounts of data.

This work focuses on one aspect of the aforementioned
necessary processing steps: the estimation of the interaction
position of the gamma photon in the scintillator, which is
needed to accurately determine the annihilation point of the
positron.
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Different methods have been developed to estimate this
positin, depending on the scintillator/photosensor configura-
tion. In one-to-one coupled scintillators, the planar interaction
position is either directly associated with the individual read-
out channels or can be obtained from look-up tables (LUTs)
in the case of multiplexed signals. In high-resolution scintilla-
tors, the planar interaction position can be calculated from
the light distribution using, e.g., center-of-gravity (CoG or
Anger) algorithms [15], [16], [17]. Depth-of-interaction (DOI)
information can be obtained by, e.g., staggered designs and
CoG [18] or neural networks [19]. In monolithic detectors, the
interaction in planar and DOI direction can be estimated using,
amongst others, maximum-likelihood searches [20], [21], neu-
ral networks [22], [23] or gradient tree boosting (GTB)
[24], [25].

Efforts have been made to adapt FPGA implementations
of more complex positioning algorithms, such as maximum-
likelihood position estimation [26], [27], [28] or neural
networks [29], [30], to overcome the limitations of simpler
methods like one-to-one coupling or CoG [31]. Many of these
adaptations suffer from a high memory requirement, making
them unfeasible for smaller (and cheaper) FPGAs, or a low
throughput, requiring further processing before positioning.
For early data reduction, the position estimation should be
performed at an early stage, using small FPGAs close to the
detectors, where higher throughputs are required and FPGA
memory and logic resources are scarce.

Recently, our group has shown that the GTB algorithm
provides high spatial resolution in planar [24] as well as in
DOI [25] direction and could be optimized concerning its com-
plexity and computation cost, which enabled high throughputs
in a software-based inference [32].

Here, we aim at developing an FPGA-based inference of
GTB that is designed to be integrated as one step of the
required data processing in a PET data acquisition system. As
such, the implemented GTB framework must meet the afore-
mentioned requirements of high data throughputs and a low
consumption of FPGA resources, so that it can be included in
the (optimally) small readout FPGAs close to the detectors
of the PET system. Previous work on FPGA implementa-
tions of GTB for different applications exists. Some of these
works implement models of fixed sizes for a specific applica-
tions [33], [34], [35]. Others optimize different models for a
high throughput and a low latency [36], [37], [38], [39]. All
implementations have in common that they are designed as
stand-alone FPGA algorithms, which is why their main focus
is not on the FPGA resource consumption. In contrast, we
show a combination of high throughputs and low resource con-
sumption. The latter is achieved by executing different steps
of the GTB algorithm in the same FPGA logic and pool-
ing their necessary information in the same memory spaces.
High throughputs are realized by executing large parts of the
model in parallel. We further investigate the tradeoff between
resource consumption and positioning performance for differ-
ent model configurations to show the feasibility of including
GTB in small FPGAs of large-scale PET systems.

The implementation in this work is shown with an example
of a photosensor based on digital SiPMs and a high-resolution
scintillator array. Since the data used for training the GTB

models is not specific to the detector composition, the
implementation can be easily adapted to other detector types,
such as analog SiPMs and/or monolithic scintillators.

II. MATERIALS AND METHODS
A. Data Acquisition

A detailed description of the detector used for data acqui-
sition can be found in [3] and [17], therefore only a short
summary is given here. The detector consists of a high-
resolution scintillator coupled to a sensor tile via a lightguide.
The scintillator array is made up out of 30 x 30 LYSO crys-
tal segments with a pitch of 1 mm and a height of 12 mm.
The array was mounted on a 2-mm thick glass plate to spread
light onto a 32.6 x 32.6 m*m sensor tile. The sensor tile con-
sisted of 16 digital SiPMs (PDPC DPC 3200-22) [40], [41].
Each DPC comprised 2 x 2 readout channels, resulting in
a total of 64 channels. Every DPC provides an indepen-
dent, customizable two-level trigger scheme, that was set to
trigger on 2.33 and 17 photons for the first and second thresh-
old, respectively. The collected information from all channels
of the triggered DPCs corresponding to one gamma photon
interaction is called an event.

GTB needs training data to build predictive models (see
Section II-B). This data as well as test data for evaluation were
acquired in a benchtop coincidence calibration setup [42]. The
sensor tile was placed on a translation stage and the scintillator
array was irradiated in both planar directions with a fan-beam
collimator by a gamma photon beam created by a slit of 0.4-
mm width with two 22Na sources, each with an activity of
5.5 MBq. The translation stage was moved 1 mm at a time,
so that every row or column of scintillator segments was irra-
diated centrally. We acquired a total of 600000 events as the
training data and 180000 events as the test data.

The acquired raw data was preprocessed using the tool
developed and described in [17]. A time window of 40 ns
was used to form events from the individual readout channel
photon counts. The time stamp for each event was determined
as the time stamp of the earliest channel that was read out for
this event. While this is currently done in software, an FPGA
implementation is under development. A sliding coincidence
window of 10 ns was applied to find coincident events. No fur-
ther preprocessing steps were applied to the raw photon counts.
Since each DPC can trigger independently, not every channel
sends out data for each event. Such missing photon counts
were set to —1, so that every event consisted of 64 values
representing the 64 channels of the detector.

It is noteworthy that the training and test data after prepro-
cessing is not specific to the used photosensor architecture.
Each event only consists of a collection of the timely cor-
related outputs of the triggered channels of the photosensor
that represent the measured light from one gamma interaction
in the scintillator. We chose the above-mentioned photosen-
sor architecture with a pixelated scintillator, as it provides an
easy to understand measure to evaluate the FPGA implemen-
tation of GTB models (see Sections II-B-II-D) and allows a
comparison to a previous work on software-based inference of
GTB [32].
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Fig. 1. (a) Simple example of a 1-D detector with two channels and four
scintillator segments and (b) GTB model for predicting the interaction posi-
tion. The model consists of two decision trees (Niees = 2), which has a
maximum depth (maxd) of 2 and the photon counts of the two channels
(cg, c1) as its input features. In each node (rounded rectangular shape), one
of the input features is compared to a trained value, each leaf (oval shape)
represents a position output. (c) Prediction y is the sum of the reached leaf
values /;; from each tree.

B. Gradient Tree Boosting

GTB was introduced in detail for planar and DOI position-
ing of the gamma photon interaction in the scintillator in [24]
and [25]. Therefore, only its main features and the charac-
teristics important for an FPGA inference are presented here.
GTB is a supervised machine learning algorithm that builds
predictive models based on a set of training data (in this case
the measured events with their known irradiation positions).
A GTB model consists of an ensemble of binary decision
trees (see Fig. 1 for an example tree), where each tree can be
seen as a sequence of simple tests with two possible outcomes
[43], [44]. The ensemble is built by adding new decision trees
sequentially. The first tree is trained on the irradiation posi-
tion, each subsequent tree seeks to minimize the error of the
estimated position versus the irradiated position of the former
ensemble. We used RMSE as training loss for the objective
function. The resulting model can be used as a predictor by
iterating a data point through all trees of the ensemble. Single
trees are independent of each other and can thus be evaluated
in parallel. The prediction for the event under test is then the
sum of predictions of the individual decision trees. In this case,
the output value is a 1-D prediction of the interaction posi-
tion in the scintillator. Therefore, the prediction of the spatial
position needs a separate model for each direction.

To investigate tradeoffs between positioning performance
and model size, and therefore FPGA resource consumption, we
varied the following hyperparameters (parameters that control
the learning process) for GTB model training.

TABLE I
SETS OF INPUT FEATURES

Features # of Feat. Description
raw 64 raw channel photon counts
raw + mainChan 66 raw + channel with highest ph.
+ mainDPC count + DPC contain. mainChan
raw + CoG 67 raw + center of
+ phSum gravity + photon sum
rowColSum 16 row and column sums
of photon counts
rowColSum 19 row and column sums

+ CoG + phSum + CoG + photon sum

1) Maximum Depth: The maximum number of comparisons
in a decision tree from the root node to a leaf (the
example tree in Fig. 1 has a maximum depth of two).

2) Number of Decision Trees: The number of decision trees
in the GTB model.

3) Learning Rate: The learning rate is a factor that weighs
the ensemble error prior to adding a new decision tree
in each training step.

Models of larger maximum depth and higher number of
decision trees generally show an improved performance for
positioning of gamma photons [24] (before overfitting occurs).
At the same time, increasing the model size increases the com-
putational and memory requirements. The number of nodes
and leaves (Npodes, see Fig. 1) in a GTB model is dependent
on the maximum depth (maxd) and the number of decision
trees (NVirees) as follows:

Nnodes = Nirees * (2maxd+1 - 1) . (D

A high learning rate gives large influence to single trees, which
can lead to a good performance for models with a small num-
ber of decision trees, but to overfitting for larger models. GTB
models can be trained with arbitrary input features. We used
the raw photon counts of the sensor’s readout channels in
combination with calculated features based on the light distri-
bution to investigate their effect on positioning accuracy and,
by means of reducing the number of input features, on resource
consumption. Based on the hyperparameter space investigated
and the results obtained in [24] and [25], we trained mod-
els with combinations of maximum depths {4, 6, 8}, number
of trees {20, 60, 100, 140, 180, 220}, learning rates {0.1,
0.2, 0.4, 0.7}, and sets of input features (see Table I). We
calculated the additional features mainChan, mainDPC, CoG,
phSum, rowColSum for two reasons. Many detector designs do
not digitize each photosensor channel individually, but reduce
the number of input signals by, e.g., row and column sum-
ming. Furthermore, the calculated features can contain more
information per feature about the gamma interaction position
than the raw photon counts and can therefore be beneficial for
positioning performance [24], [25].

GTB models were trained as regression models that out-
put a continuous estimation of the gamma interaction in the
scintillator in one spatial direction. Since the data labels (the
irradiated positions) are limited to the irradiated scintillator
segment and thus form a discrete system, the output values
were mathematically rounded. Model training was performed
offline with the 600 000 events of the training data set and the
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TABLE 1T
PARAMETERS OF THE XC7K410T-2FFG676 KINTEX-7 FPGA [47].
EACH BLOCK RAM (BRAM) COMPRISES 18 kb OF MEMORY

LUTs
254 200

DSP slices
1540

BRAMs
1590

Register
508 400

Total RAM (kb)
28 620
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Fig. 2. Schematic overview of FPGA implementation. Raw data is loaded
from a control PC. Additional features are calculated and the right set of input
features is fed to the GTB model. The prediction output and a time stamp are
sent back to the control PC.

known irradiation positions as data labels using the framework
XGBoost [45] and only the resulting models were implemented
and tested on an FPGA. Each event contains the input feature
values for the chosen feature set in Table I, which are directly
calculated from the measured raw photon counts of the read-
out channels. Model building is analogous to [32], where the
same detector block was used, and to [24], where models were
built in the same way for a monolithic detector block. These
works describe the training and building of GTB models in
detail.

C. FPGA Implementation

The FPGA inference of GTB models was developed using
the hardware description language VHDL which gives the
most flexibility during the implementation process. For fur-
ther flexibility and the possibility to implement models over
a wide range of hyperparameters, the implementation, includ-
ing the calculation of features from the raw photon counts
and the GTB models, was done as a stand-alone algorithm on
the FPGA and not inside a PET data acquisition architecture.
We used a custom-made board, designed as the mainboard
in our PET data acquisition and processing platform [46]
and equipped with an XC7K410T-2FFG676 Kintex-7 FPGA.
Table II shows the available logic and memory resources of
the FPGA.

The raw photon counts of the gamma events of the test data
were loaded into the FPGA from a control PC via a 10 Gbit
Ethernet connection and stored inside input buffers. Once the
buffers were filled, their data were fed to the positioning
framework as fast as the framework could accept new inputs.
A time stamp was generated each time the model accepted a
new data point. The prediction output generated by the frame-
work was sent back to the control PC together with the time
stamp. A schematic of this data flow in the FPGA is shown
in Fig. 2. The positioning framework was implemented at a
clock frequency of 100 MHz. We chose this frequency for two
reasons: 1) it is commonly used in our data acquisition system
to collect raw sensor data and 2) the higher the frequency, the
more difficult the routing between the configurable logic of the
FPGA becomes during synthesis. We considered 100 MHz as

a rather conservative frequency choice, where no routing issues
were expected.

In the case of the raw feature set, the 64 raw photon counts
were fed to the GTB models as input features directly. In all
other cases, additional features were calculated in the FPGA
first. The main channel, main DPC as well as the photon sum,
row sums and column sums were calculated in the FPGA
logic using LUTs. For the CoG calculation, the necessary
multiplications were moved into dedicated digital signal pro-
cessing (DSP) slices. The division was implemented using the
Divider Generator v5.1 from Xilinx [48]. All features were
calculated in parallel and in each clock cycle, photon counts
from four channels could be processed. Thus, it took 16 clock
cycles to calculate features for a gamma event with 64 photon
counts.

During the offline training, all model parameters were rep-
resented as floating point values. These were translated into
fixed point values for the FPGA implementation, meaning a
fixed number of bits were allocated to represent the fractional
part of each value. All feature values (input features and test
values) were represented as 13 bit (b) words. The CoG posi-
tion was represented with nine fractional bits, all other features
with one fractional bit. Prediction values were represented as
32 b words with 23 fractional bits. With these bit widths,
no prediction loss could be observed compared to the offline
inference.

The basis of each node is the comparison of one of the
input features to a trained test value. Based on the outcome
of this comparison, the tree is traversed to either of the child
nodes. In a naive FPGA implementation, each node of every
tree in the ensemble could be mapped to FPGA logic. This
could maximize throughput as it allows for data streaming
and could minimize the usage of on-chip memory, as all
node information could be hard-wired in the FPGA logic.
However, with (1) and the hyperparameter space described in
Section II-B, even the smallest model trained in this work com-
prises over 600 and the largest one more than 100 000 nodes.
Mapping this amount of nodes directly to FPGA logic would
exceed the available resources, making this approach unfea-
sible. Therefore, a different approach that balances resource
utilization and throughput was searched for. For each data
point, only a subset of nodes in a single tree can be traversed.
Corresponding to the path through the tree, only one node per
level (see Fig. 1) can be visited in each step. Thus, each tree
was implemented by a single node structure at each level, as
displayed in the left part of Fig. 3, similar to [33] and [35].
On the one hand, this drastically reduced the number of node
structures that needed to be implemented, especially at higher
depths (e.g., at a depth of eight, 28 — 1 = 255 nodes could
be omitted per tree). On the other hand, the complexity to
implement a node structure was increased.

A schematic of a node structure implementation can be seen
on the right-hand side of Fig. 3. Iterating a data point through
a node structure took three clock cycles with the following
operations.

1) Load: Node information is loaded to the output of the

BRAM based on the provided memory address (memory
index).
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Fig. 3. Left: Implementation of a decision tree with one level per node. Right:
Schematic of a node structure. Based on a memory index provided by the
previous level, node information are loaded from BRAM. The loaded feature
index (feat_idx) indicates which input feature is compared to the loaded test
value (fest_val). Based on the outcome of this comparison and the loaded
index of where the child nodes are stored in the memory of the following
level (child_idx), a memory index is output to the next level. In case of a
leaf node, the node information consists only of a prediction value, which is
loaded and output.
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Fig. 4. Operations in a subensemble of a GTB model with maximum depth
of 4 for one data point, Id = load, ft = fetch, cmp = compare, pdt = predict,
tn = tree n. The different colors depict operations in different trees of the
subensemble. Since operations in a level are independent of each other, the
load operation of tree 1 could be executed during the fetch operation of tree
0 and so forth. The compare operation of tree 9 in level O finishes before
the Id operation of tree 0 in level 4. Therefore, the same node structure can
be used for level 0 and level 4. Operations continue until tree 9 is iterated
through level 4.

2) Fetch: Node information could be fetched from the
BRAM output.

3) Compare/Predict: One of the input features was com-
pared to the test value and the memory index to the
following level had to be output. In case of a leaf node,
the prediction value had to be output.

These operations could be executed independently of each other,
so that a new data point could theoretically still be processed
at every clock cycle. To achieve this, the input features of each
data point would need to be registered at each level, leading
to a high register resource consumption. Instead, the input
features of the current data point were directly routed to each
node structure. However, the independence of operations in a
node structure was used to share one set of node structures
between multiple trees of the ensemble and iterate one data
point through multiple trees in a pipelined way, as depicted in
Fig. 4. We grouped ten decision trees in such a subensemble. In
this case, the compare operation of level 0 of the last tree was
executed before the load operation of level 4 of the first tree. It
was therefore not necessary to implement a node structure for
each level. Instead the node structures that were used for lower
levels could be reused for higher levels. This further reduced
the amount of logic resources utilized by this implementation.

Each node structure was connected to a dedicated BRAM.
In this memory, information of all nodes in the levels that the
node structure was used for were stored for all ten trees in
one subensemble. Node information included a test value, an
identifier, which input feature had to be compared against the
test value, and an index, indicating at which memory address
the child nodes in the following level were stored, or, in case
of a leaf node, only a prediction value. The memory of the
Kintex-7 FPGA can be configured to blocks with a minimum
size of 18 kb, organized in 1024 18 b memory spaces. In each
clock cycle, two memory spaces in one BRAM can be accessed.
For each node, 35 b of information needed to be stored (32 b
in case of a leaf node), so that each node occupied exactly two
memory spaces in BRAM. Reusing node structures of lower
levels for higher levels proved highly beneficial for memory
usage, as there were only few nodes at lower level and BRAMs
would have been largely unoccupied at this level. Storing the
node information of multiple levels together, while guaranteeing
that two levels never access the same BRAM at the same time
and therefore keeping the BRAM output nonambiguous, used
the blocks of memory more efficiently.

D. Evaluation

The implemented models were evaluated regarding their
performance and resource consumption using the following
metrics.

1) Prediction Accuracy: The prediction accuracy is defined
as the rate of correctly identified scintillator segments,
meaning that the predicted interaction position matches
the irradiated scintillator segment. A perfect prediction
accuracy of one is not achievable due to Compton scat-
ter inside the scintillator array. However, the parameter
still provides a simple measure to compare the posi-
tioning performance of different models. Furthermore,
we included an extended prediction accuracy, which is
defined as the fraction of events, that are either posi-
tioned in the correct scintillator segment or positioned
in one of the neighboring scintillator segments.

2) Mean Absolute Error (MAE): The MAE is the mean
of the absolute positioning error and was included to
evaluate the error distribution of the positioning.

3) Throughput: The throughput is the number of events that
can be positioned per second. It depends on the number
of clock cycles until a new event can be accepted by the
model and the clock frequency, with which the model
is running on the FPGA. The reported throughputs in
Section III-E were calculated from the time stamps that
were generated each time a new data point was accepted
into the model.

4) Logic Resource Usage: FPGAs are equipped with a lim-
ited amount of LUTs and registers, which are used to
implement arithmetic and logic functions. We evaluated
the dependence of the utilization of these resources on
the size of the GTB models.

5) Memory Resource Usage: Apart from logic resources,
FPGAs are also equipped with on-chip random access
memory. This memory is organized in blocks (BRAMs)
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Fig. 5. Exemplary results. For all cases, the evaluated parameter is shown against the number of decision trees (Nirees. If shown, resource consumption

always includes the resources needed for feature calculation. (a) Prediction accuracy for all feature sets with fixed maximum depth (maxd) and learning rate
(Ir) of 6 and 0.4, respectively. (b) Prediction accuracy of different learning rates for the feature set raw 4+ CoG + phSum and a fixed maximum depth of
6. (c) Prediction accuracy of different maximum depths for the feature sets rowColSum + CoG + phSum and raw for a fixed learning rate of 0.4. (d) LUT
consumption of all feature sets for a fixed maximum depth of 6. LUT consumption is independent of the learning rate. (¢) LUT consumption of different
maximum depths for the feature sets raw and rowColSum. (f) Memory consumption of different maximum depths. Memory consumption is independent of

the learning rate and the feature set.

of fixed size. Single memory address spaces in each
BRAM can be accessed in two clock cycles. However,
only two memory address space in a BRAM can be
accessed at one time.

III. RESULTS
A. Positioning Performance

The prediction accuracy of the different input feature sets is
compared in Fig. 5(a). The lowest prediction accuracies in the
observed hyperparameter space are observed with the feature
sets raw and raw + mainChan + mainDPC. Using the calcu-
lated row and column sums (rowColSums) instead of the raw
photon counts (raw) improves prediction accuracy between
around 10 % and 67 %. However, the positioning performance
of input feature sets, including the features CoG and phSum,
exceeds that of sets without these features.

Fig. 5(b) shows how the prediction accuracy can be influ-
enced by the learning rate. Especially for smaller models with
less than 100 trees, learning rate has a high impact on the
prediction accuracy, where a higher learning rate leads to
higher prediction accuracies. For larger models, the position-
ing performance deteriorates slightly for higher learning rates
due to overfitting.

Fig. 5(c) shows the prediction accuracy for different depths
for the feature sets raw and rowColSum + CoG + phSum.
Increasing the maximum depths increases the prediction
accuracy. This improvement is high for the raw feature set
(up to 58.80 %), but only small for the feature set based on
calculated features (a maximum improvement of 8.32 % from
a maximum depth of 4-8 at 20 decision trees).

TABLE III
LoGic RESOURCE CONSUMPTION FOR CALCULATING
ADDITIONAL FEATURES

Feature LUT  Register  DSP slices
CoG, phSum 340 550 6
rowColSum 262 478 0
mainChan, mainDPC 105 87 0

The best prediction accuracy of the trained models of 0.63
was achieved for a model with 180 trees and a maximum
depth of 8, trained with a learning rate of 0.2 and the feature
set raw + CoG + phSum. This corresponds to about 96 %
of the maximum achievable prediction accuracy, which was
found offline at about 0.66 when training much larger models
of depths of 12 or 14.

Fig. 6 shows the extended prediction accuracy and the MAE
for the different input feature sets. The extended prediction
accuracy shows the same behavior as the prediction accuracies
with improved performance for row and column sums over
raw photon counts and for feature sets, including CoG and
phSum. The best extended prediction accuracy was found to
be 0.85. The MAE shows the inverse behavior to the prediction
accuracy with lower errors for row and column sums over raw
photon counts and for feature sets, including CoG and phSum.
The lowest MAE achieved was 0.88.

B. Logic Resources

Table III shows the resources consumed for calculating fea-
tures from the raw photon counts. The results for the individual
GTB models shown in the following include the resources
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Fig. 6. Exemplary results for (a) extended prediction accuracy and (b) MAE
for all feature sets with fixed maximum depth (maxd) and learning rate (Ir)
of 6 and 0.4, respectively.

needed for these calculations. DSP slices are only used for the
calculation of the CoG and not for the implementation of the
GTB models, therefore a maximum of six (0.39 % of available
DSP slices in the Kintex-7) are occupied by the positioning
framework.

As can be seen in Fig. 5(d), the number of input features
strongly influences the logic resource consumption of GTB
models. A lower number of input features decreases the logic
resource consumption. For example, using 16 row and col-
umn sums instead of 64 raw photon counts brings a reduction
between 35.74 % and 52.83 %.

Increasing the maximum depth of the GTB models increases
the amount of consumed logic resources [see Fig. 5(e)] due
to some overhead when node structures are reused in dif-
ferent levels. Fig. 5(d) and (e) shows that LUT consumption
grows linearly with the number of trees. The LUT consump-
tion ranges from 1.48 x 10> LUTs for the smallest model
(feature set rowColSum, maximum depth 8, 20 decision trees)
to 44.21 x 10> LUTs for the largest model (feature set raw +
CoG + phSum, maximum depth 4, 220 decision trees). This
corresponds to 0.58 % and 17.39 % of all available LUTs in
the Kintex-7 FPGA.

The utilization of registers is independent of the amount of
input features. Register consumption follows a similar linear
trend as LUT consumption for an increasing number of deci-
sion trees and increases with higher maximum depth. However,
the overall register consumption is much lower than LUT con-
sumption, ranging between 0.28 % of all available registers for
the smallest and 3.82 % for the largest model.

C. Positioning Performance Versus Logic Resources

Fig. 7 shows the prediction accuracy versus the logic
resource consumption for implemented models and the Pareto
frontier. Points on the Pareto frontier form a set of optimal
solutions, where one parameter cannot be improved without

50
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40F o Ir=4 B
* Ir=.7
) * raw
e 30 raw + CoG + phSum n B
> rowColSum
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Fig. 7. Prediction accuracy versus LUTs for selected feature sets and learning
rates. Different learning rates are distinguished by different shapes, different
feature sets by different colors. To keep the figure distinguishable, not all
combinations of implemented feature sets and learning rates are shown. For
each shown feature set and learning rate, models for all depths and number
of trees are shown. The Pareto frontier is shown by the black line.

TABLE IV
NUMBER OF CLOCK CYCLES UNTIL A NEW EVENT COULD BE
PROCESSED AND RESULTING THROUGHPUT AT 100 MHz
FOR DIFFERENT MAXIMUM DEPTHS

Maximum Depth  Clock Cycles Throughput

4 22 4.55 MEvents/s
6 28 3.57 MEvents/s
8 34 2.94 MEvents/s

worsening the other [49]. The best prediction accuracy of
0.63 is achieved for a consumption of 44.21 x 103 LUTs.
A prediction accuracy of 99.62% of the best achieved
performance can be achieved with 25.20% (11.14 x 103
LUTs) of the LUT consumption and a prediction accuracy
of 98.63% with 5.67% (2.51 x 103 LUTs) of the LUT
consumption.

D. Memory Resources

The number of memory resources used by the GTB models
only depends on the number of nodes (and therefore on the
maximum depth and the number of decision trees) but not on
the number of input features. The amount of 18 kb BRAMs
utilized for the implemented models is shown in Fig. 5(f).
Memory resources increase linearly with increasing number
of decision trees. Models of depths four and six consume the
same amount of memory resources. A maximum depth of eight
increases the memory consumption by a factor of more than
two, however. In total, the memory utilization ranges from
8 BRAMs (0.5 % of available BRAMS) for the smallest model
to 200 BRAMs (12.58 %) for the largest model.

E. Throughput

The number of clock cycles until a new input can be pro-
cessed is dependent on the number of decision trees in each
subensemble and the maximum depth of the model. With ten
decision trees in each subensemble and a clock frequency of
100 MHz, the throughputs for the three maximum depths are
shown in Table IV.

At a clock frequency of 100 MHz, the largest maximum
depth of eight still had a throughp