A complete mathematical formalism is introduced to describe the excitation of electrical eddy currents due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere’s law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space:
an infinite slab in one dimension
a longitudinal cylinder in two dimensions
a transverse cylinder in two dimensions
a sphere in three dimensions.