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Abstract—Historically, adrenal glands diseases causing hyper-
tension, such as Primary Aldosteronism (PA), have been treated
through pharmacotherapy or surgical resection. Given the short-
comings of the available treatment options, the interest in alterna-
tive and less invasive treatment modalities such as microwave ab-
lation (MWA), has increased. In order to develop and optimize this
novel electromagnetic-based therapy, an accurate knowledge of the
dielectric properties of human adrenal glands, as well as preclinical
animal models, is crucial. In particular, ovine models represent a
feasible animal model to test the safety and performances of MWA.
In this study, the dielectric properties of ovine adrenal glands and
of normal and diseased human adrenal glands are characterized ex
vivo in the microwave frequency range. The dielectric properties of
the two functional tissues (cortex and medulla) composing ovine
adrenal glands are measured using the open-ended coaxial probe
technique and represented with a two pole Cole-Cole model in the
frequency range from 0.5 GHz to 8 GHz. This paper presents
the first dielectric data of normal and diseased human adrenal
tissues, including a functioning adenoma responsible for PA and
it compares the human data with data from the animal model.
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I. INTRODUCTION

THE adrenal glands are paired organs located on the top
of the kidneys, each one surrounded by a fat capsule. The

gland is characterized by two functional tissues: the inner tissue
named medulla and the external tissue named cortex. The cortex
is responsible for the regulation of blood pressure, through the
release of the aldosterone hormone [1].

Within the different types of endocrine tumours that can
affect adrenal glands, adreno-cortical adenoma is the most com-
mon adrenal tumour [2], [3]. In the cases of adreno-cortical
adenomas inducing unregulated production of the aldosterone
hormone and the consequent increase of the blood pressure,
the pathological state is called Primary Aldosteronism (PA) [4],
[5]. The current curative approach to unilateral PA is surgical
resection of the gland. Bilateral disease is currently managed,
but not definitevely treated, through pharmacotherapy. Hence,
a less invasive and more effective treatment appears a clear
requirement, to completely cure the condition with minimal
side effects [6]–[8]. Thermal ablation techniques represent an
effective potential alternative in the context of these cancerous
lesions treatment [9], [10]. In particular, microwave ablation
(MWA) has been recently investigated as an alternative approach
for the treatment of adrenal diseases [11], [12]. The objective of
the thermal ablation techniques is to induce coagulation necrosis
of the cancerous cells by increasing the temperature above 50–60
˚C in the target tissue [9], [13], [14]. The increase of temperature
is achieved through the interaction between the target tissue and
the electromagnetic (EM) field excited by an interstitial antenna
at 915 MHz, 2.45 GHz or 5.8 GHz [15], [16].

The interactions of the EM field with the surrounding tissues
are governed by the relative permittivity and the effective con-
ductivity of the tissues. Therefore, a comprehensive knowledge
of the dielectric properties of the biological tissues enables accu-
rate simulations of the antenna performances, the optimization of
the antenna geometry and the power delivery settings facilitating
accurate modelling of new medical devices as well as human
safety studies [17]–[20].

Although a large number of experimental studies was con-
ducted acquiring the dielectric properties of healthy and diseased
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tissues [21]–[26], the literature reports only a limited number of
data on the dielectric properties of adrenal glands [27], [28]. In
[27], the dielectric properties of the outer layer of the gland (the
cortex) are measured in in vivo porcine models; while in [28]
the dielectric properties of ex vivo bovine adrenal glands are
measured distinguishing between the cortex and the medulla.

In this study, measurements of the dielectric properties of
freshly excised ovine tissues (eight samples, N = 48) were
conducted, distinguishing between the cortex and the medulla.
The data are reported together with the optimized parameters
of the two pole Cole-Cole model. The ovine model has been
chosen for this study since it is a good candidate for pre-clinical
studies for a comprehensive experimental investigation of novel
ablative approaches [29], [30]; ovine models are indeed currently
adopted [31]–[33].

Moreover, in this study, for the first time, the dielectric
properties of normal and diseased (i.e. parganglioma, pheochro-
mocytoma, non-functioning nodule and aldosterone-producing
adenoma) ex vivo human adrenal tissues (six samples, N =
39) are presented. The remainder of the paper is organized as
follows: in Section II the materials and the measurement method
of the dielectric properties with the related uncertainty values
are described. In Section III, the results of the measurements
of dielectric properties related to the ex vivo ovine and ex vivo
human adrenal glands are reported and discussed. In Section IV,
the conclusions are presented.

II. METHODS

A. Source of Tissue

Eight adrenal glands (N = 8) of 16.0 ± 1.0 mm (length),
8.0 ± 1.0 mm (width), 6.0 ± 1 mm (thickness) with medulla
sizes ranging between 3–4 mm in width and 8–9 mm in length,
were obtained from the local slaughterhouse immediately after
their excision from eight different animals and transported to
our laboratories in sealed containers; the samples arrived in our
laboratories within one hour from excision. The glands remained
embedded within their fat capsule to prevent the dehydration of
the tissues. Once in the laboratory, the adrenal glands were sep-
arated from their surrounding structures, including the kidney,
and the fat capsule was kept in place.

The protocol for measuring dielectric properties of ex vivo
human adrenal glands, was approved by the Galway University
Hospitals Research Ethics Committee. Six patients (N = 6)
with diagnosed adrenal abnormalities and scheduled to undergo
unilateral adrenalectomy were included in the study. The
examined human adrenal samples varied between 9 mm to 70
mm in maximum dimension. The types of adrenal abnormalities
include: paraganglioma (n = 1), pheochromocytoma (n = 3),
non-functioning nodule (n = 1) and aldosterone-producing
adenoma (n = 1) which is responsible for PA condition. In
two of six samples, measurements of the normal healthy
tissue were also acquired: on the normal tissue adjacent to the
pheochromocytoma and on the normal tissue surrounding the
non-functioning nodule.

In the cases where either the histology analysis or the gross
description of the removed gland was not provided by the
pathologist, the sample was excluded from the study.

Fig. 1. Example of ex vivo ovine adrenal gland in contact with the open-ended
coaxial probe. The measurement points are marked and labeled.

B. Dielectric Properties Acquisition

The measurements of the dielectric properties were performed
using a slim form open-ended coaxial probe (Keysight 85070E,
Santa Rosa, CA, US). Extensive prior studies demonstrated the
reliable performances of the slim form coaxial probe. In this
study, the 2.2 mm diameter probe allowed consistent contact
with the tissue sample, resulting in robust performances. The
sensing depth of the probe is within 1 mm [34], while the sensing
radius is 1 mm beside the diamater of the probe [35]. For each
measurement, the tip of the probe was placed in contact with
the tissue under test, as shown in Fig. 1. A vector network
analyser (Keysight VNA E5063A, Santa Rosa, CA, US) was
used to record the reflection coefficient at the calibration plane
of the probe. The data were recorded at 101 linearly spaced
frequency points over a frequency range from 0.5 GHz to 8 GHz.
The conversion from the complex reflection coefficient into the
real part (ε′(ω)) and imaginary part (ε′′(ω)) of the complex
permittivity (ε∗(ω)) is automatically executed by the Keysight
software (Keysight N1500A, Santa Rosa, CA, US) [36]. A lift
table was used to position the tissue sample in contact with the
probe, connected directly to the port of the VNA, in order to
limit the effect of any cable movement in the dielectric data and
to enhance the contact between the probe and the sample [36].
The measurement pressure was adjusted to ensure repeatable
measurements on the same measurement location following the
protocol adopted in [36]. The temperature of each sample was
costantly monitored using an infrared termometer in order to
maintain the integrity of the tissue.

The ovine samples were sectioned to provide access to both
the cortex and the medulla layers: one measurement location was
identified for each layer and three measuraments were performed
in the same location, for a total of 48 measurements and 16
measurements points (8 for the cortex and 8 for the medulla).
On average the temperature of the ex vivo ovine samples was
22.2 ± 1.5 °C. The probe was cleaned with alcohol wipe prior
to every measurement.

Measurements on ex vivo human adrenal glands were per-
formed on each tissue type indicated by the surgeon in the
operating room. Approximately 30 min after the resection,
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the sample was transported to the pathology room where the
measurements were performed following the same experimental
protocol adopted in the animal study. The temperature of the
samples varied between 20 °C and 23 °C. The probe was placed
at up to five different locations of a given tissue type, depending
on the size of the sample, and up to three frequency sweeps
were performed at each location. The measurement locations
were marked for the following histology analysis. The type of
tissue underlying the measurement locations was then univo-
cally identified by the histological analysis; where a univocal
identification was not possible the measurement location was
discarded. Accordingly, only 39 measurements obtained from 6
different samples were included in this study out of 147 collected
on 16 samples.”

C. Calibration and Validation

Calibration was performed before each measurement of bi-
ological tissue, in order to visualize and compensate the main
sources of error; each measurement session did not exceed a
2 h duration [36]. Measurements on three standard loads were
peformed: open circuit, short circuit and deionized (DI) water
[36]. The mean values of temperature of the DI water used for
the calibration both for ex vivo animal study and ex vivo human
study were 23.5 ± 0.4 °C and 22.1 ± 0.2 °C, respectively. The
quality of the calibration was validated with measurements on
reference liquids. Measurements on 0.1 M NaCl solution were
executed immediately following the calibration and compared
with literature data, before acquiring the set of dielectric data
on the biological tissue, as in [36], [37]. A second validation
was conducted also right after the measurements on the bio-
logical tissue. A total of eight and fourteen measurements on
0.1 M NaCl solutions were performed during the study for the
dielectric characterization of ex vivo ovine adrenal glands and
ex vivo human adrenal tissues, respectively. The mean values of
temperature of the 0.1 M NaCl solution used for the validation
both for ex vivo animal study and ex vivo human study were
23.4 ± 0.2 °C and 22.3 ± 0.2 °C, respectively.

D. Measurement uncertainty

Three main uncertainty sources were identified and calculated
within the measurements performed on 0.1 M NaCl solution,
using the standard analysis explained in [38]. The components
of uncertainty related to the repeatibility, accuracy and drift error
of the measurement system were estimated for each frequency
point and averaged over the frequency band of the measurement.

The uncertainty related to the repeatability provides a measure
of the random errors affecting the measurement process. The
repeatability is expressed as the standard deviation of the data
that are repeatedly acquired under the same measurement con-
ditions. The uncertainty component linked to the accuracy of the
measurements is the averaged percentage difference between the
acquired data and the reference model; in this study the reference
model is reported in [37]. Finally, the uncertainty related to the
drift was considered evaluating the variability in the dielectric
values of deionized water across different calibrations.

TABLE I
CALCULATION OF UNCERTAINTY COMPONENTS, COMBINED UNCERTAINTY AND

EXPANDED UNCERTAINTY FOR MEASURED PERMITTIVITY AND CONDUCTIVITY

OF 0.1 M NACL, IN THE FREQUENCY RANGE 0.5–8 GHz. THE UNCERTAINTY

ELEMENTS ARE RELATED TO THE VALIDATION PROCESSES PERFORMED PRIOR

TO THE DIELECTRIC ANALYSIS ON EX VIVO OVINE ADRENAL TISSUES

N = normal distribution, R = rectangular distribution

In this work, the uncertainty arising from the cable movement
was not considered since the probe remains fixed to the port of
the VNA during the measurements. Each uncertainty component
(ui) was used to calculate the combined uncertainty (uc), then
the expanded uncertainty (ue) was calculated considering a 95%
confidence interval, according to the guidelines of the National
Institute of Standard and Technology (NIST) [39]. The values of
the expanded uncertainty related to the ex vivo ovine study are
4.4% for the relative permittivity and 3.2% for the conductivity.
In Table I, each uncertainty component, the combined and the
expanded uncertainties are listed both for the relative permittiv-
ity and effective conductivity.

The calculation of each uncertainty component related to
the ex vivo human study was performed following the same
method adopted in the animal study. The values of the expanded
uncertainty related to the ex vivo human study are 1.4% for the
relative permittivity and 4.0% for the effective conductivity. In
Table II the values of each uncertainty component are reported.
These data are affected by the different number of measurements
when compared with animal data, and by the more controlled
environmental parameters of the pathology room.

E. Data analysis

The dielectric spectrum of the tissues presented in this study
which spans from 0.5 GHz to 8 GHz, contains two main disper-
sions (the end tail of β dispersion and part of the γ dispersion)
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TABLE II
CALCULATION OF UNCERTAINTY COMPONENTS, COMBINED UNCERTAINTY AND

EXPANDED UNCERTAINTY FOR MEASURED PERMITTIVITY AND CONDUCTIVITY

OF 0.1 M NACL, IN THE FREQUENCY RANGE 0.5–8 GHz. THE UNCERTAINTY

ELEMENTS ARE RELATED TO THE VALIDATION PROCESSES PERFORMED PRIOR

TO THE DIELECTRIC ANALYSIS ON EX VIVO HUMAN ADRENAL TISSUES

N = normal distribution, R = rectangular distribution

[24]. To obtain the analytical expression of the dielectric spec-
trum of the ex vivo ovine data, a two pole Cole-Cole model
was used for the representation of the frequency dependent
experimental data:

ε∗ (ω) = ε∞ +
Δε1

1 + (jωτ1)
(1−α1)

+
Δε2

1 + (jωτ2)
(1−α2)

+
σs

jωε0
(1)

where ε� is the permittivity at infinite frequencies, Δε1 and
Δε2 are the changes in the permittivity for the first and second
pole, τ1 and τ2 are the relaxation times for the first and second
dispersion, α1 and α2 are empirical parameters that account
for the distribution of the relaxation time and σs (S/m) is the
conductivity below 60 MHz linked to the ionic movements.

Weighted nonlinear least squares optimization algorithm was
implemented in Matlab (R2017a, The MathWorks, Inc., Natick,
MA, US) to fit the parametric model to the experimental data
over the specified frequency range.

III. RESULTS AND DISCUSSION

The post-processed values of the measurements performed on
ex vivo ovine adrenal glands are reported in Fig. 2; the averaged

TABLE III
PARAMETERS OF THE TWO POLE COLE-COLE MODEL FITTED (5,000

ITERATIONS) TO THE MEASURED ADRENAL DATA (CORTEX AND

MEDULLA), IN THE FREQUENCY RANGE 0.5–8 GHz

values of the relative permittivity and effective conductivity of
the two layers composing the adrenal gland are plotted with their
variability. The experimental data of the two functional tissues
composing the adrenal gland highlight a sizable difference in the
dielectric properties between the two tissues: 15% in the relative
permittivity and 17% in the effective conductivity averaged over
the frequency band from 0.5 GHz to 8 GHz. The knowledge of
the dielectric difference between cortex and medulla could be
further exploited to optimize the EM based energy delivery in
the tissue.

Fig. 3 shows the two pole Cole-Cole fit to the data of the
functional tissues of ex vivo ovine adrenal glands from 0.5 GHz
to 8 GHz; the average values across the different measurements
for a given tissue type are plotted together with the Cole-Cole
model. Table III shows the values of the Cole-Cole parameters
calculated for each tissue type of the ovine models. For compar-
ison, the Cole-Cole parameters for each functional tissue of ex
vivo bovine adrenal glands reported in [28] are included. Fig. 3
illustrates the excellent fit of the two-pole Cole-Cole model
to the ex vivo ovine data over the entire frequency range that
was considered, with an accuracy better than 1%. In addition,
the Cole-Cole parameters calculated in this study for ex vivo
ovine adrenal tissues agree with the literature data reported in
[28] regarding bovine adrenal glands. Quantitative differences
are observed between the relative permittivity and the effective
conductivity values obtained in this study and the values related
to ex vivo bovine adrenal tissues; namely the relative permittivity
of ovine adrenal medulla and cortex are approximately 5%
lower than the values of ex vivo bovine tissues. Regarding the
effective conductivity, the values of adrenal medulla and cortex
are respectively 4% and 10% lower than the values of ex vivo
bovine samples. Nonetheless, there are no relevant qualitative
differences in the dispersion trends over the same frequency
range. Typically, the quantitative differences in relative permit-
tivity value can be attributed to variations in tissue temperature
and/or environmental conditions or to the differences in water
content between the two mammalian species. On the other hand,
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Fig. 2. Mean and standard deviation values of relative permittivity and effective conductivity reported for cortex and medulla of ex vivo ovine adrenal glands,
normal tissue and diseased tissues (non-functioning nodule, paraganglioma, pheochromocytoma and aldosterone producing adenoma) of ex vivo human adrenal
glands.

Fig. 3. Relative permittivity and effective conductivity of adrenal cortex and medulla in the frequency range 0.5-8 GHz: data and two pole Cole-Cole model from
this study, and reference from literature [28].

an excellent match in the values of effective conductivity is
visible between the two different species.

Together with the ovine data, Fig. 2 shows the values of rela-
tive permittivity and effective conductivity of diseased adrenal
tissues excised from six different patients. The mean values of
available dielectric properties of normal cortex tissue were also
reported.

Comparable results between the normal ex vivo human
adrenal cortex and the ovine adrenal cortex can be observed

in Fig. 2. The average value of the cortical human tissue is
approximately 6% higher than ovine adrenal cortex for both rel-
ative permittivity and effective conductivity over the frequency
range.

Looking at the pheochromocytoma data (collected from 3 dif-
ferent samples), in comparison with the normal human adrenal
cortex data, we can observe no substantial difference between
the two groups of data; they differ less than 1% in relative
permittivity and less 4% in effective conductivity values.
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For paraganglioma, data were collected only from one sample
and it appears noticeably more conductive than normal cortical
tissue; relative permittivity and effective conductivity are 4%
and 13% higher than normal human adrenal cortex over the
frequency range.

Pheochromocytoma and paraganglioma arise from adrenal
medulla and extra-adrenal paraganglia, respectively. Paragan-
glioma and pheochromocytoma are characterized by similar
histological composition, and anatomical location is used as
guideline to identify them [2], [3].

For non-functioning nodule, arising from the cortex, also data
were collected only from one sample. When compared to normal
human cortical tissue, the non-functioning nodule appears to
differ less than 3% in relative permittivity and less than 6% in
effective conductivity values.

According to the dielectric results reported in Fig. 2, only the
dielectric values of the ex vivo human aldosterone-producing
adenoma present sizable differences compared to the other
diseased tissues. With respect to the normal ex vivo human
dielectric values, aldosterone-producing adenoma is approxi-
mately 33% lower both in relative permittivity and effective
conductivity values. The substantial differences in the dielectric
values of the adrenocortical adenomas compared to the other
types of diseases may be attributed to the characteristic abun-
dant lipid composition of the aldosterone-producing adenomas.
In addition, the infiltration of collagen fibres noticed through
the histology analysis executed after the excision may further
contribute to the lower dielectric values of the adreno-cortical
adenoma. The other types of adrenal abnormalities, i.e. non-
functioning nodule, paraganglioma and pheochromocytoma are
not characterized by a lipidic composition.

This study provides new insights into the dielectric properties
of adrenal glands of different animal species as well as normal
and diseased human adrenal tissues. This study is the starting
point for a more extensive dielectric characterization of the
adrenal glands at temperatures of interest for MWA. Studies on
dielectric properties as function of the temperature have been
conducted only in liver so far; and have showed a correlation
with the water content of the tissue (varying with the temperature
increase) [17]–[20]. A decrease of about 20% in the water
content and of 37-33% in the relative permittivity and effective
conductivity of the liver when the temperatures overcome 60 °C
was observed.

The design of this study did not allow us to access the inner
part of the human adrenal gland, i.e. the medulla. Among the
tumours investigated, the paraganglioma appears to show a
sizable difference when compared with normal human cortex
in terms of effective conductivity; and the conductive values ob-
served are closer to the ovine medulla data reported. Therefore,
further investigations on human samples should be conducted
and designed to access such target. Moreover, further data should
be collected to support the interesting preliminary data observed,
especially the results concerning the aldosterone-producing ade-
nomas, responsible for PA. The dielectric difference between
the PA adenoma, and the surrounding cortex, may suggest the
investigation of novel EM-based diagnostic imaging techniques
[40]–[42] in the detection of such tumours.

IV. CONCLUSION

In this study the results of the dielectric characterization of
ex vivo ovine adrenal models are reported. The tissue properties
were investigated in the frequency range from 0.5 GHz to 8 GHz
in order to include the main frequencies of interest for microwave
thermal ablation (i.e. 915 MHz, 2.45 GHz and 5.8 GHz). In ad-
dition, the dielectric data of normal and diseased ex vivo human
adrenal gland are presented. To the best of authors’ knowledge,
this is the first study where an accurate characterization of ex
vivo ovine adrenal glands as well as dielectric data of normal
and diseased ex vivo human adrenal glands were provided.

The results of this study indicate that no substantial differ-
ences exist in ex vivo adrenal functional tissues for different
mammalian species. Moreover, the dielectric properties of nor-
mal ex vivo human adrenal tissues are in agreement with the
values of the ovine models, confirming that ovine adrenal glands
represent a feasible model to be adopted in pre-clinical numerical
and experimental studies. Finally, this study showed that out
of various adrenal gland diseases only aldosterone-producing
adenomas show noticeably lower values in relative permittivity
than the other types of diseases.

However, further measurements are required to confirm and
support these preliminary data and better compare the dielectric
properties of ex vivo animal and human adrenal glands. The
accurate characterization of such properties is fundamental in
the development and optimization of EM based therapeutic
solutions such as the recently investigated MWA based selective
treatment of shallow adenomas arising from the cortex of the
adrenal gland and responsible for hypersecretion of aldosterone
hormone and persistent hypertension.
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