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During the ongoing COVID-19 pandemic, mathematical models 
of epidemic spreading have emerged as powerful tools to pro-
duce valuable predictions of the evolution of the pandemic, help-
ing public health authorities decide which intervention policies 
should be implemented. The study of these models—grounded 
in the systems theory and often analyzed using control-theo-
retic tools—is an extremely important area for many research-
ers from different fields, including epidemiology, engineering, 
physics, mathematics, computer science, sociology, econom-
ics, and management. In this survey, we review the history 
and present the state of the art in the modeling, analysis, and 
control of epidemic dynamics. We discuss different approaches to 
epidemic modeling, either deterministic or stochastic, ranging 
from the first implementations of scalar systems of differential 
equations, which describe the epidemic spreading at the popu-
lation level, to the most recent models on dynamic networks, 
which capture the spatial spread and the time-varying nature of 
human interactions.

I. Brief History of 260 Years of Mathematical
Models of Epidemics

S ince the beginning of human history, pandem-
ics have posed deadly threats, which often deci-
mated our species. Hence, it was not surprising 

that, in parallel with the theoretical development of cal-
culus, mathematicians started to apply their theoretical 
 paradigms to describe, study, and unveil the mechanisms 
of spreading of infectious diseases. In this vein, the first 
milestone can be found in the work on smallpox by 

Daniel Bernoulli [1], published in 1760. In the 18th cen-
tury, there was an ongoing public debate about variola-
tion, i.e., inoculation of infectious material from smallpox 
cases to induce a mild infection and lifelong immunity. In 
Bernoulli’s work, the Dutch-born Swiss mathematician 
built a mathematical theory to support the  effectiveness of 
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 variolation, helping its increasing adoption until the devel-
opment of the smallpox vaccine in 1796. A latter milestone 
of mathematical modeling of epidemics is materialized in 
the studies of the 1849 and 1854 Cholera outbreaks in Lon-
don by William Farr [2] and John Snow [3], respectively.

However, it is not until the beginning of the 20th cen-
tury that differential and difference equations started 
being adopted as tools to model and analyze the spread 
of epidemic diseases. The very origin of this approach 
can be found in a paper by William Heaton Hamer [4], 
in which the British epidemiologist pioneered the use 
of a nonlinear formula to model the rate of the conta-
gion process, proportional to the product between the 
number of susceptible individuals and the number of 
infectious individuals in the population. Such a model-
ing approach has been formalized and popularized by 
William Ogilvy Kermack and Anderson Gray McKend-

rick. In their seminal paper [5], and in two subsequent 
works [6], [7], the two Scottish researchers laid out the 
basis for the current mathematical theory of epidemic 

modeling, namely the susceptible–infected–susceptible 
(SIS) and the susceptible–infected–removed (SIR) mod-
els and the concept of epidemic threshold (and conse-
quently, phase transition).

A. Population SIS Model
In the SIS model, it is assumed that infected individu-
als do not acquire immunity after recovery, and thus
become again susceptible to the disease. This model
became very popular to study recurrent and endemic
diseases, including sexually transmitted diseases, such
as Gonorrhea [8]. Here, we present the deterministic SIS
model in a continuous-time framework, i.e., employing
differential equations (as in the original contribution by
Kermack and McKendrick [5]). Note that, discrete-time
implementations of the model using difference equa-
tions have also been extensively studied. More details
on discrete-time models can be found, in, e.g., [9].

Formally, a unit mass population is split between two 
compartments: susceptible and infected. Let ( ) [ , ]s t 0 1!  
and ( ) [ , ]x t 0 1!  be the fraction of susceptible and in-
fected individuals in the population at time ,t 0$  re-
spectively. The health state of the population evolves 
according to two mechanisms: contagion and recovery, 
illustrated in Fig. 1(a). Susceptible individuals may be-
come infected if they interact with infected individuals, 
while infected individuals spontaneously recover, be-
coming again susceptible to the disease. According to 
the contagion mechanism, the total number of newly 
infected individuals is a nonlinear expression propor-
tional to the number of susceptible individuals and to 
the number of infectious individuals in the population 
(as proposed in [4]), i.e., equal to

( ) ( ),s t x tm (1)

where 02m  is a positive parameter termed contagion 
rate. The total number of recoveries in the population 
is proportional to the number of infected individuals, 
yielding the term ( )x tn , where 02n  is the recovery rate.

Hence, the heath state of the population is described 
by the two-dimensional state variable [ ( ), ( )] ,s t x t <  which 
evolves according to the following system of ordinary 
differential equations (ODEs):

( )
( )

( ) ( ) ( )
( ) ( ) ( ) .

s t
x t

s t x t x t
s t x t x t
m n

m n
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Note that the two equations are linearly dependent, 
since the total mass of the population is preserved, that 
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is, ( ) ( )s t x t 0+ =o o . Hence, the system of ODEs in Eq. (2) 
can be reduced to the single nonlinear ODE:

 ( ) ( ( )) ( ) ( ),x t x t x t x t1m n= - -o  (3)

from which one can immediately observe that the do-
main [ , ]0 1  is positively invariant. From the analysis 
of this equation and its equilibrium points, one can 
conclude that, depending on the model parameters 
m  and ,n  two outcomes may occur: either the origin 
(disease-free equilibrium) is the unique equilibrium of 
the system in [ , ]0 1  and it is globally asymptotically 
stable; or the origin becomes unstable, giving rise 
to a (almost) globally asymptotically stable endemic 
equilibrium ( , ].x 0 1!)  These two behaviors are illus-
trated in Fig. 2. The phase transition between these 
two behaviors occurs when a certain relation between 

the model parameters is satisfied, which is called epi-
demic threshold. In this survey, we opt for expressing 
such a threshold in terms of the ratio between the 
contagion rate m  and the recovery rate .n  The follow-
ing result from [5] fully characterizes the behavior of 
the population SIS model.

Theorem 1. If the population SIS model in Eq. (3) sat-
isfies / 1#m n , then the disease free equilibrium x = 0 is 
globally asymptotically stable. Otherwise, if / 12m n , the 
disease-free equilibrium is unstable and Eq. (3) has a (al-
most) globally asymptotically stable endemic equilibrium, 
corresponding to / .x 1 n m= -)

The epidemic threshold is often associated with 
the basic reproduction number ,R0  that is, the average 
number of contagions that a single infected person will 
cause in a population of susceptible individuals. The 
concept of basic reproduction number, although al-
ready touched upon in the original works on the SIS 
model [5]–[7], was not formally introduced until the work 
by George MacDonald in the early 1950s [10]. For the SIS 
model in Eq. (3), in fact, / .R0 m n=  However, in more com-
plex models, e.g., those including additional contagion 
mechanisms, stochasticity, heterogeneity, and dynam-
ic network structures, the basic reproduction number 
may not be sufficient to characterize the behavior of the 
system, which may depend on other  factors such as its 
variability [11]. For this reason, in this survey we prefer to 
present the results in terms of the epidemic thresholds.

B. Extensions and Limitations  
of Population Epidemic Models
In the population SIR model (see Fig. 1(b)), which was pro-
posed by W. O. Kermack and A. G. McKendrick in their 
seminal works with the SIS model, a further compartment 
named removed is introduced to account for individuals 
that recover from the disease and become immune, or 
die; ( ) [ , ]r t 0 1!  is the fraction of population in the re-
moved state. Hence, the heath state of the system is de-
fined by the three-dimensional state [ ( ), ( ), ( )]s t x t r t <  
(with ( ) ( ) ( )s t x t r t 1+ + = ), which evolves according to 
the following system of ODEs:

 
( )
( )
( )

( ) ( )
( ) ( ) ( )
( ),

s t
x t
r t

s t x t
s t x t x t
x t

m
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=
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o

o

o
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where the three equations are linearly dependent, 
since ( ) ( ) ( ) .s t x t r t 0+ + =o o o  Hence, the system of ODEs 
in Eq. (4) reduces to a planar system. The analysis of 
such a planar system (see, e.g., [12]) shows that the ra-
tio /m n  also plays an important role in the SIR model, 
modulated by the initial fraction of susceptible individu-
als s(0). If ( )/s 0 11m n , then the fraction of infected in-
dividuals exponentially converges to 0. If ( )/s 0 12m n , 
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Figure 2. Two trajectories with different initial conditions of 
the population SIS model in Eq. (3) with (a) /m n=  0.5 (i.e., 
below the epidemic threshold) and (b) /m n=  2 (i.e., above 
the epidemic threshold). Below the epidemic threshold, both 
trajectories converge to the disease free equilibrium; above 
the epidemic threshold, they both converge to the endemic 
equilibrium x =)  0.5 denoted by the black dashed line.
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Figure 1. Schematics of the (a) SIS and (b) SIR models.
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then the outbreak monotonically grows until reaching 
an epidemic peak and, only after the peak is reached, 
converges to the disease-free equilibrium. Two trajecto-
ries of the population SIR model to illustrate these two 
different behaviors are shown in Fig. 3.

Toward the development of more realistic models, 
further compartments have been introduced. This al-
lows to account for many realistic phenomena, including 
latency periods between contagion and infectiveness, 
multiple stages of the progression of the disease, as 
well as to model pharmaceutical and nonpharmaceuti-
cal interventions, including vaccination and quarantine. 
More details on this extensive family of mathematical 
models can be found in [13], [14]. This large variety of 
models has been widely adopted in the recent years for 
many theoretical and practical studies of epidemic 
processes, including seasonal and pandemic influenza 
[15], SARS [16], Ebola [17], and the ongoing COVID-19 
outbreak [18]–[20].

Control of epidemics was one of the major motiva-
tions for the development of the first mathematical 
models of epidemics. In fact, Bernoulli proposed his 
model to support the use of variolation [1]. The idea of 
exploiting the dynamical system formulation of epidemic 
models to derive and assess control techniques can be 
traced back to the work on Malaria by Robert Ross [21], 
in which the British medical doctor claimed that the re-
duction of the population of mosquitoes below a certain 
threshold would suffice to eradicate the disease. The de-
velopment of compartmental models has laid the foun-
dation of a rigorous mathematical framework, grounded 
in the theory of dynamical systems, to study the spread 
of epidemic processes and assess the effectiveness of 
different control strategies implemented to mitigate and 
combat them, by employing control-theoretic techniques.

However, this class of deterministic compartmental 
models suffers from some inherent limitations, which 
may hinder their applicability to real-world scenarios, 
thus calling for several extensions to be discussed in the 
rest of this survey. The first limitation is concerned with 
the use of differential equations to model the dynamical 
process. This usage is under the assumption of having 
a large population that can be approximated by a con-
tinuous distribution; it also assumes that the presence 
of noise and uncertainties can be omitted. However, 
epidemics often start from small local outbreaks, where 
finite population effects and stochasticity cannot be 

neglected. To account for these important factors, com-
partmental models of epidemics in populations have 
been extended to stochastic frameworks, by using the 
theory of Markov processes and branching processes. 
Exhaustive surveys of these models can be found in the 
following books [13], [22].

The second limitation lies in the fact that this class of de-
terministic compartmental models provides a description 
of the epidemic process only at the population level, 
that is, in terms of the overall fractions of susceptible 
and infected individuals in the system. In real-world epi-
demic outbreaks, the pattern of interactions between 
the members of a population—and, consequently, the 
contagion process—has a complex structure, which 
may be influenced by the spatial location of the individ-
uals of a population and their connections, calling for 
a finer representation of the population structure. In 
the last few decades, network theory has emerged as a 
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Figure 3. Trajectories of the population SIR model in Eq. (4) 
with (a) /m n=  0.5 (i.e., below the epidemic threshold) and 
(b)  /m n=  2 (i.e., above the epidemic threshold). The green, red, 
and blue curves represent the fraction of susceptible s(t), infect-
ed x(t), and removed r(t) individuals, respectively. Below the epi-
demic threshold, the disease is quickly eradicated and almost 
all of the population remains susceptible; above the epidemic 
threshold, one observes an initial growth of the epidemic preva-
lence and the majority of the population is eventually removed.

The development of compartmental models has laid the foundation of a rigorous 
mathematical framework to study the spread of epidemic processes and  

assess the effectiveness of different control strategies.
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powerful tool to capture such a complexity and formal-
ize it in mathematically tractable models [12], [23]–[25].

In the rest of this survey, we will focus on network 
epidemic models, mostly discussing the SIS model, 
which is among the simplest and most studied models. 
In Section II, we will review some classical results for its 
deterministic and stochastic implementations on static 
networks. In Section III, we will move to the most recent 
developments and the state of the art for the research 
on epidemics on dynamic networks. Section IV is devot-
ed to the discussion of control of deterministic and sto-
chastic network epidemic models, with specific atten-
tion on the control of dynamic networks. In Section V, 
we present a focused discussion on the current chal-
lenge of the ongoing COVID-19 pandemic and on how 
the  mathematical modeling of epidemics can provide 
powerful tools toward fighting against and mitigating its 
spreading. Finally, in Section VI, we briefly summarize 
the content of this survey and outline some promising 
challenges for the future research.

II. Classic Models of Epidemics on Networks
Here, we present the network SIS model and report the 
main results for its deterministic or stochastic imple-
mentations. Then, we briefly mention some important 
extensions of these results to scenarios that incorpo-
rate further features of real-world systems. Towards 
this end, we first gather some definitions and basic no-
tions on network and graph theories, which will be used 
throughout the survey.

A. Basic Notions on Networks and Graph Theory
A static network is represented by means of a time-in-
variant graph with n nodes, denoted by a set of posi-
tive integer indices { , , }n1V f= . Nodes are connected 
through a set of directed links ,V VE #3  such that 
( , ) .i j E!  if and only if node i is connected to node j. 

The intensity of such connections is measured by a 
nonnegative quantity. Specifically, for any pair of nodes 
, ,i j V!  we define the connection strength a 0ij $  that 

quantifies how strongly node i is connected to node j, 
and so, ( , ) .a i j0 Eij +2 !  The connection strengths 
are collected in a (weighted) adjacency matrix .A Rn n

0! #
$  

The triple ( , , )AG V E=  defines the graph. An example 
is illustrated in Fig. 4.

A network is undirected if the corresponding adja-
cency matrix is symmetric, that is, ;A A= <  otherwise 
it is said to be directed. A network is connected (strongly 
connected, for directed networks) if its adjacency matrix 
A is irreducible, that is, if for any pair of nodes i and 
j, there exists a sequence of nodes , , ,v i v v jk1 2 f= =  
such that ( , ) ,v v E1 !, ,+  for , , .k1 1, f= -  A network is 
unweighted if the adjacency matrix of the corresponding 
graph A has binary entries, that is, all nonzero entries 
(corresponding to links) are equal to 1. Given a node 

,i V!  we denote by ak ji ijVR= !  its (weighted) degree. 
Note that if the network is unweighted, then the degree 
ki  is equal to the number of nodes that node i is con-
nected to, which are called neighbors of i.

A dynamic network is represented by means of a 
time-varying graph ( ) ( , ( ), ( )),t t A tG V E=  where the 
time t can be a discrete or a continuous index. The n 
nodes in the node set { , , }n1V f=  are time-invariant 
and connected through a time-varying set of links ( ).tE  
The matrix ( )A t Rn n

0! #
$  is the time-varying (weighted) 

adjacency matrix and measures the strengths of the 
connections between nodes at time t.

B. Deterministic Network Models
From the first implementation of a deterministic SIS 
model on a (static) network, proposed by Ana Lajmanov-
ich and James Alan Yorke in 1976 to study the spread 
of gonorrhea in a population [26], network epidemic 
models have become an established and successful 
paradigm to study the spread of epidemic diseases in 
complex populations [12], [23]–[25].

In the network SIS model, each node represents a 
group of individuals and is characterized by its health 
state, that is, ( ), ( ) .s t x ti i^ h  The health state of node i V!  
represents the fraction of individuals per health states 
in the ith group [26]. Hence, ( ) [ , ]s t 0 1i ! , ( ) [ , ],x t 0 1i !  
and, similar to the population SIS model described in 
the previous section, it holds true that ( ) ( ) .x t s t 1i i+ =  
Hence, the health state of each node can be fully deter-
mined by the unique variable ( )x ti  and the entire state 

Network theory has emerged as a powerful tool to capture the complexity of real-world 
contagion patterns and formalize it in mathematically tractable models.
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Figure 4. Example of a weighted undirected static graph with 
n = 5 nodes and its weighted adjacency matrix A. Note that 
the graph is connected.



FOURTH QUARTER 2021   IEEE CIRCUITS AND SYSTEMS MAGAZINE 9

of the population is thus represented by the n-dimen-
sional vector ( ) [ , ]tx 0 1 n! . Similar to the scalar model, 
the contagion rate in node i has a nonlinear expression, 
equal to the product of the infection rate ,im  the fraction 
of susceptible individuals in the ith group ( )s ti , and the 
strength of the interactions with other infected individu-
als in the population ( ),m ti  which depends on the net-
work structure and is equal to

 ( ) ( ),m t a x ti ij
j

j
V

=
!

/  (5)

as illustrated in the simple example in Fig. 5. For the sake 
of simplicity, in this section, we will present our main re-
sults under the assumption that the graph ( , , )AG V E=  
is strongly connected. Results for directed networks that 
are not strongly connected can be found in [27], [28].

Hence, the network SIS model is governed by a set of 
n ODEs, one for each node of the network. The equation 
that determines the evolution of ( ),x ti  for a generic node 

,i V!  is the following:

 ( ) ( ( )) ( ) ( ),x t x t a x t x t1i i i ij
j

j i i
V

m n= - -
!

o /  (6)

where im  and in  are the infection and recovery rate of 
node i, respectively. While in most of the literature it 
is assumed that the epidemic parameters are homoge-
neous in the population, that is, im m=  and ,in n=  for 
all ,i V!  the general formulation in Eq. (6) with het-
erogeneous parameter has been adopted to model and 
study different scenarios, for instance, to model diseas-
es that affect different age groups differently, which is 
key to implement and study targeted interventions and 
vaccination policies.

Note that, after introducing the n-dimensional vec-
tors m  and n  to gather all the im  and in , ,i V!  respec-
tively, the dynamics can be written in a compact, vector 
form as

 ( ) diag( ( )) ( ) ( ),t t A t M tx x x x1
.

K= - -  (7)

where diag( ), ( ),diagMm nK = =  and 1 is an n-dimen-
sional all-1 vector from which is straightforward to ob-
serve that the domain [ , ]0 1 n  is positively invariant. The 
following result, initially presented in [26], extends the 
results for the population SIS model in Theorem 1 to the 
network SIS model. Different techniques have been used 
to prove this extension, including Lyapunov arguments 
[29] and positive systems theory [28].

Theorem 2. Consider the homogeneous network SIS 
model in Eq. (6) with im m=  and in n= , for all ,i V!  on 
a strongly connected network. If

 
( )

,
A

1#
n
m

t
 (8)

where ( )At  is the spectral radius of the (weighted) adja-
cency matrix A, then the disease free equilibrium x 0=  is 
globally asymptotically stable. Otherwise, if / / ( ),A12m n t  
the disease-free equilibrium is unstable and Eq. (7) has 
a unique (almost) globally asymptotically stable endemic 
equilibrium x) .

Different from the population SIS model, where the 
endemic equilibrium x) has a closed-form expression 
depending on the model parameters, for the network 
SIS model such an explicit formula cannot be derived in 
general. However, iterative algorithms to compute such 
an equilibrium have been proposed in the literature. 
See, e.g., [12], [30].

The convergence result in Theorem 2 can be easily 
extended to heterogeneous SIS models, where nodes 
have different contagion rates im  and/or recovery rates 

in , as shown in [26], [28], [31]. In the heterogeneous case, 
the behavior of the system is determined by the spectral 
radius of the matrix A MK - . Specifically, if

 ( ) ,A M 1#t K -  (9)

the disease free equilibrium x 0=  is globally asymp-
totically stable. Otherwise, the SIS dynamics in Eq. (7) 
converge to the unique (almost) globally asymptotically 
stable endemic equilibrium x) . Note that this expression 
reduces to Eq. (8) in the homogeneous scenario. A technique 
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Figure 5. Example of the contagion rate in a node of the 
network. The contagion rate in node i is equal to the sum of 
the contributions coming from all its neighbors. Specifically, 
nodes j and k contribute to the rate, proportionally to the frac-
tion of infected individuals in the nodes and the connection 
strengths; nodes h and m do not contribute: in h there are no 
infected individuals, while m is not a neighbor of i.

The convergence result in Theorem 2 can be easily extended  
to heterogeneous SIS models.
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to approximate the solution of Eq. (7) about the epidem-
ic thresholds has been proposed in [32].

Similarly, the SIR model and more complex compart-
mental models have been embedded and studied on net-
work structures. For more details on these implementa-
tion and their analysis, we refer to the following review 
papers [12], [24], [25].

C. Stochastic Network Models
In their stochastic implementation, network epidemic 
models are defined as follows. Each node of the network 
represents an individual and is characterized by the 
health state ( )X ti , which coincides with one of the com-
partments. In the stochastic network SIS model, we have

 ( )
if  is susceptible at time ,
if  is ected at time .infX t

i t
i t

0
1i = '  (10)

The nodes’ health states are gathered into an n-dimen-
sional vector ( ) { , }X t 0 1 n! , which represents the health 
state of the population.

Most of the literature on stochastic epidemic models re-
lies on the assumption that the evolution of the epidemic 
process ( )X t  can be represented by a Markov jump pro-
cess, where the state transitions are triggered by Poisson 
clocks. Such an assumption, although simplistic, allows to 
use the rich theory on Markov processes [33] to perform 
rigorous analyses of the model, determining its asymp-
totic and transient behavior, as detailed in the following.

We assume that the vector ( )X t  evolves accord-
ing to a continuous-time Markov process, governed by 
the contagion and the recovery mechanisms, which act 
on the health state of each node. The former regulates 
a node’s state transitions from the susceptible state to 
the infected state and is modeled by a Poisson clock 
with the rate proportional to the sum of the connection 
strengths of the infected individuals that node i is in 
contact with and to the contagion rate im , that is,

 ( ( )) ( ).X t a X ti
C

i ij
j

j
V

m m=
!

/  (11)

The recovery mechanism determines the state transi-
tions from the infected state to the susceptible and de-

pends only on the recovery rate of the individual, that is, 
it is a Poisson clock with the rate equal to ( ( )) .X ti

R
im n=  

These two mechanisms yield the following transi-
tion probabilities

 
[ ( ) | ( ) ] ( ( )) ( ),
[ ( ) | ( ) ] ( ( )) ( )X t t X t X t T o T
X t t X t X t T o T0 1

1 0
P

P i i i
C

i i i
R T T

T T T
T m

m

+ = = = +

+ = = = +
 

(12)

for all ,i V!  which unequivocally determine the dy-
namics of the Markov process, as illustrated in Fig. 6.

At this stage, one may observe the presence of strong 
similarities between the expressions of the transition 
probabilities of the Markov process and the differential 
equations that govern the deterministic network SIS 
model. Indeed, these two models have strong connec-
tions. In fact, recently, a different formalization of the 
deterministic network model has been proposed. In this 
formalization, each node of the network is a single indi-
vidual of the population (similar to the stochastic frame-
work) and the corresponding health state ( )x ti  denotes 
the probability that node i is infected at time t, that is, 

[ ( )]x X tEi i=  [30], [34]. Under the so-called N-inter-
twined mean-field approach, the following approxima-
tion is made: [ ( ) ( )] [ ( )] [ ( )]X t X t X t X tE E Ei j i j. , showing 
that the deterministic system of ODEs in Eq. (7) approxi-
mates the evolution of the expected value of the sto-
chastic process ( )X t . This approach, even though not 
exact (since it is based on an approximation that typi-
cally does not hold true), is often used to approximate 
and study the evolution of more complex stochastic net-
work epidemic models.

From Eq. (12), we observe that the disease free equi-
librium x 0=  is the unique absorbing state of the Mar-
kov process and is globally reachable. Hence, different 
from its deterministic counterpart, in the stochastic SIS 
model, the disease is always eradicated with probability 
1 in finite time [33]. However, in the following, we will 
show that an epidemic threshold is still present in terms 
of the duration of the transient evolution of the epidemic 
outbreak, before reaching the disease-free equilibrium. 
Formally, it has been observed that a phase transition 
with respect to the eradication time can be established, 
where the latter is defined by

 : { : ( ) } .minT t X t0 0$= =  (13)

Specifically, a set of results that characterize the ex-
pected value of the eradication time [ ]TE  depending on 
the model parameters and on the network structure has 
been established [35]–[37]. The following theorem gath-
ers some key results from the cited literature.

Theorem 3. Consider the homogeneous stochastic net-
work SIS model in Eq. (12) with im m=  and in n= , for all 
i V! , on a strongly connected network. If

ii

λC
i (x)

λR
i  (x)

Figure 6. Transitions of the Markov process X(t) for a sto-
chastic network SIS model are determined by the contagion 
and recovery mechanisms. Nodes in green are susceptible 
and nodes in red are infected.
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where ( )At  is the spectral radius of the (weighted) adja-
cency matrix A, then

 [ ]
( )

;lnT
A

nE #
n mt-

 (15)

if / / ( )A12m n t , then

 [ ] ,T K eE K n
1

2$  (16)

where ,K K 01 2 2  are two nonnegative constants that 
depend on the model parameters and on the network 
structure.

The proofs of these results are quite technical and 
based on the theory of Markov processes [33]. Briefly, 
the key idea is that, in the fast extinction regime, the 
probability that the number of infected individuals in 
the population increases as determined by Eq. (12) is al-
ways less than the probability that it decreases, yielding 
a drift in the direction of the disease-free equilibrium. 
Above the epidemic threshold, instead, the inequality is 
reversed when the process is close to the disease-free 
equilibrium, implying that the infections tend to rise 
and large stochastic fluctuations are needed to reach 
the disease-free equilibrium. Similar techniques have 
been used to study other stochastic epidemic models 
on networks, including the SIR model. For more details, 
we refer to these review papers [25], [38].

The results summarized in Theorem 3 show the ex-
istence of a sharp phase transition between a regime 
where the epidemic is on average quickly eradicated, and 
a regime where the disease lasts on average for an expo-
nentially long time. However, these results on the aver-
age eradication time may fail in characterizing the actual 
behavior of a single instance of the epidemic process. On 
the one hand, quick eradication can be guaranteed by 
directly applying the Markov inequality to Eq. (15), yield-
ing ( )lnT n# a  with probability converging to 1 as n " 3, 
for any 12a . On the other hand, an accurate analysis of 
the eradication time has been performed in [39], where 
it has been established that, if ( )A2n

m
t
v , where 1$v  is 

a constant that depends on the network structure (more 
specifically, on the isoperimetric constants of the net-
work), then the eradication time is exponentially large in 
the number of nodes with probability converging to 1 as 
n " 3. Note that, if ,12v  there may be a gap between 
the two regimes. In some specific cases (e.g., for com-
plete graphs and Erdős-Rényi random graphs), v  may be 
equal to 1, yielding a sharp phase transition not only in 
the expected duration of the epidemic disease, but also 
in its actual duration, with high probability.

Recent efforts have been made to relax the Mar-
kovianity assumption, allowing different forms for the 
process ( )X t . In particular, an SIS model in which the 
statistical distribution of the contagion time and/or of 
the recovery time differ from the exponential distribu-
tion associated with Markov processes was proposed 
in [40]. Therein, a mean-field approach is used to deter-
mine conditions for fast eradication of the disease. Fur-
ther extensions of this approach can be found in [41], 
[42]. Without relying on any mean-field approximations, 
in [43], a lower bound on the decay rate to the infection-
free equilibrium is rigorously computed. Equivalences 
and differences between Markovian and non-Markovian 
epidemic models have been extensively discussed in 
[44], [45]. All these works suggest that the non-Mar-
kovianity of the mechanisms that govern the epidemic 
process may have a significant impact on the spread 
of a disease and outline an important avenue of future 
research in the field of stochastic epidemic models to-
ward shedding lights on how the distributions of infec-
tions and recovery times shape the spreading process.

D. Discrete-Time Epidemic Models
This survey focuses mostly on continuous-time epidemic 
models. However, it is important to mention that the con-
tinuous-time formulations of deterministic and stochas-
tic models presented in this survey (both the population 
and the network models) naturally have discrete-time 
counterparts, where differential equations and Markov 
processes are replaced by difference equations and Mar-
kov chains, respectively. Here, we report the equations 
for the discrete-time deterministic network SIS model, 
which will be used in some of the models of epidemics 
on dynamic networks presented in Section III. For each 
node i V! , the health state is updated as follows:

( ) ( ) ( ) ( ( )) ( ) ,x t x t x t1 1 1 1 1 ( )
i i i i i

m tin m+ = - + - - -^ h  (17)

Table I.  
Notation for network epidemic models.

Symbol Description 

( , , )AG V E= network (node set, edge set, adjacency 
matrix)

( )At spectral radius of the adjacency matrix A 

n number of nodes 

( )X ti health state of node i (stochastic models) 

im infection rate of node i 

in recovery rate of node i 

x) endemic equilibrium 

T eradication time (stochastic models) 
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where ( )m ti  is defined in Eq. (5); here, im  and in  
have to be interpreted as the per-contact infection 
probability and the per-time-unit recovery probabil-
ity, respectively.

Most of the results discussed in this section con-
cerning the existence of a phase transition between a 
fast extinction regime and a regime where the epidemics 
becomes endemic and its dependence on the model pa-
rameters and on the network structure can be extended 
with some minor adjustments to the discrete-time coun-
terparts of the models. For more details on the analysis 
of discrete-time epidemic models and their main results 
for deterministic models, we refer to [46]–[50], for which 
a recent review paper by Parè et al. covers most of the 
results [51]; for stochastic models, we refer to [52], [53]. 
Detailed discussions on the main differences between 
continuous-time epidemic models and their discrete-
time counterparts can be found in [54], [55].

E. Challenges for Network Epidemic Models
A few years ago, Pellis et al. in a perspective paper out-
lined eight important challenges for network epidemic 
models [56]. Besides other—more practical—direc-
tions, calling for the integration of network computa-
tional modeling and epidemiological relevant data, two 
key challenges were identified, which are of great inter-
est for the engineering community. The first challenge 
concerns the study of epidemic models on dynamic 
network structures, leading to the analysis of nonlinear 
time-varying dynamical systems. The second focuses 
on understanding how the network structure (static or 
dynamic) can be exploited to effectively design interven-
tion policies to stop or mitigate the disease spreading; 
control-theoretic tools are key to address this second 
challenge. In the rest of this survey, we focus on these 
two research directions, presenting the state of the art 
in terms of key progresses of the last few years and most 
promising lines of current research.

III. Epidemics Models on Dynamic Networks
The extension of the classic compartmental models 
to static networks and the corresponding rigorous 
analysis have allowed the scientific community to 
understand how the architecture of human social in-
teractions affects the spread of epidemic diseases in 
interconnected populations. However, in most of the 
real-world epidemic outbreaks, the underlying net-
work of social interactions is not static, but dynami-

cally changes, co-evolving with and influenced by the 
spread of the disease [57]–[60].

Several endogenous and exogenous reasons may be 
adduced to explain and motivate the dynamic evolution 
of the network structure. First, dynamical changes of 
the individuals’ patterns of interactions may be directly 
or indirectly caused by seasonal factors, such as school 
holidays and weather conditions, which may favor or hin-
der gatherings and social events [58], [61]. Second, social 
interactions are often characterized by an intermittent 
behavior, whereby individuals’ propensity to generate 
connections is subject to burstiness, yielding clusters 
of connections separated by latency periods [62], [63]. 
Third, the infection events themselves may affect the 
network structure. In fact, not only infected individuals 
may reduce their interactions as a consequence of the ill-
ness, but also susceptible individuals—driven by aware-
ness and risk perception cognitive mechanisms—may 
dynamically modify their behavior, reducing or rewiring 
their interactions to reduce the risk of contagion [57], 
[64], [65]. Finally, nonpharmaceutical intervention poli-
cies often entail a dynamical modification of the pattern 
of human interactions, which may be reduced through 
the implementation of lockdown or social distancing poli-
cies, or reshaped by travel bans and mobility limitation, 
as observed during the ongoing COVID-19 pandemic [66]. 
All these evidences of the dynamic nature of social inter-
actions call for the extension of the epidemic models pre-
sented in the previous sections to dynamic networks.

In the following, we review and discuss some suc-
cessful modeling paradigms that have been recently 
developed to capture this dynamic nature of the net-
work of social interactions within analytically tractable 
mathematical models of epidemic diseases. Through 
the analysis of these models, we shed lights on how the 
dynamical nature of human interactions plays a key role 
in shaping the evolution of the epidemic outbreak. As 
we shall illustrate in the next section, the insight gained 
into the epidemic process through these analyses has 
enabled researchers to propose and assess valuable 
intervention strategies to control and mitigate the epi-
demic spreading, taking into account and leveraging the 
dynamical properties of social interactions.

A. First Approaches: Time-Scale Separation
The first class of approaches to deal with dynamic net-
works has extensively relied on time-scale separation tech-
niques. These techniques are based on the assumption 

In most of the real-world epidemic outbreaks, the underlying network of social interactions 
changes dynamically, co-evolving with and influenced by the spread of the disease.
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that the epidemic process and the network dynamics 
evolve at different paces, as illustrated in Fig.  7. If the 
epidemic process evolves much faster than the network 
of interactions, the system is in the so called quenched 
regime. In this regime, static networks are accurate prox-
ies of slowly switching topologies, and the corresponding 
results presented and discussed in the previous section 
are thus used to study the evolution of the epidemic out-
break. On the other extreme, we encounter the annealed 
regime, in which the evolution of the network is assumed 
to be much faster than the disease spreading process 
[67]. In this regime, if the following limit exists
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then we can define the average graph ( , , )AG V E= r r , 
with ( , ) ,i j a 0E ij+ 2! rr  and the dynamic network can 
be effectively represented and studied by means of its 
average graph. Also in the annealed regime, results 
on static networks are applied to the average graph to 
study the behavior of the dynamical system.

In the physics community, epidemics on annealed 
networks have been extensively studied, aiming at com-
puting—or approximating—the epidemic threshold of 
the model on a network with known degree distribution, 
without going through the explicit computation of the 
spectral radius of the average adjacency matrix. Specifi-
cally, by relying on a degree-based mean-field approach, 
the epidemic threshold for the SIS model on unweighted 
networks has been computed in [68] as a function of the 
degree distribution of the network. Note that such an ap-
proximation is exact in the limit of large-scale systems 
n " 3 . Specifically, let

 , ,k
n

k k
n

k1 1
i

i
i

i

2 2

V V

G H G H= =
! !

r r r r/ /  (19)

denote the mean and the second moment of the degree 
distribution of the average network ( , , ),AG V E=r r r  re-
spectively. Then, the following expression for the epi-
demic threshold can be obtained for uncorrelated an-
nealed networks (that is, if a k kij i j?r r r ).

Theorem 4. Consider an SIS model on a dynamic net-
work in the uncorrelated annealed regime with im m=  and 

in n= , for all i V! . Let us define the following epidemic 
threshold:

 .
k
k

2G H
G H

v =
r

r
 (20)

Then, in the limit ,n " 3  if / ,1m n v  the disease-free equi-
librium is asymptotically stable; otherwise, if / ,2m n v  the 
disease-free equilibrium is unstable.

From Theorem 4, we establish that, below the epi-
demic threshold in Eq. (20), the epidemic is in the fast 
extinction regime while, above the epidemic threshold, 
the epidemic becomes endemic. An important implica-
tion of Eq. (20) applies to scale-free networks, whose 
degrees follow a power-law distribution. In fact, in many 
real-world applications, complex networked systems 
are modeled by scale-free networks with the power-law 
exponent between 2 and 3 [69]. In these scenarios, the 
expression of v  in Eq. (20) vanishes as ,n " 3  implying 
that for any nonzero contagion rate ,02m  epidemics al-
ways spread on large scale-free networks. More details 
on this approach and on further extensions of these 
techniques to more general networks (including corre-
lated networks) and to more complex epidemic models 
(including the SIR model) can be found in [24].

The quenched and annealed regimes discussed in the 
above rely on the assumption that the epidemic process 
and the network evolve at different paces and, thus, on 
different time-scales. However, the arguments raised at 
the beginning of this section to motivate the need for dy-
namic networks provide evidence that such a time-scale 
separation is often restrictive and unrealistic, since the 
contagion process and the network evolution are often 
intertwined and thus often evolve at comparable time-
scales. In the last few years, several efforts have been 

Network is Faster

Epidemics is Faster

Quenched Regime Co-Evolution Annealed Regime

Figure 7. Modeling paradigms for dynamic networks. Un-
der the assumption of time-scale separation, quenched and 
annealed regimes can be found. Between these regimes, 
several paradigms have been proposed to capture the co-
evolution of the epidemic process and the network structure 
at comparable time-scales, including temporal-switching, 
activity-driven, and edge-Markovian networks, detailed in 
this survey.

The first approaches to dynamic networks rely on time-scale separation.  
Recently, several efforts have been made to overcome this limitation using  

temporal-switching, activity-driven, and edge-Markovian networks.
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made to overcome the limitation of time-scale separation 
and  propose a theory for epidemics on dynamic networks 
which allow to model and study the coevolution of the two 
dynamical processes. In the rest of this section, we pres-
ent and discuss some of these fascinating paradigms.

B. Temporal-Switching Networks
The use of temporal-switching networks to study epi-
demics in time-varying systems has been initially pro-
posed in [70]. In its original incarnation, a switching net-
work is generated by repeating a deterministic sequence 
of T static networks, characterized by the adjacency 
matrices , , ,A AT1 f  so that ( ) .A t A   modt T=  Therein, the 
discrete-time deterministic SIS model has been studied, 
extending the results found for static networks. Specifi-
cally (in the homogeneous scenario), if one defines

 : (( ) ),P I A1
t

T

t
1

n m= - +
=

%  (21)

then, the behavior of the system is determined by the 
spectral radius ( ).Pt  If ( ) ,P 11t  then the disease-free 
equilibrium is asymptotically stable and the disease is 
quickly eradicated. Otherwise, the disease-free equi-
librium becomes unstable and the disease becomes 
endemic. Such a framework has been extended to the 
discrete-time stochastic SIS model in [71], showing the 
same epidemic threshold by mapping the time-varying 
system onto a multi-layer network structure. In [72], suf-
ficient conditions for stability have been established for 
a more general scenario, where the network switches ar-
bitrarily among a set of topologies, possibly according 
to stochastic mechanisms, such as Markov switching 
rules where, given a Markov process ( )tv  with the state 
space , ,T1 f" ,, we set ( ) .A t A ( )t= v  This sufficient con-
dition is expressed in terms of the maximum possible 
norm of products of matrices Pt in the set

: ( ) .P P I A1t tn m= = - +" ,

For a review of the most recent developments of this 
theory, including the computation of a unified formula 
for the epidemic threshold, we refer to the following pa-
per by Zhang et al. [73].

The use of temporal-switching networks to study epi-
demics on dynamic networks has been recently extend-
ed to continuous-time processes. Specifically, in [74], the 
theory of positive linear switched systems is leveraged 
to derive conditions for global asymptotic stability of the 
disease-free equilibrium. Such conditions are obtained 
by combining the stability analysis of the linearized 
switched system an appropriate notion of irreducibility 
for the linearization. Specific results are obtained if the 
topology evolves stocastically according to a Markov 

switching rule. This approach is followed in [75] to de-
sign Markov switching laws to enforce quick eradication 
of the disease via geometric programming. In [76], a con-
tinuous-time network SIS model is studied in a scenario 
where the network topology switches deterministically, 
at discrete-time steps, following a sequence of adjacency 
matrices. Therein, the epidemic threshold is computed in 
terms of the Lie commutator bracket of the adjacency ma-
trices, showing that adjacency matrices that are noncom-
muting yield a lower epidemic threshold, favoring the epi-
demic spreading. In [77], the scenario of continuous-time 
switching networks is considered. The epidemic thresh-
old is explicitly computed in the case when the adjacency 
matrix A(t) commutes with the aggregated adjacency ma-
trix up to that time ( )A s ds

t

0
# . Under this condition, the 

order of the switching matrix has no effect on the dynam-
ics, which is fully determined by the average adjacency 
matrix ,Ar  defined in Eq. (18). If / / ( ),A11m n t r  then the 
disease-free equilibrium is asymptotically stable; other-
wise, it is unstable and the disease becomes endemic. 
In [78] the analysis of the continuous-time deterministic 
heterogeneous SIS model from [31] is extended to slowly 
changing time–varying systems by leveraging Lyapunov 
arguments. In that work, the effect of stochastic perturba-
tions of the model is also studied.

A major limitation of the theoretical analysis of tem-
poral-switching networks is that it is often assumed 
that the network switches between different adjacency 
matrices determined a-priori and that the switches typi-
cally take place at deterministic (often equally-spaced) 
time-instants. In the following, we will present two alter-
native paradigms that do not rely on this assumption.

C. Activity-Driven Networks
In all the network models presented so far, interactions 
were determined by some pre-determined connectivity 
patterns, represented by an adjacency matrix, or a se-
quence of adjacency matrices. Activity-driven networks 
(ADNs), originally proposed by Perra et al. in [79] sug-
gested to perform a paradigm shift. In ADNs, interactions 
are not seen as a consequence of a network structure 
which identifies pre-determined dyadic  relationships 
between pair of nodes, but are rather generated by indi-
viduals’ properties, according to a stochastic process. In 
their original incarnation, each individual i is character-
ized by a unique parameter [ , ]a 0 1i ! , termed activity, 
which represents an individual’s propensity to generate 
interactions. Then, starting from t = 0, the dynamic net-
work is generated according to the following algorithm:

 i) the edge set is initialized as ( )tE Q= ;
  ii) each individual i activates with probability ai, 

independent of the others. If an individual i acti-
vates, then the individual generates m links with 
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m other individuals { , , }i im1 f , chosen uniformly 
at random as an m-tuple in the population;

iii) undirected links ( , ), , ,i i h m1h f=  are added to 
the edge set ( );tE  and

iv) the time index is increased by 1 step, and the algo-
rithm resumes from step i).

The formation process of an ADN is depicted in Fig. 8. 
Note that, at each discrete-time, the network generated 
by the ADN process is always undirected, but not neces-
sarily connected.

The main strength of this paradigm lies in its simplic-
ity: the temporal nature of the system is encapsulated in 
a single n-dimensional vector. Such a simple formulation 
has enabled the researchers to perform rigorous analyt-
ical studies of the properties of the network generated 
and of dynamical processes evolving on it. Specifically, 
in [79], the following result has been established.

Theorem 5. Consider an SIS model on an ADN with 
im m=  and ,in n=  for all .i V!  Let us define the follow-

ing epidemic threshold:

 .
( )m a a

1
2G H G H

v =
+

 (22)

For / 1m n v  the epidemic is quickly eradicated with prob-
ability converging to 1 as the network size ,n " 3  while 
for / 2m n v  the epidemic becomes endemic with probabil-
ity converging to 1 as the network size n " 3 .

The original formulation of ADNs was proposed in a 
discrete-time framework, so the discrete-time counter-
part of the SIS model in Eq. (17) was studied. A contin-
uous-time formulation of ADNs has been proposed in 
[80], where the synchronous activations ruled by the 
activity-based mechanism are substituted by an asyn-
chronous mechanism, where each node is activated ac-
cording to a Poisson process with the rate equal to its 
activity, yielding thus a Markov process. Therein, the 
continuous-time SIS model is analyzed, giving rise to the 
same threshold identified in Theorem 5.

One of the major advantages of the ADN formulation 
is its simplicity that, besides enabling rigorous analyti-
cal studies, allows to expand the formalism in several di-
rections. In fact, in the last few years, several extensions 
and generalizations of the ADN paradigm have been pro-
posed. These extensions allow to include several features 
of real-world complex systems in the model. The analyti-
cal tractability of ADN-based models has enabled the rig-
orous computation of the epidemic threshold for these 
models and the characterization of their behavior, simi-
lar to Theorem 5, shedding light on the role of these real-
world phenomena on the spreading of epidemics. These 
extensions include the presence of preferential connec-
tivity patterns [81]–[83], community structures [84], [85], 
heterogeneous propensity to receive connections [86], 

memory and burstiness in the link formation process 
[87]–[89], and high-order relations [90]. A detailed review 
of the results for classical activity-driven networks and 
for the explicit results of the epidemic thresholds for 
these recent extensions can be found in [91].

D. Edge-Markovian Dynamic Graphs
A different approach, which to a certain extent combines 
the presence of a connectivity pattern, determined 
a-priori, and the stochasticity of its evolution, are edge-
Markovian dynamic graphs. This paradigm has been 
proposed in [92] to model stochastic evolution of dy-
namic networks. In edge-Markovian dynamic graphs, 
each potential link (edge) of the graph (i.e., each pair 
( , ) ,i j V V#!  with i j! ) is associated with a two-state 
Markov chain (independent of the other links), where the 
two states represent the existence and nonexistence of 
the link, respectively. Two probabilities , [ , ]p q 0 1!  are 
defined so that, at each discrete time-step, the chain 
switches from nonexistence to existence with probability 
p, while the opposite transition happens with probabil-
ity q, as illustrated in Fig. 9. In plain words, the network 
is initialized as a given (static) network. Then, each link 
that exists at time t disappears at the following time-step 
with probability q (independent of the others), while non-
existing links at time t appear with probability p (inde-
pendent of the others). A continuous-time formulation of 
the model can be obtained by substituting the Markov 
chains with continuous-time Markov processes [93].

Epidemic processes on edge-Markovian dynamic graphs 
have been proposed and studied in [93], [94]. Specifical-
ly, in [94], the authors derived the value of the epidemic 
threshold in terms of the basic reproduction number, 
which has a complex expression. Edge-Markovian dy-
namic graphs are amenable of several analytically trac-
table extensions to overcome the limitations of their 
original formulation. For instance, the Markov chain (or 
process) underlying the network evolution determines 
the inter-event time distribution for the appearance and 
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Figure 8. Exemplary evolution of a discrete-time ADN. At 
discrete-time t = 0, node 2 is activated and generates m = 3 
undirected links. At discrete-time t = 1, nodes 3 and 5 are ac-
tivated, generating m = 3 undirected links each. At discrete-
time t = 2 none of the nodes is activated and, consequently, 
no links are generated.
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disappearance of the links (geometric in the discrete-
time model, exponential in the continuous-time model), 
which is not consistent with the presence of burstiness 
and temporal clustering discussed in the above [62], 
[63]. In [95], this paradigm has been extended to account 
for general inter-event time distributions, establishing a 
sufficient condition for (almost sure) exponential stabil-
ity of the disease-free equilibrium.

IV. Control of Epidemics on Networks
For engineering researchers who are familiar with the 
monitoring, intervention or control of complex systems, 
it is of great interest to know what research works have 
been carried out to study how to influence, mitigate, 
and even stop the epidemic processes, especially those 
based on the models we have presented in the previ-
ous sections. Although much fewer control results have 
been produced compared to the epidemic modeling ac-
tivities, it is beneficial to give an overview of the exist-
ing results, which will serve to inspire researchers, with 
or without control theory background, to work in this 
critically important research area. In what follows, we 
categorize the corresponding results into control of de-
terministic and stochastic epidemics respectively, and 
to underscore the importance, we devote a separate sub-
section for the discussion of the distinct features when 
the underlying networks are dynamic. Note that an ear-

lier survey [25] has summarized some main results on 
control epidemics on networks by then, and thus we 
give special attention, wherever appropriate, to those 
that appeared in the last five years.

A. Control of Deterministic  
Epidemics on Static Networks
The simplest idea of controlling epidemics processes 
on networks comes from the intuition that removing in-
fected or high-risk individuals and the links associated 
with them will slow down the transmission, which in 
practice translates to quarantine and vaccination poli-
cies. Following the discussion in the previous sections, 
this intuition implies that one can lower the epidemic 
threshold, e.g., by reducing the spectral radius ( )At  
of the adjacency matrix A. Another intuitive idea is to 
optimize the distribution of antidote, which in practice 
translates into modifying the entries of matrix M in  
Eq. (7). These key control actions are illustrated in Fig. 10. 
Naturally, there is always a cost associated with the con-
trol actions and consequently optimal or sub-optimal 
control objectives can be formulated. However, to get 
a flavor on why such intuitive control problems under 
cost constraints are difficult to solve, we look at the fol-
lowing direct formulation of the control problem.

Problem 1. Given a network of E ,=  links and a 
fixed number m ,1 . Find those m links { , , }e eR m1 f=  
of the network after removing which the adjacency matrix 
of the resulting network ( , )G V E R==r  has the minimum 
spectral radius among all the reduced networks obtained 
by removing m links from the original network.

Although this control problem is straightforward to 
formulate, it is very difficult to be solved analytically. In 
fact, it was shown in [96] that Problem 1 is NP-hard. A 
similar spectral minimization control problem through 
removing nodes is discussed in [97]. In fact, the difficulty 
in solving such control problems is rooted in the fact that 
the formulated optimal control problems are variations 
of the constrained combinatorial optimization prob-
lems, which are in general hard problems. For this rea-
son, various heuristics have been proposed to solve the 
control problems, and a lot of them have smartly taken 
advantage of the network structures, e.g., the degree 
distribution of the nodes, centrality indices, and connec-
tivity patterns [98, 99], or solving a nonconvex quadrati-
cally constrained quadratic program [100].

Another intuitive approach lies in tuning the values 
of the parameters by increasing the recovery rates in  to 

Although epidemics control problems are typically straightforward  
to formulate, they are often very difficult to be solved analytically.

p

q

j j

i i 1 – q

1 – p

Figure 9. Transitions of the two-state Markov chain associ-
ated with the existence of a generic link (i, j) of a discrete-
time edge-Markovian dynamic graph.

Node Removal
Antidote

µi

Link Removal

Figure 10. Schematic of the main control actions that can be 
taken in the control of static networks.
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minimize the expression in Eq. (9), which characterizes 
the epidemic threshold. Such an approach can be inter-
preted as a resource allocation problem, where limited 
amounts of antidote can be distributed to the popula-
tion. Such an intuition is formalized in the following op-
timization problem.

Problem 2. Given a network and a fixed budget B > 0

 
imize

subject to
( )
( ) ,

[ , ], ,

min A M
f B

i Vi i i 6

#

! !

n

t

n n n

K -n

 (23)

where :f R Rn " +  is a cost function associated with the cost 
of increasing the recovery rate and in  ( in ) is the minimum 
(maximum) admissible recovery rate for node .i V!

Even though the objective function is a spectral ra-
dius, which in general is nonconvex, under reasonable 
assumptions on the cost function, tools from geometric 
programming and convex optimization can be leveraged 
to tackle the problem. Solutions have been proposed in a 
centralized fashion [101]–[104], and through distributed 
approaches [105]–[109]. Some of these works deal with a 
more general problem, in which, besides increasing the 
recovery rate, the controller can also reduce the infec-
tion rates im  modeling, for instance, the distribution of 
personal protective equipment. A resource allocation 
problem similar to Problem 2 is studied for an extension 
of the SIS model, in which complication phenomena of 
the illness are considered [110], [111].

When considering more complex dynamics than the 
standard SIS epidemic model, ideas from optimal con-
trol have already been applied a decade ago [112], using 
a linear-quadratic regulator, and, more recently, in [113], 
leveraging the Pontryagin’s Maximum Principle.

More recently, researchers have identified impos-
sibility results which reveal the possible limitation of 
feedback control. In [114], [115], the authors have proved 
that, utilizing the recovery rate in  as control input, a 
large class of distributed controllers cannot guarantee 
convergence to the disease-free equilibrium. In [116], 
a similar result has been proved for more complex dy-
namics that involve two concurrent epidemic processes. 
The limitations may become even more profound when 
examining the effect of optimal control in real-world dis-
ease management [117].

B. Control of Stochastic Models on Static Networks
Because of the stochastic nature of the models, the re-
lated control results are centered around evaluating the 

control performance in terms of bounding as tightly as 
possible the epidemic thresholds on different classes 
of networks. In [118], [119], the studied control problem 
is how to distribute a fixed amount of antidote to nodes 
in the given network that may have special topological 
features, e.g., scale-free networks. In [118], two different 
methods are compared, one based on contact tracing, 
which augments the recovery rates of all neighbors of an 
infected node, and the other based on degree-centrality, 
which augments the recovery rates of all nodes, pro-
portional to their degrees. Surprisingly, it is found that 
contact tracing may only succeed when the number of 
infected individuals is small (e.g., in early stages of the 
epidemic outbreak), since it requires a total amount of 
antidote B i iVnR= !  that grows super-linearly in the 
number of contacts; otherwise the degree-centrality 
based approach outperforms contact tracing, as stated 
in the following result.

Theorem 6. Consider the stochastic network SIS model 
in Eq. (12) on a generic network. If ,ki i i$n m  then the ex-
pected eradication time verifies [ ] ,lnT K nE # l  for some 
constant .K 02

However, from this result, we note that the needed 
amount of antidote B scales linearly with the sum of the 
weights of the links in the network, hindering its prac-
tical implementation even in sparse networks, where 
such a sum grows linearly in the number of nodes. 

In a similar setup, in [119], [120], another control 
method is proposed, in which the antidote is dynami-
cally allocated to the nodes. The allocation method in 
[119] requires that all the antidote B is concentrated at 
a single node at each time; using martingale theory, the 
following result is established.

Theorem 7. Consider the stochastic network SIS model 
in Eq. (12) on a generic network with the control policy 
proposed in [119]. Let us define the maximum degree and 
the cutwidth of the network as

 ,max mink W aand
,i

i ij
i j0V S V S S

D = =
"

! 1 1
!

Y
/  (24)

respectively. If lnB n16$ D  and ,B W42  then the ex-
pected eradication time verifies [ ] /T n B26E # . Moreover, 
if / lnB Kn n2 , then [ ] ,lnT K nE # l  for some constants 

,K K 02l .
Briefly, the proposed control technique guarantees 

fast eradication with a sub-linear amount of antidote, 
depending on the network topology. In [120], a funda-
mental limitation is further established for any dynamic 

Geometric programming, convex optimization, and model predictive control  
are powerful tools for controlling epidemics, even in a distributed fashion.
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allocation by showing how the network topology influ-
ences the possibility of eradication the epidemics under 
the given budget of the antidote to be allocated. A simi-
lar control policy based on dynamical resource alloca-
tion has been proposed in [121].

Very recently, the powerful tool of model predictive 
control (MPC), already used for deterministic epidemic 
models [122], has been employed to deal with the con-
trol of stochastic epidemic processes without relying on 
mean-field approximation [123]. The use of MPC has 
also allowed to deal with more complex epidemic mod-
els. For instance, in [124], the authors deal with a model 
with a pre-symptomatic phase, by utilizing MPC with a 
robust moment closure technique. Optimal control has 
also been considered for stochastic SIS model with dif-
ferent assumptions on the information available [125].

C. Differences in Control When the  
Networks are Dynamic
When the networks are dynamic, the optimization 
problem in control may have to face time-varying con-
straints. Fortunately, some of the geometric program 
techniques still apply, although the complexity in seek-
ing the solution increases [126]. Optimal control theory 
can be applied to time-varying systems; however, it is 
well known that the corresponding stability conditions 
might be more conservative and more difficult to check 
[127]. In [75], the authors deal with a resource allocation 
problem similar to Problem 2, on temporal-switching 
networks, under the assumption that the switching is 
determined by a Markov process. Therein, the problem 
is solved via geometric programming, finding a solution 
with a computational complexity that grows super-lin-
early—but polynomially—in the network size.

For some specific cases, control strategies for eradi-
cating the outbreak have been successfully proposed. 
For instance, in [128], a distributed control scheme has 
been designed for a deterministic SIS model on periodic 
time-varying networks. In this scheme, which recalls the 
antidote distribution proposed in [118] and summarized 
in Theorem 6, each node dynamically sets its recovery 
rate proportional to the sum of the weight of the links to 
its neighbors at that time, that is,

 ( ) ( ).t a ti i ij
j V

n m=
!

/  (25)

Under this scheme, global asymptotic stability of the 
disease-free equilibrium is guaranteed, under the as-
sumption that all the instances of the time-varying net-
work are strongly connected [128].

An interesting research line is to incorporate the hu-
man behavioral mechanisms that lead to variations of the 
dynamic network structures [65]. Understanding human 

behavior will be critical to draft and implement vacci-
nation policies [129], which affects the dynamics of the 
networks and at the same time is deeply affected by the 
dynamics of the networks [129]. Further study may dive 
in how isolation of infected individuals may adaptively 
change and reshape the network dynamics and how this 
can be leveraged to devise effective intervention policies 
[130], [131]. In particular, in [130], the authors explicitly 
compute the following epidemic threshold for a network 
SIS model on activity-driven networks, depending on the 
possibility of isolating infectious individuals by decreas-
ing their social activity to a factor [ , ],p 0 1!  where p = 1 
means that no interventions are enacted and p = 0 models 
complete isolation of infected individuals:

 
(( ) ( ) )

.
m p a p a p a1 1 4

2
2 2 2G H G H G H

v =
+ + - +

 (26)

By comparing Eq. (26) with Eq. (22), one can assess 
the effect of isolation policies on increasing the epi-
demic threshold.

More recently, awareness-based control strategies, 
which were developed a decade ago [132], have been 
extended to study temporal networks such as activity-
driven networks [133]–[135]. The proposed formalism 
allows to study scenarios in which aware individuals 
reduce the risk during their physical interactions [134] 
or they dynamically rewire themselves to avoid interac-
tions with infected individuals [133], possibly in combi-
nation with other control policies, such as isolation of 
infected individuals [133], [135]. In the model proposed 
by Yang et al. in [134], awareness is modeled as a process 
that co-evolves with the epidemic spreading on a two-
layer network. The epidemic process spreads on a physi-
cal contact layer, while awareness spreads on a virtual 
communication layer. Aware individuals reduce their in-
fection probability, as a consequence of the adoption of 
self-protective practices. The epidemic threshold is then 
computed as a function of the individuals’ activities on 
the two layers and the coupling between them. In the ac-
tivity-driven adaptive-SIS model proposed in [133], two 
modifications are made to the ADN algorithm illustrated 
in Section III-C. First, in step ii), the activity of an infected 
individual i, is multiplied by a parameter [ , ],p 0 1i !  simi-
lar to [130]. Second, in step iii), a link ( , )i ih  to a node ih 
that is infected is added to the edge set with probabil-
ity [ , ] .0 1i !r  The epidemic threshold is computed, in 
terms of the decay ratio to the disease-free equilibrium, 
finding a rather complicated expression that depends 
on the joint distributions of the activities and the pa-
rameters pi and πi. Such an analytic expression is used 
to devise an optimization problem, to optimally allo-
cate resources into isolation of infected individuals and 
awareness, solved via geometric programming.
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V. The Current Challenges with COVID-19
Since its inception in December 2019, the COVID-19 
outbreak has rapidly spread, becoming a worldwide 
pandemic with over 108 million reported cases as of 
February 16, 2021. In response to this unprecedented 
health crisis, we witnessed an extraordinary mobiliza-
tion of the scientific community toward better under-
standing the novel disease and combating its spread. 
Within this joint effort, the systems and control com-
munities are playing a key role in developing accurate 
mathematical models to predict the evolution of the 
pandemic and assess the effect of diverse intervention 
policies that have been enacted or that may be imple-
mented [136]–[138].

A first, important contribution comes from the for-
mulation and analysis of more complex models for 
the epidemic progression in fully-mixed populations. 
These models allow to capture the specific features of 
COVID-19, including a latency period before the symp-
toms onset, the presence of asymptomatic individuals, 
and the implementation of intervention policies such 
as hospitalization of severe cases and testing. Among 
these models, we should mention the SIDARTHE model 
proposed in [18] (see Fig. 11), which takes into consider-
ation also the imperfect reporting of infected individu-
als. In this work, the epidemic model is studied in a fully-
mixed population framework by seeing it as a positive 
linear system under feedback, and the stability of the 
disease-free equilibrium is thus characterized in terms 
of the H3  norm of its transfer function, which interest-
ingly coincides with the basic reproduction number .R0  
Using this model, an open-loop fast switching strategy 
to control and suppress the spread of the disease, con-
sisting in intermittent lockdown phases, has been pro-
posed and studied in [139].

Once the epidemic model has been tailored to 
capture the epidemic progression of COVID-19, its 
implementation on a network structure (extensively 
discussed in this survey) is key to predict the spatial 
spread of the disease, as highlighted in [136]. The 
time-varying nature of human mobility as well as the 
implementation of intervention policies through dif-
ferent sequential phases have put epidemic models 
on dynamic network at the forefront of the stage. In 
this vein, we mention several data-informed analyses 
of the outbreak in different countries, using models 
with regional granularity. These studies include Italy 
[140], [141], Ontario, Canada [142], Western Australia 
[143], and Kazakhstan [144]. Based on these network 
models, nonlinear MPC has been used to understand 
the impact of intervention policies and plan their op-
timal implementation. We mention the works in [145] 
and in [146], with case studies based on the outbreak 

in Italy and Germany, respectively. The impact of lo-
cal, time-varying lockdown measures and mobility re-
strictions is analyzed in [147], where feedback control 
laws coordinated by a centralized controller are used 
to design an intermittent and differentiated regional 
intervention scheme that outperforms nationwide 
measures. Dynamic networks also enable modeling 
the individual behavioral response to the pandemic in 
terms of the adoption of self-protective behaviors and 
social-distancing measures, which has a huge impact 
on disease spreading [148].

At the moment of writing this survey, effective phar-
maceutical treatments for COVID-19 were unfortunately 
still not available, while the research for a vaccine has 
recently led to some promising findings, and extensive 
vaccination campaigns are getting started. In this deli-
cate phase, in which only a very limited amount of the 
vaccine is available, public health authorities need to 
carefully plan the distribution of vaccines. The control 
problems described and discussed in this survey (e.g., 
how to optimally modify the recovery rates by distribut-
ing a fixed amount of antidote) will be precious tools to 
help inform vaccination campaigns and distribution of 
pharmaceutical treatments.

VI. Directions of Current and Future Research
In this survey, we went through 260 years of progresses 
in mathematical models of epidemics. Starting from the 
very first intuition that mathematics, and in particular 
systems theory, can provide effective tools toward bet-
ter understanding the spread of infectious diseases, 
we reviewed the recent developments and the state of 
the art in the analysis and control of epidemic models 
on networks. Alongside, we outlined some of the most 
promising avenues of current and future  research, which 

E
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Figure 11. Schematic of the SIDARTHE model, proposed in 
[18] to capture the epidemic progression of COVID-19. The 
modeled is obtained from an SIR model, in which the health 
state “infected” is substituted by five states, representing all 
the four possible combinations of whether the individual has 
symptoms and is detected, and a state for individuals seri-
ously ill; two states are used instead of the “removed” state 
to account for individuals that are healed (H) or extinct (E), 
respectively. The arrows illustrate all the possible transitions, 
which are governed by 16 different parameters.
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are of particular interest for engineering researchers. 
These directions include the analysis of epidemics on 
dynamic networks, where the process is modeled as a 
nonlinear time-invariant system or a complex stochas-
tic process, and the application of control-theoretical 
tools to devise intervention policies to stop or mitigate 
the spreading process. Particular attention should be 
devoted to the analysis and control of stochastic epi-
demic models, which are attracting attention in compu-
tational epidemiology, physics, and network science, 
but are still mostly overlooked in the systems and con-
trol community.

Besides these research directions, we believe that 
our scientific community can provide important ad-
vances to other open problems of mathematical 
epidemiology. A key challenge that the scientific com-
munity is currently facing with the COVID-19 outbreak 
is how to integrate the available data within the math-
ematical models, that is, how to identify the model 
parameters from clinical and epidemiological data, 
which are often noisy and incomplete [149]. Different 
optimization methods have been proposed to deal 
with this problem. See, e.g., [150]. From a modeling 
point of view, an important challenge for the ongoing 
research, which we briefly mentioned in this survey, 
is the inclusion of behavioral factors in the model 
formulation. Game theory has emerged as a promis-
ing modeling framework to model human decision-
making processes and has been utilized, for instance, 
to capture the adoption of self-protective behaviors 
[151], [152] and to characterize the decision whether 
to vaccinate or not [153]–[155].
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