
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 7, NO. 3, MARCH 2023 253

High-Throughput FPGA-Based Inference of
Gradient Tree Boosting Models for Position

Estimation in PET Detectors
Karl Krueger , Member, IEEE, Florian Mueller , Member, IEEE, Pierre Gebhardt , Bjoern Weissler ,

David Schug , and Volkmar Schulz , Senior Member, IEEE

Abstract—In modern large-scale positron emission tomogra-
phy (PET) systems, transferring the digitized raw detector data
at high count rates to a centralized processing unit is a challenge.
Processing data on field programmable gate arrays (FPGAs) close
to the detectors can reduce data early on and improve scalability
of the PET system. We present and evaluate an FPGA implemen-
tation of gradient tree boosting (GTB) for 1-D position estimation
of gamma interactions in the scintillator. GTB is a supervised
machine learning algorithm based on building ensembles of
binary decision trees. Models were trained offline and inferred
in an FPGA (XC7K410T-2FFG676 Kintex-7). Input features and
GTB parameters influencing both positioning performance and
model size were varied while evaluating the inferred models con-
cerning data throughput and FPGA resource consumption as
well as positioning performance. We achieved throughputs per
detector between 2.94 × 106 and 4.55 × 106 gamma interactions
per second. For an optimized GTB model, resource consump-
tion could be reduced by factors of 17 and 10 to less than
1 % (2.51 × 103 look-up tables) of available logic and 1.26 %
(20 BRAMs) of memory resources, while maintaining a position-
ing performance of 98.63 % when compared to the model with the
best positioning performance. The presented framework can be
easily adapted to other photosensors and scintillator influencing.

Manuscript received 21 November 2022; revised 10 January 2023; accepted
13 January 2023. Date of publication 23 January 2023; date of current ver-
sion 3 March 2023. This work was supported in part by the Helmholtz
Validation Fund under Grant 0051, and in part by the European Union’s
Horizon 2020 Research and Innovation Programme under Grant 667211.
(Corresponding author: Karl Krueger.)

This work did not involve human subjects or animals in its research.
Karl Krueger and Florian Mueller are with the Department of

Physics of Molecular Imaging Systems, Institute for Experimental
Molecular Imaging, RWTH Aachen University, 52074 Aachen, Germany
(e-mail: karl.krueger@pmi.rwth-aachen.de).

Pierre Gebhardt is with the Department of Physics of Molecular Imaging
Systems, Institute for Experimental Molecular Imaging, RWTH Aachen
University, 52074 Aachen, Germany, and also with Bruker Biospin GmbH,
76275 Ettlingen, Germany.

Bjoern Weissler and David Schug are with the Department of Physics of
Molecular Imaging Systems, Institute for Experimental Molecular Imaging,
RWTH Aachen University, 52074 Aachen, Germany, and also with Hyperion
Hybrid Imaging Systems GmbH, 52074 Aachen, Germany.

Volkmar Schulz is with the Department of Physics of Molecular Imaging
Systems, Institute for Experimental Molecular Imaging, and the Physics
Institute III B, RWTH Aachen University, 52074 Aachen, Germany, also
with Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany, and also
with the Fraunhofer Institute for Digital Medicine MEVIS, 52074 Aachen,
Germany.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TRPMS.2023.3238904.

Digital Object Identifier 10.1109/TRPMS.2023.3238904

Index Terms—Data processing, decision trees, field pro-
grammable gate arrays (FPGAs), gradient tree boosting (GTB),
positron emission tomography (PET).

I. INTRODUCTION

POSITRON emission tomography (PET) is a functional,
tracer-based imaging modality, offering a high sensi-

tivity for the imaging of metabolic processes and is used
widely in clinical and preclinical applications [1], [2]. A
positron, emitted from a radioactively labeled tracer, annihi-
lates with an electron, emitting two 511-keV gamma photons.
Scintillation crystals convert these gamma photons into optical
photons, which are detected by photosensors, typically silicon
photomultipliers (SiPMs).

To perform image reconstruction, information about the
timing, energy, and spatial position of the gamma photon
interaction needs to be calculated from the acquired raw data.
The raw data can consist of the individual channel responses
of the photosensor [3] or the outputs of a multiplexing scheme
between the individual channels (e.g., row and column sum-
ming [4], [5]). The data processing can be done either using
dedicated processing servers [6], [7] or directly within the
hardware of the data acquisition system [8], [9], [10], [11]. In
the first case, this requires either large data storage solutions in
case of offline or large server solutions in case of online pro-
cessing. Especially in total-body PET [12], [13], [14] with its
large number of detectors, large amounts of data would have
to be stored and/or processed in servers, increasing system
costs significantly. Instead, the field programmable gate arrays
(FPGAs) used to collect data from a single or from multiple
detectors in the data acquisition system can be used for the
necessary processing steps for timing, energy, and position
estimation. Since costs for FPGAs with high processing power
can be significant, algorithms for data processing need to be
efficient to be implementable in small and therefore cheap
FPGAs. Furthermore, processing the PET raw data in FPGAs
reduces the amount of data early in the data acquisition system
and thereby reduces the system complexity needed to transfer
large amounts of data.

This work focuses on one aspect of the aforementioned
necessary processing steps: the estimation of the interaction
position of the gamma photon in the scintillator, which is
needed to accurately determine the annihilation point of the
positron.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4634-1153
https://orcid.org/0000-0002-9496-4710
https://orcid.org/0000-0001-9858-7425
https://orcid.org/0000-0003-1119-785X
https://orcid.org/0000-0002-5154-8303
https://orcid.org/0000-0003-1341-9356

254 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 7, NO. 3, MARCH 2023

Different methods have been developed to estimate this
positin, depending on the scintillator/photosensor configura-
tion. In one-to-one coupled scintillators, the planar interaction
position is either directly associated with the individual read-
out channels or can be obtained from look-up tables (LUTs)
in the case of multiplexed signals. In high-resolution scintilla-
tors, the planar interaction position can be calculated from
the light distribution using, e.g., center-of-gravity (CoG or
Anger) algorithms [15], [16], [17]. Depth-of-interaction (DOI)
information can be obtained by, e.g., staggered designs and
CoG [18] or neural networks [19]. In monolithic detectors, the
interaction in planar and DOI direction can be estimated using,
amongst others, maximum-likelihood searches [20], [21], neu-
ral networks [22], [23] or gradient tree boosting (GTB)
[24], [25].

Efforts have been made to adapt FPGA implementations
of more complex positioning algorithms, such as maximum-
likelihood position estimation [26], [27], [28] or neural
networks [29], [30], to overcome the limitations of simpler
methods like one-to-one coupling or CoG [31]. Many of these
adaptations suffer from a high memory requirement, making
them unfeasible for smaller (and cheaper) FPGAs, or a low
throughput, requiring further processing before positioning.
For early data reduction, the position estimation should be
performed at an early stage, using small FPGAs close to the
detectors, where higher throughputs are required and FPGA
memory and logic resources are scarce.

Recently, our group has shown that the GTB algorithm
provides high spatial resolution in planar [24] as well as in
DOI [25] direction and could be optimized concerning its com-
plexity and computation cost, which enabled high throughputs
in a software-based inference [32].

Here, we aim at developing an FPGA-based inference of
GTB that is designed to be integrated as one step of the
required data processing in a PET data acquisition system. As
such, the implemented GTB framework must meet the afore-
mentioned requirements of high data throughputs and a low
consumption of FPGA resources, so that it can be included in
the (optimally) small readout FPGAs close to the detectors
of the PET system. Previous work on FPGA implementa-
tions of GTB for different applications exists. Some of these
works implement models of fixed sizes for a specific applica-
tions [33], [34], [35]. Others optimize different models for a
high throughput and a low latency [36], [37], [38], [39]. All
implementations have in common that they are designed as
stand-alone FPGA algorithms, which is why their main focus
is not on the FPGA resource consumption. In contrast, we
show a combination of high throughputs and low resource con-
sumption. The latter is achieved by executing different steps
of the GTB algorithm in the same FPGA logic and pool-
ing their necessary information in the same memory spaces.
High throughputs are realized by executing large parts of the
model in parallel. We further investigate the tradeoff between
resource consumption and positioning performance for differ-
ent model configurations to show the feasibility of including
GTB in small FPGAs of large-scale PET systems.

The implementation in this work is shown with an example
of a photosensor based on digital SiPMs and a high-resolution
scintillator array. Since the data used for training the GTB

models is not specific to the detector composition, the
implementation can be easily adapted to other detector types,
such as analog SiPMs and/or monolithic scintillators.

II. MATERIALS AND METHODS

A. Data Acquisition

A detailed description of the detector used for data acqui-
sition can be found in [3] and [17], therefore only a short
summary is given here. The detector consists of a high-
resolution scintillator coupled to a sensor tile via a lightguide.
The scintillator array is made up out of 30 × 30 LYSO crys-
tal segments with a pitch of 1 mm and a height of 12 mm.
The array was mounted on a 2-mm thick glass plate to spread
light onto a 32.6 × 32.6 m2m sensor tile. The sensor tile con-
sisted of 16 digital SiPMs (PDPC DPC 3200-22) [40], [41].
Each DPC comprised 2 × 2 readout channels, resulting in
a total of 64 channels. Every DPC provides an indepen-
dent, customizable two-level trigger scheme, that was set to
trigger on 2.33 and 17 photons for the first and second thresh-
old, respectively. The collected information from all channels
of the triggered DPCs corresponding to one gamma photon
interaction is called an event.

GTB needs training data to build predictive models (see
Section II-B). This data as well as test data for evaluation were
acquired in a benchtop coincidence calibration setup [42]. The
sensor tile was placed on a translation stage and the scintillator
array was irradiated in both planar directions with a fan-beam
collimator by a gamma photon beam created by a slit of 0.4-
mm width with two 22Na sources, each with an activity of
5.5 MBq. The translation stage was moved 1 mm at a time,
so that every row or column of scintillator segments was irra-
diated centrally. We acquired a total of 600 000 events as the
training data and 180 000 events as the test data.

The acquired raw data was preprocessed using the tool
developed and described in [17]. A time window of 40 ns
was used to form events from the individual readout channel
photon counts. The time stamp for each event was determined
as the time stamp of the earliest channel that was read out for
this event. While this is currently done in software, an FPGA
implementation is under development. A sliding coincidence
window of 10 ns was applied to find coincident events. No fur-
ther preprocessing steps were applied to the raw photon counts.
Since each DPC can trigger independently, not every channel
sends out data for each event. Such missing photon counts
were set to −1, so that every event consisted of 64 values
representing the 64 channels of the detector.

It is noteworthy that the training and test data after prepro-
cessing is not specific to the used photosensor architecture.
Each event only consists of a collection of the timely cor-
related outputs of the triggered channels of the photosensor
that represent the measured light from one gamma interaction
in the scintillator. We chose the above-mentioned photosen-
sor architecture with a pixelated scintillator, as it provides an
easy to understand measure to evaluate the FPGA implemen-
tation of GTB models (see Sections II-B–II-D) and allows a
comparison to a previous work on software-based inference of
GTB [32].

KRUEGER et al.: HIGH-THROUGHPUT FPGA-BASED INFERENCE OF GTB MODELS FOR POSITION ESTIMATION 255

Fig. 1. (a) Simple example of a 1-D detector with two channels and four
scintillator segments and (b) GTB model for predicting the interaction posi-
tion. The model consists of two decision trees (Ntrees = 2), which has a
maximum depth (maxd) of 2 and the photon counts of the two channels
(c0, c1) as its input features. In each node (rounded rectangular shape), one
of the input features is compared to a trained value, each leaf (oval shape)
represents a position output. (c) Prediction y is the sum of the reached leaf
values lij from each tree.

B. Gradient Tree Boosting

GTB was introduced in detail for planar and DOI position-
ing of the gamma photon interaction in the scintillator in [24]
and [25]. Therefore, only its main features and the charac-
teristics important for an FPGA inference are presented here.
GTB is a supervised machine learning algorithm that builds
predictive models based on a set of training data (in this case
the measured events with their known irradiation positions).
A GTB model consists of an ensemble of binary decision
trees (see Fig. 1 for an example tree), where each tree can be
seen as a sequence of simple tests with two possible outcomes
[43], [44]. The ensemble is built by adding new decision trees
sequentially. The first tree is trained on the irradiation posi-
tion, each subsequent tree seeks to minimize the error of the
estimated position versus the irradiated position of the former
ensemble. We used RMSE as training loss for the objective
function. The resulting model can be used as a predictor by
iterating a data point through all trees of the ensemble. Single
trees are independent of each other and can thus be evaluated
in parallel. The prediction for the event under test is then the
sum of predictions of the individual decision trees. In this case,
the output value is a 1-D prediction of the interaction posi-
tion in the scintillator. Therefore, the prediction of the spatial
position needs a separate model for each direction.

To investigate tradeoffs between positioning performance
and model size, and therefore FPGA resource consumption, we
varied the following hyperparameters (parameters that control
the learning process) for GTB model training.

TABLE I
SETS OF INPUT FEATURES

1) Maximum Depth: The maximum number of comparisons
in a decision tree from the root node to a leaf (the
example tree in Fig. 1 has a maximum depth of two).

2) Number of Decision Trees: The number of decision trees
in the GTB model.

3) Learning Rate: The learning rate is a factor that weighs
the ensemble error prior to adding a new decision tree
in each training step.

Models of larger maximum depth and higher number of
decision trees generally show an improved performance for
positioning of gamma photons [24] (before overfitting occurs).
At the same time, increasing the model size increases the com-
putational and memory requirements. The number of nodes
and leaves (Nnodes, see Fig. 1) in a GTB model is dependent
on the maximum depth (maxd) and the number of decision
trees (Ntrees) as follows:

Nnodes = Ntrees ∗
(

2maxd+1 − 1
)

. (1)

A high learning rate gives large influence to single trees, which
can lead to a good performance for models with a small num-
ber of decision trees, but to overfitting for larger models. GTB
models can be trained with arbitrary input features. We used
the raw photon counts of the sensor’s readout channels in
combination with calculated features based on the light distri-
bution to investigate their effect on positioning accuracy and,
by means of reducing the number of input features, on resource
consumption. Based on the hyperparameter space investigated
and the results obtained in [24] and [25], we trained mod-
els with combinations of maximum depths {4, 6, 8}, number
of trees {20, 60, 100, 140, 180, 220}, learning rates {0.1,
0.2, 0.4, 0.7}, and sets of input features (see Table I). We
calculated the additional features mainChan, mainDPC, CoG,
phSum, rowColSum for two reasons. Many detector designs do
not digitize each photosensor channel individually, but reduce
the number of input signals by, e.g., row and column sum-
ming. Furthermore, the calculated features can contain more
information per feature about the gamma interaction position
than the raw photon counts and can therefore be beneficial for
positioning performance [24], [25].

GTB models were trained as regression models that out-
put a continuous estimation of the gamma interaction in the
scintillator in one spatial direction. Since the data labels (the
irradiated positions) are limited to the irradiated scintillator
segment and thus form a discrete system, the output values
were mathematically rounded. Model training was performed
offline with the 600 000 events of the training data set and the

256 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 7, NO. 3, MARCH 2023

TABLE II
PARAMETERS OF THE XC7K410T-2FFG676 KINTEX-7 FPGA [47].

EACH BLOCK RAM (BRAM) COMPRISES 18 kb OF MEMORY

Fig. 2. Schematic overview of FPGA implementation. Raw data is loaded
from a control PC. Additional features are calculated and the right set of input
features is fed to the GTB model. The prediction output and a time stamp are
sent back to the control PC.

known irradiation positions as data labels using the framework
XGBoost [45] and only the resulting models were implemented
and tested on an FPGA. Each event contains the input feature
values for the chosen feature set in Table I, which are directly
calculated from the measured raw photon counts of the read-
out channels. Model building is analogous to [32], where the
same detector block was used, and to [24], where models were
built in the same way for a monolithic detector block. These
works describe the training and building of GTB models in
detail.

C. FPGA Implementation

The FPGA inference of GTB models was developed using
the hardware description language VHDL which gives the
most flexibility during the implementation process. For fur-
ther flexibility and the possibility to implement models over
a wide range of hyperparameters, the implementation, includ-
ing the calculation of features from the raw photon counts
and the GTB models, was done as a stand-alone algorithm on
the FPGA and not inside a PET data acquisition architecture.
We used a custom-made board, designed as the mainboard
in our PET data acquisition and processing platform [46]
and equipped with an XC7K410T-2FFG676 Kintex-7 FPGA.
Table II shows the available logic and memory resources of
the FPGA.

The raw photon counts of the gamma events of the test data
were loaded into the FPGA from a control PC via a 10 Gbit
Ethernet connection and stored inside input buffers. Once the
buffers were filled, their data were fed to the positioning
framework as fast as the framework could accept new inputs.
A time stamp was generated each time the model accepted a
new data point. The prediction output generated by the frame-
work was sent back to the control PC together with the time
stamp. A schematic of this data flow in the FPGA is shown
in Fig. 2. The positioning framework was implemented at a
clock frequency of 100 MHz. We chose this frequency for two
reasons: 1) it is commonly used in our data acquisition system
to collect raw sensor data and 2) the higher the frequency, the
more difficult the routing between the configurable logic of the
FPGA becomes during synthesis. We considered 100 MHz as

a rather conservative frequency choice, where no routing issues
were expected.

In the case of the raw feature set, the 64 raw photon counts
were fed to the GTB models as input features directly. In all
other cases, additional features were calculated in the FPGA
first. The main channel, main DPC as well as the photon sum,
row sums and column sums were calculated in the FPGA
logic using LUTs. For the CoG calculation, the necessary
multiplications were moved into dedicated digital signal pro-
cessing (DSP) slices. The division was implemented using the
Divider Generator v5.1 from Xilinx [48]. All features were
calculated in parallel and in each clock cycle, photon counts
from four channels could be processed. Thus, it took 16 clock
cycles to calculate features for a gamma event with 64 photon
counts.

During the offline training, all model parameters were rep-
resented as floating point values. These were translated into
fixed point values for the FPGA implementation, meaning a
fixed number of bits were allocated to represent the fractional
part of each value. All feature values (input features and test
values) were represented as 13 bit (b) words. The CoG posi-
tion was represented with nine fractional bits, all other features
with one fractional bit. Prediction values were represented as
32 b words with 23 fractional bits. With these bit widths,
no prediction loss could be observed compared to the offline
inference.

The basis of each node is the comparison of one of the
input features to a trained test value. Based on the outcome
of this comparison, the tree is traversed to either of the child
nodes. In a naive FPGA implementation, each node of every
tree in the ensemble could be mapped to FPGA logic. This
could maximize throughput as it allows for data streaming
and could minimize the usage of on-chip memory, as all
node information could be hard-wired in the FPGA logic.
However, with (1) and the hyperparameter space described in
Section II-B, even the smallest model trained in this work com-
prises over 600 and the largest one more than 100 000 nodes.
Mapping this amount of nodes directly to FPGA logic would
exceed the available resources, making this approach unfea-
sible. Therefore, a different approach that balances resource
utilization and throughput was searched for. For each data
point, only a subset of nodes in a single tree can be traversed.
Corresponding to the path through the tree, only one node per
level (see Fig. 1) can be visited in each step. Thus, each tree
was implemented by a single node structure at each level, as
displayed in the left part of Fig. 3, similar to [33] and [35].
On the one hand, this drastically reduced the number of node
structures that needed to be implemented, especially at higher
depths (e.g., at a depth of eight, 28 − 1 = 255 nodes could
be omitted per tree). On the other hand, the complexity to
implement a node structure was increased.

A schematic of a node structure implementation can be seen
on the right-hand side of Fig. 3. Iterating a data point through
a node structure took three clock cycles with the following
operations.

1) Load: Node information is loaded to the output of the
BRAM based on the provided memory address (memory
index).

KRUEGER et al.: HIGH-THROUGHPUT FPGA-BASED INFERENCE OF GTB MODELS FOR POSITION ESTIMATION 257

Fig. 3. Left: Implementation of a decision tree with one level per node. Right:
Schematic of a node structure. Based on a memory index provided by the
previous level, node information are loaded from BRAM. The loaded feature
index (feat_idx) indicates which input feature is compared to the loaded test
value (test_val). Based on the outcome of this comparison and the loaded
index of where the child nodes are stored in the memory of the following
level (child_idx), a memory index is output to the next level. In case of a
leaf node, the node information consists only of a prediction value, which is
loaded and output.

Fig. 4. Operations in a subensemble of a GTB model with maximum depth
of 4 for one data point, ld = load, ft = fetch, cmp = compare, pdt = predict,
tn = tree n. The different colors depict operations in different trees of the
subensemble. Since operations in a level are independent of each other, the
load operation of tree 1 could be executed during the fetch operation of tree
0 and so forth. The compare operation of tree 9 in level 0 finishes before
the ld operation of tree 0 in level 4. Therefore, the same node structure can
be used for level 0 and level 4. Operations continue until tree 9 is iterated
through level 4.

2) Fetch: Node information could be fetched from the
BRAM output.

3) Compare/Predict: One of the input features was com-
pared to the test value and the memory index to the
following level had to be output. In case of a leaf node,
the prediction value had to be output.

These operations could be executed independently of each other,
so that a new data point could theoretically still be processed
at every clock cycle. To achieve this, the input features of each
data point would need to be registered at each level, leading
to a high register resource consumption. Instead, the input
features of the current data point were directly routed to each
node structure. However, the independence of operations in a
node structure was used to share one set of node structures
between multiple trees of the ensemble and iterate one data
point through multiple trees in a pipelined way, as depicted in
Fig. 4. We grouped ten decision trees in such a subensemble. In
this case, the compare operation of level 0 of the last tree was
executed before the load operation of level 4 of the first tree. It
was therefore not necessary to implement a node structure for
each level. Instead the node structures that were used for lower
levels could be reused for higher levels. This further reduced
the amount of logic resources utilized by this implementation.

Each node structure was connected to a dedicated BRAM.
In this memory, information of all nodes in the levels that the
node structure was used for were stored for all ten trees in
one subensemble. Node information included a test value, an
identifier, which input feature had to be compared against the
test value, and an index, indicating at which memory address
the child nodes in the following level were stored, or, in case
of a leaf node, only a prediction value. The memory of the
Kintex-7 FPGA can be configured to blocks with a minimum
size of 18 kb, organized in 1024 18 b memory spaces. In each
clock cycle, two memory spaces in one BRAM can be accessed.
For each node, 35 b of information needed to be stored (32 b
in case of a leaf node), so that each node occupied exactly two
memory spaces in BRAM. Reusing node structures of lower
levels for higher levels proved highly beneficial for memory
usage, as there were only few nodes at lower level and BRAMs
would have been largely unoccupied at this level. Storing the
node information of multiple levels together, while guaranteeing
that two levels never access the same BRAM at the same time
and therefore keeping the BRAM output nonambiguous, used
the blocks of memory more efficiently.

D. Evaluation

The implemented models were evaluated regarding their
performance and resource consumption using the following
metrics.

1) Prediction Accuracy: The prediction accuracy is defined
as the rate of correctly identified scintillator segments,
meaning that the predicted interaction position matches
the irradiated scintillator segment. A perfect prediction
accuracy of one is not achievable due to Compton scat-
ter inside the scintillator array. However, the parameter
still provides a simple measure to compare the posi-
tioning performance of different models. Furthermore,
we included an extended prediction accuracy, which is
defined as the fraction of events, that are either posi-
tioned in the correct scintillator segment or positioned
in one of the neighboring scintillator segments.

2) Mean Absolute Error (MAE): The MAE is the mean
of the absolute positioning error and was included to
evaluate the error distribution of the positioning.

3) Throughput: The throughput is the number of events that
can be positioned per second. It depends on the number
of clock cycles until a new event can be accepted by the
model and the clock frequency, with which the model
is running on the FPGA. The reported throughputs in
Section III-E were calculated from the time stamps that
were generated each time a new data point was accepted
into the model.

4) Logic Resource Usage: FPGAs are equipped with a lim-
ited amount of LUTs and registers, which are used to
implement arithmetic and logic functions. We evaluated
the dependence of the utilization of these resources on
the size of the GTB models.

5) Memory Resource Usage: Apart from logic resources,
FPGAs are also equipped with on-chip random access
memory. This memory is organized in blocks (BRAMs)

258 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 7, NO. 3, MARCH 2023

Fig. 5. Exemplary results. For all cases, the evaluated parameter is shown against the number of decision trees (Ntrees. If shown, resource consumption
always includes the resources needed for feature calculation. (a) Prediction accuracy for all feature sets with fixed maximum depth (maxd) and learning rate
(lr) of 6 and 0.4, respectively. (b) Prediction accuracy of different learning rates for the feature set raw + CoG + phSum and a fixed maximum depth of
6. (c) Prediction accuracy of different maximum depths for the feature sets rowColSum + CoG + phSum and raw for a fixed learning rate of 0.4. (d) LUT
consumption of all feature sets for a fixed maximum depth of 6. LUT consumption is independent of the learning rate. (e) LUT consumption of different
maximum depths for the feature sets raw and rowColSum. (f) Memory consumption of different maximum depths. Memory consumption is independent of
the learning rate and the feature set.

of fixed size. Single memory address spaces in each
BRAM can be accessed in two clock cycles. However,
only two memory address space in a BRAM can be
accessed at one time.

III. RESULTS

A. Positioning Performance

The prediction accuracy of the different input feature sets is
compared in Fig. 5(a). The lowest prediction accuracies in the
observed hyperparameter space are observed with the feature
sets raw and raw + mainChan + mainDPC. Using the calcu-
lated row and column sums (rowColSums) instead of the raw
photon counts (raw) improves prediction accuracy between
around 10 % and 67 %. However, the positioning performance
of input feature sets, including the features CoG and phSum,
exceeds that of sets without these features.

Fig. 5(b) shows how the prediction accuracy can be influ-
enced by the learning rate. Especially for smaller models with
less than 100 trees, learning rate has a high impact on the
prediction accuracy, where a higher learning rate leads to
higher prediction accuracies. For larger models, the position-
ing performance deteriorates slightly for higher learning rates
due to overfitting.

Fig. 5(c) shows the prediction accuracy for different depths
for the feature sets raw and rowColSum + CoG + phSum.
Increasing the maximum depths increases the prediction
accuracy. This improvement is high for the raw feature set
(up to 58.80 %), but only small for the feature set based on
calculated features (a maximum improvement of 8.32 % from
a maximum depth of 4–8 at 20 decision trees).

TABLE III
LOGIC RESOURCE CONSUMPTION FOR CALCULATING

ADDITIONAL FEATURES

The best prediction accuracy of the trained models of 0.63
was achieved for a model with 180 trees and a maximum
depth of 8, trained with a learning rate of 0.2 and the feature
set raw + CoG + phSum. This corresponds to about 96 %
of the maximum achievable prediction accuracy, which was
found offline at about 0.66 when training much larger models
of depths of 12 or 14.

Fig. 6 shows the extended prediction accuracy and the MAE
for the different input feature sets. The extended prediction
accuracy shows the same behavior as the prediction accuracies
with improved performance for row and column sums over
raw photon counts and for feature sets, including CoG and
phSum. The best extended prediction accuracy was found to
be 0.85. The MAE shows the inverse behavior to the prediction
accuracy with lower errors for row and column sums over raw
photon counts and for feature sets, including CoG and phSum.
The lowest MAE achieved was 0.88.

B. Logic Resources

Table III shows the resources consumed for calculating fea-
tures from the raw photon counts. The results for the individual
GTB models shown in the following include the resources

KRUEGER et al.: HIGH-THROUGHPUT FPGA-BASED INFERENCE OF GTB MODELS FOR POSITION ESTIMATION 259

Fig. 6. Exemplary results for (a) extended prediction accuracy and (b) MAE
for all feature sets with fixed maximum depth (maxd) and learning rate (lr)
of 6 and 0.4, respectively.

needed for these calculations. DSP slices are only used for the
calculation of the CoG and not for the implementation of the
GTB models, therefore a maximum of six (0.39 % of available
DSP slices in the Kintex-7) are occupied by the positioning
framework.

As can be seen in Fig. 5(d), the number of input features
strongly influences the logic resource consumption of GTB
models. A lower number of input features decreases the logic
resource consumption. For example, using 16 row and col-
umn sums instead of 64 raw photon counts brings a reduction
between 35.74 % and 52.83 %.

Increasing the maximum depth of the GTB models increases
the amount of consumed logic resources [see Fig. 5(e)] due
to some overhead when node structures are reused in dif-
ferent levels. Fig. 5(d) and (e) shows that LUT consumption
grows linearly with the number of trees. The LUT consump-
tion ranges from 1.48 × 103 LUTs for the smallest model
(feature set rowColSum, maximum depth 8, 20 decision trees)
to 44.21 × 103 LUTs for the largest model (feature set raw +
CoG + phSum, maximum depth 4, 220 decision trees). This
corresponds to 0.58 % and 17.39 % of all available LUTs in
the Kintex-7 FPGA.

The utilization of registers is independent of the amount of
input features. Register consumption follows a similar linear
trend as LUT consumption for an increasing number of deci-
sion trees and increases with higher maximum depth. However,
the overall register consumption is much lower than LUT con-
sumption, ranging between 0.28 % of all available registers for
the smallest and 3.82 % for the largest model.

C. Positioning Performance Versus Logic Resources

Fig. 7 shows the prediction accuracy versus the logic
resource consumption for implemented models and the Pareto
frontier. Points on the Pareto frontier form a set of optimal
solutions, where one parameter cannot be improved without

Fig. 7. Prediction accuracy versus LUTs for selected feature sets and learning
rates. Different learning rates are distinguished by different shapes, different
feature sets by different colors. To keep the figure distinguishable, not all
combinations of implemented feature sets and learning rates are shown. For
each shown feature set and learning rate, models for all depths and number
of trees are shown. The Pareto frontier is shown by the black line.

TABLE IV
NUMBER OF CLOCK CYCLES UNTIL A NEW EVENT COULD BE

PROCESSED AND RESULTING THROUGHPUT AT 100 MHz
FOR DIFFERENT MAXIMUM DEPTHS

worsening the other [49]. The best prediction accuracy of
0.63 is achieved for a consumption of 44.21 × 103 LUTs.
A prediction accuracy of 99.62 % of the best achieved
performance can be achieved with 25.20 % (11.14 × 103

LUTs) of the LUT consumption and a prediction accuracy
of 98.63 % with 5.67 % (2.51 × 103 LUTs) of the LUT
consumption.

D. Memory Resources

The number of memory resources used by the GTB models
only depends on the number of nodes (and therefore on the
maximum depth and the number of decision trees) but not on
the number of input features. The amount of 18 kb BRAMs
utilized for the implemented models is shown in Fig. 5(f).
Memory resources increase linearly with increasing number
of decision trees. Models of depths four and six consume the
same amount of memory resources. A maximum depth of eight
increases the memory consumption by a factor of more than
two, however. In total, the memory utilization ranges from
8 BRAMs (0.5 % of available BRAMs) for the smallest model
to 200 BRAMs (12.58 %) for the largest model.

E. Throughput

The number of clock cycles until a new input can be pro-
cessed is dependent on the number of decision trees in each
subensemble and the maximum depth of the model. With ten
decision trees in each subensemble and a clock frequency of
100 MHz, the throughputs for the three maximum depths are
shown in Table IV.

At a clock frequency of 100 MHz, the largest maximum
depth of eight still had a throughput of almost 3 × 106 events
per second and the smallest maximum depth of four exceeded
4.5 × 106 events per second that could be processed.

260 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 7, NO. 3, MARCH 2023

F. Power Consumption

No in-depth analysis of power consumption of the design was
performed. Instead, power consumption was estimated from
the post-implementation reports of the Xilinx Vivado Design
Suite software that was used for synthesizing the FPGA design.
Estimated power analysis at maximum throughput yielded a
power consumption between about 13 mW (1 % of total power
consumption of the FPGA design) for a model with 20 trees
and about 150 mW (11 % of total power consumption of the
FPGA design) for a model with 220 decision trees.

IV. DISCUSSION

The GTB positioning framework presented here is not
specific to the employed photosensor. Since GTB can be
trained with arbitrary input features, any inputs that carry
information about the interaction position in the scintillator
can be employed. While we used the outputs of digital SiPMs
in this work as inputs to the framework, inputs could also be
raw energy values of individual channels of an analog SiPM
or, in the case of multiplexed channel signals, e.g., row and
column sums. The changes to the positioning framework when
a different sensor architecture is used are minimal. For exam-
ple, the number of inputs or the bit width of single inputs can
be set via global parameters.

Most events can be positioned either in the correct scintilla-
tor segment (about two thirds) or in the neighboring scintillator
segment (about 85 %) with an MAE around 0.85 mm. Since
few quality cuts were applied to the acquired data, only a
40-ns window to cluster single channel photon counts and a
sliding coincidence window of 10 ns, we did not expect a
higher positioning performance.

The choice of features calculated from the raw input val-
ues and used as inputs to the GTB model strongly influences
both the logic resource consumption and the positioning
performance. Since each node structure is shared between
multiple nodes and even levels across trees, all input features
have to be available at all node structures. At each node struc-
ture, the correct input feature must be chosen for comparison
to the currently loaded test value. The necessary multiplexing
consumes a high amount of resources for a higher amount of
input features. By using 16 row and column sums instead of 64
raw photon count values, the logic resource consumption can
be reduced by up to 50 % for models with the same number
of decision trees and maximum depth.

At the same time, using row and column sums instead of
raw photon values improves the positioning performance. The
GTB models implemented here have a maximum of eight
comparisons per tree. In this range of maximum depths, GTB
models profit more from fewer features with more information
per feature than from many features, e.g., row and column
sums versus raw photon counts. Positioning performance can
be improved further by adding a 2-D CoG position as an input
feature, as serves as a first estimate of the actual interaction
position of the gamma photon and thus contains a lot of
information on the value to be predicted. Models including
the CoG feature and trained with higher learning rate, which
places a larger influence on single trees, can achieve high
positioning performances for a small number of trees. These

results can lead, compared to the model with the best posi-
tioning performance, to a reduction by a factor of 17 in logic
and a factor of 10 in memory resources while still achieving
more than 98 % of the maximum achievable prediction accu-
racy (99.5 % of the maximum extended prediction accuracy
and a deterioration of MAE of less than 0.035 mm).

It has to be noted that the focus of this work was not to try
to maximize the positioning performance of the pixelated scin-
tillator by employing GTB. In fact, similar positioning results
might be expected with computationally simpler algorithms,
such as CoG, but this comparison remains part of future work.
However, we chose the given detector configuration in this
work as the results are easy to interpret and it allows a com-
parison with previous work, where the same models were
inferred in a software-based approach [32]. Since the train-
ing data for the GTB models is not specific to the detector
configuration, in this case, the pixelated scintillator coupled
to digital SiPMs, the shown implementation of GTB models,
can be easily adapted to different detector types, e.g., mono-
lithic scintillators. In [24] and [25], similar feature sets were
used in a software-based GTB positioning approach for mono-
lithic scintillators. The results showed that calculated features,
such as row and column sums and CoG, lead to improvements
in the positioning performance for models of the same size as
shown in this work. These results indicate that the results con-
cerning the reduction in resource consumption with minimal
or no loss in positioning performance could be transferred to
other scintillator configurations, although this remains to be
investigated in detail in further work.

The number of nodes in a tree and in an ensemble grows
exponentially with tree depth. However, due to the organization
of memory on the FPGA into blocks of RAM, the implemen-
tation of models of maximum depths of four and six requires
the same amount of memory resources. At a depth of four,
large parts of the 18 kb blocks of memory are not occupied.
However, due to the parallel execution of different levels, it is
not possible to distribute node information into BRAMs more
efficiently while still ensuring only one load operation happens
on the same memory block in one clock cycle, which is neces-
sary to keep the output data of the BRAM nonambiguous. As
described in Section II-C, the minimum amount of BRAMs
that is needed per subensemble is four. This minimum amount
of BRAMs can still store all node information for models of
a depth of six. The exponential increase in nodes becomes
apparent for models of a depth of eight. Here, each subensem-
ble of ten trees requires three times (12 BRAM) the amount
of memory as models of depths four and six.

The models on the Pareto frontier in Fig. 7 form a set of
optimal solutions for the tradeoff between resource consumption
and positioning performance. Based on the requirements of the
specific system, e.g., a PET system with a small FPGA on
detector level with few resources to spare, a model with the
best possible positioning performance that still fits the resource
requirements can be chosen from this set of solutions. Given
that the tradeoff in positioning performance is low, a model
with a low resource consumption can most likely serve in most
PET readout systems to save significant costs. For example, the
model with the best positioning performance would consume
almost 70 % of logic resources in a smaller Artix-7 100T FPGA,

KRUEGER et al.: HIGH-THROUGHPUT FPGA-BASED INFERENCE OF GTB MODELS FOR POSITION ESTIMATION 261

which could be used for the read-out of individual detectors.
This number is not feasible considering the model only predicts
a position in one dimension and should be embedded in a
framework that handles multiple processing steps. However,
with 98.63 % of the best positioning performance, only less
than 4 % of logic resources in the Artix-7 100T would be
occupied. To allow for flexibility in choosing the right model,
the GTB implementation is easily adaptable. Without specific
knowledge of hardware description languages, the models can
be changed, e.g., by increasing the number of subensembles
to increase the number of trees in a model.

As expected, no routing issues occurred during synthesis for
any of the implemented models. An estimated power analysis
showed a low power consumption, where the dynamic part of
the consumption is proportional to the design frequency, for all
models. Therefore, an increase in the clock frequency to, e.g.,
150 MHz or even 200 MHz, could be possible which would
increase throughputs by a factor of 1.5 or 2, respectively. It has
to be noted that power consumption was only estimated from
the Vivado Design Suite software in a post-implementation
vectorless analysis. Power consumption was not analyzed in
detail since it is heavily dependent on the overall FPGA design
and the positioning framework was implemented as a stand-
alone algorithm in this work to maximize flexibility during the
implementation.

Previous work showed that the Hyperion IID scanner, which
is equipped with 60 detector stacks of the kind used in this
work, saturated at a data rate of about 860 MB/s–950 MB/s [6].
Above these thresholds, either the individual detector stacks or
the mainboards that collect data from multiple detector stacks
start to randomly discard events. We found the average size of
a gamma event to be 83.17 B, leading to maximum numbers of
0.18 × 106 to 0.20 × 106 gamma events per second that could
be processed per detector stack. A recently developed high-
throughput software-based GTB framework achieved maximum
data rates around 9.5 GB/s, corresponding to 2.04 × 106 gamma
events per second that can be processed per detector stack.
Details on the software framework are given in [32]. Our
implementation achieves throughputs between 2.94 × 106 and
4.55 × 106 gamma events per second, which are one order
of magnitude higher than the saturation rate of the evaluated
detector and at least 44 % higher than in the high-throughput
software-based approach. More importantly than this increase
over the software framework, the FPGA implementation is
easily scalable to large systems. The work shown here can
be implemented directly on detector level on the FPGAs used
for the detector readout, therefore, no additional processing
hardware needs to be added when the numbers of detectors is
increased. In contrast, a processing server has an upper limit of
the amount of data that can be processed. In large systems, such
as total-body PET, this either limits the data rate or requires
larger (or more) processing servers.

The implemented GTB models output a gamma interaction
position in one spatial direction. For planar positioning for
the detector shown here, two models have to be implemented
per detector. For certain DOI-capable detectors, where the
DOI-position is not directly encoded in the planar position,
an additional GTB model is necessary for DOI estimation.

With two (or three in case of DOI) parallel models, throughput
would stay constant, but logic and memory resource consump-
tion would be doubled (tripled). The high throughputs suggest
that it might be possible to use the same FPGA logic for all
models and position the different directions consecutively. To
reduce the memory consumption further, GTB models could
be compressed, similar to the method in [50]. Furthermore,
it might be possible to use the same GTB model in both
planar directions, eliminating half (one third in case of DOI)
of the needed memory resources in a consecutive positioning
approach. These optimizations are part of further research.

V. CONCLUSION

In this work, we have presented an FPGA inference of
GTB models for the estimation of the gamma interaction in
the scintillator in PET detectors. The positioning framework
could process throughputs between 2.94 × 106 and 4.55 × 106

events per second, achieving throughputs one order of magni-
tude higher than the saturation throughputs of the used detector
and 44 % higher than a software-based inference developed
for high throughputs. At the same time, when choosing the
right hyperparameters and providing calculated features based
on the photon counts, we could achieve reductions of FPGA
resources by factors of 17 and 10 for logic and memory
resources, respectively, with less than 2 % loss in position-
ing performance. The resulting model occupies less than 1 %
of logic and 1.26 % of memory resources in the employed
Kintex-7 FPGA. Calculated features based on the light dis-
tribution, in particular the CoG, improved the positioning
performance, especially for smaller models. The proposed
framework can be implemented directly on the readout FPGAs
of the PET system and thus scales easily with the PET system
size. Due to its high throughput, low resource consumption,
and scalability, it is of particular interest for large systems,
such as total-body or whole-body PET, where smaller and
cheaper FPGAs can cut down costs significantly.

In future work, the possibility of sharing the same model
for positioning in different spatial directions will be evalu-
ated. Clock frequency will be increased to further increase
throughputs. Furthermore, techniques to reduce the memory
requirements in large models will be implemented.

ACKNOWLEDGMENT

The authors declare the following financial
interests/personal relationships which may be considered
as potential competing interests with the work reported in this
article. Bjoern Weissler, David Schug, and Volkmar Schulz
are founders of Hyperion Hybrid Imaging Systems GmbH.

REFERENCES

[1] M. E. Phelps, PET: Molecular Imaging and Its Biological Applcations.
New York, NY, USA: Springer, 2004.

[2] R. Myers, “The biological application of small animal PET imaging,”
Nucl. Med. Biol., vol. 28, no. 5, pp. 585–593, 2001.

[3] B. Weissler et al., “A digital preclinical PET/MRI insert and initial
results,” IEEE Trans. Med. Imag., vol. 34, no. 11, pp. 2258–2270,
Nov. 2015.

262 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 7, NO. 3, MARCH 2023

[4] A. L. Goertzen et al., “Design and performance of a resistor multiplexing
readout circuit for a SiPM detector,” IEEE Trans. Nucl. Sci., vol. 60,
no. 3, pp. 1541–1549, Jun. 2013.

[5] J. Jung, Y. Choi, K. Park, Y. Kim, and J. H. Jung, “A diode-based
symmetric charge division circuit with grounding path to reduce sig-
nal crosstalk and improve detector performance,” IEEE Trans. Radiat.
Plasma Med. Sci., vol. 6, no. 7, pp. 788–793, Sep. 2022.

[6] B. Goldschmidt et al., “Software-based real-time acquisition and pro-
cessing of PET detector raw data,” IEEE Trans. Biomed. Eng., vol. 63,
no. 2, pp. 316–327, Feb. 2016.

[7] W. Krzemien, A. Gajos, K. Kacprzak, K. Rakoczy, and G. Korcyl,
“J-PET framework: Software platform for PET tomography data
reconstruction and analysis,” SoftwareX, vol. 11, Jan.–Jun. 2020,
Art. no. 100487.

[8] Y. Lv et al., “Mini EXPLORER II: A prototype high-sensitivity PET/CT
scanner for companion animal whole body and human–brain scanning,”
Phys. Med. Biol., vol. 64, no. 7, 2019, Art. no. 075004.

[9] W. W. Moses et al., “OpenPET: A flexible electronics system
for Radiotracer imaging,” IEEE Trans. Nucl. Sci., vol. 57, no. 5,
pp. 2532–2537, Oct. 2010.

[10] P. Gebhardt, “Design and investigation of an FPGA-based data acqui-
sition and control architecture with MRI RF interference reduc-
tion capabilities for simultaneous PET/MRI systems,” Ph.D. disser-
tation, Dept. Comput. Sci., King’s College London, London, U.K.,
2017.

[11] G. Sportelli et al., “The TRIMAGE PET data acquisition system:
Initial results,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 1, no. 2,
pp. 168–177, Mar. 2017.

[12] R. D. Badawi et al., “First human imaging studies with the EXPLORER
total-body PET scanner*,” J. Nucl. Med., vol. 60, no. 3, pp. 299–303,
2019.

[13] J. S. Karp et al., “PennPET explorer: Design and preliminary
performance of a whole-body Imager,” J. Nucl. Med., vol. 61, no. 1,
pp. 136–143, 2020.

[14] I. Alberts et al., “Clinical performance of long axial field of view
PET/CT: A head-to-head intra-individual comparison of the biograph
vision quadra with the biograph vision PET/CT,” Eur. J. Nucl. Med.
Mol. Imag., vol. 48, no. 8, pp. 2395–2404, 2021.

[15] R. Wojcik, S. Majewski, B. Kross, V. Popov, and A. G. Weisenberger,
“Optimized readout of small gamma cameras for high resolution single
gamma and positron emission imaging,” in Proc. IEEE Nucl. Sci. Symp.
Conf. Rec., vol. 3, 2001, pp. 1821–1825.

[16] C.-Y. Liu and A. L. Goertzen, “Improved event positioning in a
gamma ray detector using an iterative position-weighted centre-of-
gravity algorithm,” Phys. Med. Biol., vol. 58, no. 14, pp. 189–200,
2013.

[17] D. Schug et al., “Data processing for a high resolution preclinical PET
detector based on philips DPC digital SiPMs,” IEEE Trans. Nucl. Sci.,
vol. 62, no. 3, pp. 669–679, Jun. 2015.

[18] M. Ito et al., “A four-layer DOI detector with a relative offset for use
in an animal PET system,” IEEE Trans. Nucl. Sci., vol. 57, no. 3,
pp. 976–981, Jun. 2010.

[19] A. LaBella, P. Vaska, W. Zhao, and A. H. Goldan, “Convolutional neu-
ral network for crystal identification and gamma ray Localization in
PET,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 4, no. 4, pp. 461–469,
Jul. 2020.

[20] X. Li, C. Lockhart, T. K. Lewellen, and R. S. Miyaoka, “A high res-
olution, monolithic crystal, PET/MRI detector with DOI positioning
capability,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2008,
pp. 2287–2290.

[21] S. España, R. Marcinkowski, V. Keereman, S. Vandenberghe, and
R. Van Holen, “DigiPET: Sub-millimeter spatial resolution small-animal
PET imaging using thin monolithic scintillators,” Phys. Med. Biol.,
vol. 59, no. 1, pp. 3405–3420, 2014.

[22] P. Bruyndonckx et al., “Neural network-based position estimators for
PET detectors using monolithic LSO blocks,” IEEE Trans. Nucl. Sci.,
vol. 51, no. 5, pp. 2520–2525, Oct. 2004.

[23] P. Conde et al., “Determination of the interaction position of gamma
photons in monolithic Scintillators using neural network fitting,” IEEE
Trans. Nucl. Sci., vol. 63, no. 1, pp. 30–36, Feb. 2016.

[24] F. Müller, D. Schug, P. Hallen, J. Grahe, and V. Schulz, “Gradient tree
boosting-based positioning method for monolithic scintillator crystals in
positron emission tomography,” IEEE Trans. Radiat. Plasma Med. Sci.,
vol. 2, no. 5, pp. 411–421, Sep. 2018.

[25] F. Müller, D. Schug, P. Hallen, J. Grahe, and V. Schulz, “A novel DOI
positioning algorithm for monolithic scintillator crystals in PET based
on gradient tree boosting,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 3,
no. 4, pp. 465–474, Jul. 2019.

[26] D. DeWitt et al., “Design of an FPGA-based algorithm for real-time
solutions of statistics-based positioning,” IEEE Trans. Nucl. Sci., vol. 57,
no. 1, pp. 71–77, Feb. 2010.

[27] N. G. Johnson-Williams, R. S. Miyaoka, X. Li, T. K. Lewellen, and
S. Hauck, “Design of a real time FPGA-based three dimensional posi-
tioning algorithm,” IEEE Trans. Nucl. Sci., vol. 58, no. 1, pp. 26–33,
Nov. 2011.

[28] Y. Wang, Y. Xiao, X. Cheng, L. Deng, and L. Wang, “An FPGA-based
real-time maximum likelihood 3D position estimation for a continuous
crystal PET detector,” IEEE Trans. Nucl. Sci., vol. 63, no. 1, pp. 37–43,
Feb. 2016.

[29] W. Yonggang, D. Junwei, Z. Zhonghui, Y. Yang, Z. Lijun, and
P. Bruyndonckx, “FPGA based electronics for PET detector modules
with neural network position estimators,” IEEE Trans. Nucl. Sci., vol. 58,
no. 1, pp. 34–42, Feb. 2011.

[30] P. Carra et al., “A neural network-based algorithm for simultaneous event
positioning and timestamping in monolithic scintillators,” Phys. Med.
Biol., vol. 67, no. 13, 2022, Art. no. 135001.

[31] T. Ling, K. Lee, and R. S. Miyaoka, “Performance comparisons of con-
tinuous miniature crystal element (cMiCE) detectors,” IEEE Trans. Nucl.
Sci., vol. 53, no. 5, pp. 2513–2518, Oct. 2006.

[32] C. Wassermann et al., “High throughput software-based gradient tree
boosting positioning for PET systems,” Biomed. Phys. Eng. Exp., vol. 7,
no. 5, 2021, Art. no. 055023.

[33] B. van Essen, C. Macareg, M. Gokhale, and R. Prenger, “Accelerating a
random forest classifier: Multi-core, GP-GPU, or FPGA?” in Proc. IEEE
20th Int. Symp. Field Program. Custom Comput., 2012, pp. 232–239.

[34] J. Oberg, K. Eguro, R. Bittner, and A. Forin, “Random decision tree
body part recognition using FPGAs,” in Proc. 22nd Int. Conf. Field
Program. Logic Appl. (FPL), 2012, pp. 330–337.

[35] F. Saqib, A. Dutta, J. Plusquellic, P. Ortiz, and M. S. Pattichis,
“Pipelined decision tree classification accelerator implementation in
FPGA (DT-CAIF),” IEEE Trans. Comput., vol. 64, no. 1, pp. 280–285,
Jan. 2015.

[36] J. R. Struharik, “Implementing decision trees in hardware,” in Proc.
IEEE 9th Int. Symp. Intell. Syst. Inf., 2011, pp. 41–46.

[37] R. Kułaga and M. Gorgon, “FPGA implementation of decision trees and
tree ensembles for character recognition in Vivado Hls,” Image Process.
Commun., vol. 19, pp. 71–82, May 2014.

[38] W. Song et al., “Design of a flexible wearable smart sEMG recorder
integrated gradient boosting decision tree based hand gesture recogni-
tion,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1563–1574,
Dec. 2019.

[39] S. Summers et al., “Fast inference of boosted decision trees in FPGAs
for particle physics,” J. Instrum., vol. 15, May 2020, Art. no. P05026.

[40] C. Degenhardt et al., “The digital silicon photomultiplier—A novel sen-
sor for the detection of scintillation light,” in Proc. IEEE Nucl. Sci.
Symp. Conf. Rec., 2009, pp. 2383–2386.

[41] T. Frach, G. Prescher, C. Degenhardt, and B. Zwaans, “The digital sili-
con photomultiplier—System architecture and performance evaluation,”
in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf., 2010, pp. 1722–1727.

[42] R. Hetzel, F. Mueller, J. Grahe, A. Honné, D. Schug, and V. Schulz,
“Characterization and simulation of an adaptable fan-beam collimator
for fast calibration of radiation detectors for PET,” IEEE Trans. Radiat.
Plasma Med. Sci., vol. 4, no. 5, pp. 538–545, 2020.

[43] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Stat., vol. 29, pp. 1189–1232, Oct. 2001.

[44] S. B. Kotsiantis, “Decision trees: A recent overview,” Artif. Intell. Rev.,
vol. 39, pp. 261–283, Jun. 2013.

[45] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Disc. Data Min. (KDD),
2016, pp. 785–794.

[46] B. Weissler et al., “Hyperion III—A flexible PET detector platform for
simultaneous PET/MRI,” in Proc. IEEE NSS/MIC, 2019, pp. 1–9.

[47] 7 Series FPGAs Data Sheet: Overview, Xilinx, San Jose, CA, USA,
Sep. 2020.

[48] PG151—Divider Generator v5.1 Product Guide (v5.1), Xilinx, San Jose,
CA, USA, Feb. 2021.

[49] D. T. Luc, “Pareto optimality,” in Pareto Optimality, Game Theory and
Equilibria, A. Chinchuulun, P. P. M., A. Migdalas, and L. Pitsoulis, Eds.
New York, NY, USA: Springer, 2008.

[50] A. Nakamura and K. Sakurada, “An algorithm for reducing the number
of distinct branching conditions in a decision forest,” in Proc. Mach.
Learn. Knowl. Disc. Databases Eur. Conf. (ECML PKDD), Sep. 2019,
pp. 578–589.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

