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Abstract—Magnetic biomaterials are multifunctional tools cur-
rently under investigation as theranostic platforms for biomedical
applications. They can be implanted in bone tissue after bone
cancer resection to perform local interstitial hyperthermia treat-
ment. Given the requirements of high quality treatment, the hy-
perthermia therapy should be performed monitoring the system
temperature, to avoid hot spots and control the treatment outcome.
It is known that the magnetic properties of such implants vary
with temperature. It is hypotesized that the treatment dynamic
could be monitored using a microwave monitoring system. The
variation of the electromagnetic properties of the biological tissues
and the magnetic implant during the therapy would result in a
different propagation of the microwave signal. This work investi-
gates the feasibility of using microwaves to non-invasively moni-
tor hyperthermia treatments with a simplified monodimensional
propagation model. The forward problem is solved to identify the
working frequencies, the matching medium properties and study
several candidate materials. By using the numerical solutions from
nonlinear and multiphysics simulations of the bone tumor hyper-
thermia treatment using magnetic scaffolds, the microwave signal
propagation dynamic is studied. From our feasibility analysis, we
found that it is possible to correlate the average tumor temperature
with significant (∼20 dB) variations in the transmission coefficient
during a typical interstitial hyperthermia session using magnetic
scaffolds. Our work brings together, for the first time, the elec-
tromagnetic material properties, the physio-pathology and physics
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of the hyperthermia treatment and the microwave propagation
problem, thus paving the route for the development of an innovative
theranostic system.

Index Terms—Electromagnetic waves propagation, hyperther-
mia, magnetic biomaterials, microwave imaging, theranostic.

I. INTRODUCTION

MAGNETIC biomaterials are smart, responsive and
remotely-controllable devices thoroughly investigated

for their multifunctional character in biomedical applica-
tions [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].
Magnetic biomaterials can be synthesized by iron ion doping of
bioceramics [7], [9], [10], [13], [14] or loading polymers with
magnetic micro- or nanoparticles (MNPs) [15], [16], [17]. From
a clinical perspective, the availability of such a large class of
nanocomposites is appealing to manufacture prosthetic implants
which would open novel therapeutic modalities [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12]. The advantages of implant-
ing a so-called magnetic scaffold (MagS) are several. When a
static or very low frequency (up to hundreds of Hz) magnetic
field (MF) is applied, the MagS acts as a mechanotrasnducer,
stimulating surrounding tissues [4], [8], [18], [19]. On the other
hand, MagS could be used to enhance the controlled delivery of
magnetic drug carriers for tissue repair [20], [21], [22], while
favoring the controlled seeding of magnetized cells [23], [24].
Furthermore, when a MagS is exposed to a MF working in the
radiofrequency (RF - from hundreds of kHz to few MHz) [16],
[25], [26], [27], [28] or microwaves (MW) bands [29], the
magnetic phase embedded in the biomaterial dissipate heat,
which can be used for therapeutic purposes. In particular, the
temperature increase due to the electromagnetic (EM) heating
can activate the release of chemoterapeutic drugs [30] or can
be used to perform local interstitial hyperthermia treatment
(IHT) [25], [26], [27], [28], [29].

IHT is very promising in the field of orthopaedic oncol-
ogy [31], [32], [33]. Indeed, primary or secondary bone cancers
are currently treated by surgical intervention and their resection
leaves a tissue damage which requires a graft, i.e. a scaffold [34].
If the implant is manufactured using a magnetic biomaterial, it
can be implanted in bone tissue after bone cancer resection to
perform IHT against the potential residual cells and limiting
the recurrence rate [25], [26], [27], [28], [35]. During IHT it
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is mandatory to monitor the temperature of both target and
non-target tissues, to avoid unwanted hot (or cold) spots and
control the temperature pattern to maximize the treatment out-
come and provide a high quality treatment [36], [37]. In the
case of interstitial treatment, especially for bone tumors, the
thermometry is a rather complex process [38]. For instance,
the implant of a temperature probe can lead to infection. In
this framework, non-invasive, cost-effective, fast and reliable
strategies for temperature control would be a significant tool for
translating and enhancing the effectiveness of IHT with MagS.
However, currently, from the analysis of the state of the art, there
is lack of any of such monitoring tools.

Recently, noticeable developments have been made in mag-
netic resonance imaging (MRI)-guided hyperthermia [39]. De-
spite MagS have been tested for in vivo MRI to assess bone
healing, vascular ingrowth and implant integration by quanti-
fying the transverse relaxation times (T2) changes [40], [41],
[42], [43], and even though their safe and compatible use in
MRI was assessed [43], given the realtively high cost of MRI,
to date no studies about MRI-guided IHT with MagS exist.
Magnetic particle imaging (MPI) [44], [45], [46] was proposed
as methodology for assessing the temperature during magnetic
fluid hyperthermia (MFH) with promising results [46]. However,
it has never been investigated as a monitoring modality for the
IHT of bone tumors using MagS. As a matter of fact, the thera-
nostic potential of MagS is largely underestimated. Hence, there
is room for investigating the feasibility of innovative diagnostic
modalities which use MagS as core element.

Among the many biomedical applications of microwave
(MW) diagnostic imaging [47], [48], [49], its use in the frame-
work of thermal therapy looks promising, due to its capability
of being a non-invasive, cost effective, fast and reliable strat-
egy [50], [51], [52]. In particular, MW imaging is an approach
under investigation for tissues temperature monitoring during
hyperthermia [53] and ablation [54]. The working idea is to
perform qualitative [50], [55], [56], [57] or quantitative MW
imaging [47], [58], [59], [60], [61], [62], [63] considering the
beginning of the treatment as the reference configuration and
then assessing, in a differential way, the spatial and temporal
changes of the dielectric contrast due to the tissues temperature
variation during the hyperthermia [53]. This principle could be
applied to the IHT of bone tumors with MagS.

To this goal, the true theranostic character of MagS could
be fruitfully exploited relying on the presence of the magnetic
phase (i.e., micro-particles or MNPs) in the biomaterials. Indeed,
MNPs were already considered as powerful contrast agents and
scatterers to enhance the performances of MW imaging of breast
tumors [64], [65], [66], [67], [68], [69]. Considering this litera-
ture works, and knowing that the magnetic properties of MagS
vary with temperature during IHT [25], [26], [70], we envisage
that having a magnetic scatterer in the system, located around
the target area, could lead to an effective monitoring of the IHT
dynamics using a MW monitoring system. In other words, during
the IHT with MagS, the magnetic and dielectric properties
would vary during the therapy. However, this very first proposal
and working hypothesis has never been tested. Given that the
inverse-problem formulation for MW imaging with magnetic
materials demands for specific and complex formulation [64],

TABLE I
PARAMETERS OF THE SIMPLIFIED GEOMETRY FOR THE PROPAGATION PROBLEM

[65], [66], [67], [68], [69], [71], there is need of collecting
and rationalizing all the primary data about the geometry, the
material properties, the physio-pathology, the treatment physics
and possible operative conditions of the scenario of IHT with
MagS. When MW imaging is applied to a new field, it is usual to
investigate the problem in a simplified geometry and propagation
scenario, to determine if and which type of matching medium
would be required to avoid significant reflections of the imping-
ing MW signal, and to determine a suitable range of operative
frequencies [54], [72]. This information will be fundamental
for the design of antennas, but also for the setup of validation
experiments and the manufacturing of tissue phantoms [73].
Therefore, to assess the theranostic potential of MagS, in this
work the feasibility of using MW imaging for the monitoring of
IHT with MagS is preliminary analyzed.

II. SYSTEM GEOMETRY

Bone tumors can affect several body sites, mainly limbs [74],
[75], [76]. In this framework, we envisage herein a MW mon-
itoring system composed of transmitting (TX) and receiving
(RX) antennas deployed around a human limb (e.g., an arm),
modeled as a cylindrical structure, which extends indefinitely
along the z-direction, as shown in Fig. 1(a). However, the prop-
agation analysis of a cylindrical geometry can be complicated,
with loss of physical insights, thus hampering the fundamental
understanding of material properties role, and how IHT dynam-
ics impact on the MW propagation. Hence, as a preliminary
investigation, we further simplify the anatomical problem by
relying on the 2D surface phantom model proposed in [26] and
investigate a planar case, focusing on the white straight line
depicted in Fig. 1(a) Therefore, the geometry is assumed to be
a planar, multilayered structure composed of N = 8 layers, as
presented in Fig. 1(b). The layers of biological tissues are skin,
fat, muscle, bone, a generic bone tumor (e.g., FS and OS) and
the fracture gap. Two semi-infinite media are considered, i.e.,
a matching medium (MM), having an unknown relative per-
mittivity εm ∈ [ε0, 80], and an implanted MagS. The matching
medium is assumed to be lossless, given that this contribution is
negligible [62], [72]. The thicknesses and physical sizes of the
tissue layers are taken from the case study reported in [26] and
provided in Table I.

III. PROPAGATION MODEL

The propagation medium is assumed to be homogeneous and
indefinite in the zy-plane. A planar, linearly polarized, time-
harmonic transverse-magnetic (TM) wave is impinging on the
system shown in Fig. 1(b), traveling along the x-direction. The
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Fig. 1. (a) Envisioned system and schematic description of the simplified imaging problem. (b) Mono-dimensional layered model for a transverse magnetic (TM),
linearly polarized plane wave impinging on a multilayer structure composed of skin, fat, muscle, tumor and fracture tissue and a MagS, assumed as semi-infinite
medium.

media are characterized by a relative complex permittivity εi, an
electrical conductivity σi (S/m) and permeability μi (in H/m),
for i = 1, 2, . . ., N . All tissues are assumed to be non-magnetic
(μi = μ0, for i = 1, 2, . . ., N − 1).

The system shown in Fig. 1(b) is analyzed by using the wave-
amplitude transmission matrix (WATM) method [54], [72], [77],
[78]. By knowing the amplitude of the propagating and reflected
electric field along the x-axis at the first layer, E(1)

x+ and E
(1)
x− ,

respectively, the multilayered structure can be fully described
by

[
E

(1)
x+

E
(1)
x−

]
= [M1][T1][M2][T2]. . .[TN−1][MN−1]

[
E

(N)
x+

0

]
. (1)

The matrix Mi accounts for the EM wave in the i-th medium as
a function of the MW signal in the (i+ 1)-th medium, so that

Mi =
Zi − Zi+1

Zi + Zi+1

[
1 2Zi

Zi+Zi+1

2Zi

Zi+Zi+1
1

]
, (2)

where the wave impedance of the i-th medium (Zi) is Zi =√
μi

εi
. Then, the propagation in the i-th layer is described by the

transmission matrix Ti, defined as

Ti =

[
ekidi 0

0 e−kidi

]
, (3)

being the wavenumber ki =
√
μiεi. By relying on the fact that

the electric field is continuous at the interface between the i-th
and the (i+ 1)-th layers, and considering that the field ampli-
tude can be computed considering the forward and backward
propagating waves, it is possible to write the following system

[
E

(1)
x+

E
(1)
x−

]
=

[
ζ ξ

γ δ

][
E

(N)
x+

0

]
. (4)

From (4), the total reflection and transmission can be found
considering that the generic reflection coefficient, Γ, at the i-th

interface Γi =
Ei−
Ei+

must satisfy the recursion [77]

Γi =

Zi−Zi+1

Zi+Zi+1
+ Γi+1e

−2kidi

1 + Zi−Zi+1

Zi+Zi+1
Γi+1e−2kidi

. (5)

With (5) is possible to evaluate the reflection of the i-th layer.
The WATM method have been implemented in Matlab 2021a

(The MathWorks Inc., Boston USA). The propagation is studied
for f ∈ [0.1, 10] GHz to find MM properties which ensure an
effective signal transmission, while determining the operative
bandwidth to use MWI as tool for monitoring the IHT of bone
tumors with MagS.

IV. NON-LINEAR MULTIPHYSICS SIMULATIONS OF

HYPERTHERMIA TREATMENT WITH MAGS AND IMPACT ON

MW PROPAGATION

Once the MM properties and the working frequencies are
selected, we developed a new methodology to study if MWI
can be used to monitor the IHT of bone tumors with MagS. We
simulated the IHT with MagS and modeled the influence on the
propagation problem.

To simulate the IHT of bone tumors with MagS, the spatio-
temporal evolution of the temperature field (T (r, t)) during
the IHT was computed using a multiphysics non-linear model
developed in the commercial Finite Element Software (FEM)
COMSOL v5.5 (Comsol Inc., Burlingthon, MA, USA) [26]. In
brief, for the geometry shown in Fig. 1(a), with tissue thicknesses
reported in Table I, Maxwell’s equations are solved in the
frequency domain, considering the coupling with the Pennes’
Bio-Heat equation (PBHE), as described in [26], [27]. The EM
and thermal properties of tissue and MagS are assumed to vary
with the system temperature. By assuming a steady-state temper-
ature distribution T (r, t0) = Tb = 37 ◦C), under the boundary
condition of air-skin convective heat transfer (Tair = 22 ◦C), a
magnetic field of 300 kHz and 15 mT amplitude is applied, so
that the biological tissues and the MagS dissipate heat. The total
dissipated EM power (QEM , in W · m−3) is used as source term
in the PBHE and the new temperature distribution is found. The
EM properties are updated, QEM is computed, PBHE is solved
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Fig. 2. Proposed approach for studying, in silico, the feasibility of using microwaves for monitoring the hyperthermia treatment of bone tumors using magnetic
scaffolds.

Fig. 3. (a) Relative dielectric permittivity εr of the tissues for the layered
phantom. (b) Electrical conductivity σ (S/m) of the tissues for the layered
phantom.

again, and the resolution scheme stops at the end of the treatment,
for t = 80 min.

To study how IHT impact on MW propagation, we followed
the approach summarized in Fig. 2. We solved the PBHE with
our nonlinear, multiphysics model to derive the thermal distribu-
tions (T (r, t)) in the MagS and biological tissues (Fig. 1(b)), and
then compute the average values (T (t)). We used the simulated
results to compute, for each time step of the simulated IHT, the
variation of the scaffolds and tissue EM properties and solve
the MW propagation problem for each time step. In detail,
we compute a Γ(t, T ) and investigated the differences in the
transmission coefficient with respect to the initial time t = 0
and uniform temperature distribution (T = Tb ∀ x), which is
assumed as reference configuration for the imaging problem,
i.e.

Δ[1− |Γ|2] = [1− |Γ(t = 0, Tb)|2]− [1− |Γ(t, T )|2] . (6)

V. MATERIAL PROPERTIES

A. Biological Tissues

The properties of the skin, fat and muscle tissues (Fig. 1) at
Tb=37 ◦C are taken from [79] and given in Fig. 3. The properties
of the fracture gap are assumed to be the volume-weighted

average of blood and bone EM properties [80]. The fracture
gap is assumed to be in the inflamed state [25], [26] and its EM
properties are reported in Fig. 3. As regards the bone tumors, the
EM properties in the kHz range can be found [25], [26], but in
the literature there is lack of ex vivo or in vivo characterization of
the MW dielectric permittivity of bone tumors [81], [82], [83].
Anyway, the mouse tumor data reported in [81] offers different
staging and were used in this study. The variation of the dielectric
properties of biological tissues with T is assumed to be linear
through coefficients Kε and Kσ [25], [26], [84]

ε(T )

εT0

= (1 +KεΔT )

σ(T )

σT0

= (1 +KσΔT ) . (7)

B. Magnetic Scaffolds

The characterization of MagS at MW is not available in the
literature, but a complete characterization of magneto-dielectric
composite MW-absorbing materials can be found. In principle,
some of them could be used for IHT of bone tumors. However,
the biocompatibility and the feasibility of using these materi-
als as MagS must be considered. We selected three different
composite ferromagnetic biomaterials characterized at MW. In
particular, among the magneto-dielectrics, the NiFe-PE (Ni 81

Fe19 poly-ethylene), with a 40% loading of μm-sized spherical
inclusions, was considered [85]. The 30% Fe-PLA, manufac-
tured with a two-step mixture process, from [86] was selected.
Finally, the Fe-PLA from Proto-Pasta, recently characterized by
a dedicated broadband method [87] was also considered. This
latter materials was also experimentally characterized for the
IHT of bone tumors [28]. The MagS EM properties are given in
Fig. 4.

The modeling of the temperature variation of the three MagS
is more challenging. A characterization of these materials as a
function of the temperature have not been carried out yet. We
assume that the variation of the dielectric properties of MagS
are negligible during the IHT, whilst the magnetic properties
are assumed to be variable during the IHT of bone tumors. We
hypothesize that the temperature increase in the MagS is far from
the Curie-Weiss temperature of the material, so that

TC � T , (8)

and the material retains its natural ferromagnetism and the
magnetic phase does not change [88]. This is a reasonable
assumption since magnetite, iron, nickel and their alloys presents
TC of several hundreds of ◦C: for μm-sized iron TC = 700 ◦C,
whilst for NiFe permalloy particles TC � 500 ◦C [88]. In this
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Fig. 4. (a) Complex dielectric permittivity: real (ε′) and imaginary (ε′′) parts of the magneto-dielectric scaffolds. (b) Complex magnetic permeability: real (μ′) and
imaginary (μ′′) parts of the magneto-dielectric scaffolds. (c) Coefficient for the variation of the magnetic properties as a function of temperature. The dependence
from the Curie temperature of the materials is highlighted.

Fig. 5. (a) Transmission coefficient as a function of frequency (f ) and the properties of the matching medium (εmm) for the NiFe-PE scaffold. (b) Transmission
coefficient as a function of frequency (f ) and the properties of the matching medium (εmm) for the IP30 Fe-PLA. (c) Transmission coefficient as a function of
frequency (f ) and the properties of the matching medium (εmm) for the Proto-Pasta MagS. The transmission is evaluated a the matching medium-skin interface.

framework, relying on the classical mean-field theory of fer-
romagnets, the MagS magnetization is assumed to decreases
as temperature increases (Msc ∝ 1

T ) [88], whilst the magnetic
permeability follows the following relationship [88]

μ(T ) � 1 +
Ccw

|T − TC | . (9)

where Ccw is the material specific Curie constant. Under the
assumption of (8), we can linearize (9) by considering the ratio
of μ(T ) and μ(Tb), so that

μ(T ) � |T − TC |
|Tb − TC |μ(Tb). (10)

The variation coefficient, for different values of TC is shown
in Fig. 4(c). It can be noticed that, in the range of temperature
typical of hyperthermia (41–45 ◦C), the variation of the MagS
properties is relatively narrow (∼2.5%). However, as reported
in [22], [25], [26], [27], [28], [29], the MagS temperature can
lie in the range 50–70 ◦C. Therefore, the complex magnetic
permeability can reduce of up to ∼10% of the initial value.

VI. RESULTS

To evaluate the feasibility of using MW to monitor the IHT of
bone tumors using MagS, we performed a novel analysis based
on a monodimensional propagation model for the geometry
shown in Fig. 1(b). We investigated the transmission coefficient
over the frequency range 0.1–10 GHz by varying the dielectric

properties of the MM, and considering three different magneto-
dielectric as candidates MagS. At t = 0 and T (r) = Tb, the
transmission maps are shown in Fig. 5. Given the contrast be-
tween the biological tissues (Fig. 3) and the MW response of the
MagS (Fig. 4), the transmission coefficients are not identical for
the MagS under study. In detail, from Fig. 5(a), for the NiFe-PE
MagS high level of transmission are achieved if εmm ∈ [20, 80]
is used, for f ∈ [2, 5] GHz. Different conclusions can be sought
for the two iron-filled PLA MagS. The dispersion of IP30 and
PP magneto-dielectrics are not identical, as can be verified from
Fig. 4(a) and (b). For IP30 and the PP MagS, a region with high
transmission (1− |Γ|2 � 0.8) can be found at ∼ 2.45 GHz and
εmm � 20. Other maxima in the transmission can be achieved
for εmm > 40 and f > 4 GHz. By analyzing Fig. 5, we can
set εmm = 40 and achieve suitable MW propagation for all the
MagS.

The MW propagation for the proposed model could be used
to study, for the first time, if significant differences in the trans-
mitted/reflected MW signal during IHT of bone tumors arise.
For εmm = 40, the variations of the transmission coefficient
during a simulated IHT were investigated. The findings are
reported in Fig. 6(a)–(c). Few frequency spots offer a significant
variation in the transmission during the treatment time. The IP30
and PP MagS exhibit a similar response. Hence, forecasting
the development of a MW system, we will focus more on the
industrial, scientific and medical (ISM) frequencies of 434 and
915 MHz, 2.45 and 5.8 GHz. Also, given that MW monitoring
would be carried out in a differential scenario, the evaluation
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Fig. 6. Transmission coefficient at the matching medium-skin interface, for
εmm = 40, as a function of treatment time and frequency, for the (a) NiFe-PE
magneto dielectric implant, (b) IP30 magnetic scaffold and (c) PP magnetic
PLA. Differential transmission coefficient, in dB, evaluated at the initial time
t = 0 and during the treatment for the (d) NiFe-PE magneto dielectric implant,
(e) IP30 magnetic scaffold and (f) PP magnetic PLA.

of the figure of merit defined by (6) was investigated. The
findings are reported in Fig. 6(d)–(f). For the three MagS large
variations (at least ∼20–30 dB) occurs in some non-ISM bands,
such as around 4–5 GHz. However, the permalloy material,
exhibits significant changes in the MW signal levels at lower
frequencies (f < 2 GHz). The two PLA-based implant show
similar features, but with large magnitude differences, since the
PP material has a wider dynamic range. With these information,
we investigated the dynamic of the MW transmission at ISM
bands versus the treatment time, and, also, tried to correlate this
information with the IHT simulation results.

In Fig. 7 we report the relative changes in the transmission
coefficient, at the first interfaces, over the treatment time, with
superimposed the average tumor temperature (Tt) derived from
the simulations. At the lowest frequency of 434 MHz (Fig. 7(a)),
as Tt increases, the transmission coefficient increases of∼15 dB
for IP30 and PP MagS, and of more than 30 dB for the NiFePe
case. As the external RF field is turned off and the biological
system cools down, the transmission coefficient almost recovers
its initial value, with a ∼1 min lag. In Fig. 7(a), we highlighted
the therapeutic range of IHT (41–45 ◦C). Given the variations,
we can hypothesize that an empirical threshold can be set to
identify the target temperature changes. On the other hand,
at 915 MHz differences in the material responses appear. For
the case of a NiFe-PE MagS, abrupt changes (> 25 dB) at
the peak temperature occurs (Fig. 7(b)). Differently, the curves
for the IP30 and PP cases exhibit a ∼10 dB decrease as the

Fig. 7. Difference in the transmission coefficient evaluated at t = 0 and during
the simulated hyperthermia treatment: (a) as a function of treatment time (in dB),
and (b) as a function of tumor temperature (in dB).

IHT is terminated. For f = 2.45 GHz, the dynamic range of
Δ[1− |Γ|2] reduces (see Fig. 7(c)). At the initial time (t = 0)
the differences between the three MagS candidates is narrow. As
the MagS and the tumor are heated, a ∼7–10 dB increase can
be noticed (Fig. 7(c)). At t = 80 min, the PP scaffold exhibits
a reduction in Δ[1− |Γ|2], whilst in the case of IP30 magneto-
dielectric implant the figure of merit increases (±2 dB). The
NiFe-PE retains an intermediate behavior. For the highest ISM
frequency (f = 5.8 GHz), similar considerations holds, with
lower differences between the materials, as shown in Fig. 7(c).
The differences in the findings in Fig. 7(a) and (b) from that given
in Fig. 7(c) and (d) can be due to the increased frequency and,
then, to the reduced penetration depth, which results in a lower
mark of the EM properties change due to the MagS heating.

VII. DISCUSSION

Despite these promising results, our study has limitations and
a discussion is in order. hese findings will be used to design and
plan future experiments, in which more precise and compre-
hensive measures will be taken to explore the complexity of this
theranostic application of MagS in IHT. The non-linear, ill-posed
MW problem of finding the temperature variations of the EM
contrast will be solved using qualitative [53], quantitative [62]
or machine learning-based [89] methods.

A. Limitations

Given that a simplified case has been considered, the proposed
analysis has to be extended to 2D or 3D cylindrical geometries
to investigate the MW propagation in more detail.

VIII. CONCLUSION

We investigated the use of MW for monitoring the IHT of
bone tumors using theranostic MagS. Using a monodimensional
propagation model, after collecting and rationalizing material
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properties and physio-pathological features, we identified suit-
able matching medium properties and the possible working fre-
quencies. The IHT was simulated with a nonlinear multiphysics
model with temperature-dependent EM properties and evaluated
the MW signal variation during the therapy with three different
MagS. Suitable MM properties to ensure adequate transmission
can be found. Then, we analyzed the transmission spectrum as a
function of the treatment time and evaluated the variation from
the initial time for the major ISM bands. Significant changes in
signal level were found and correlated to the tumor average tem-
perature variation, thus positively answering to the feasibility of
the MW monitoring.
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