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Abstract—The behavioral monitoring of farmed animals
such as cattle is a fundamental element of precision farming
in which it enables unobtrusive ongoing health monitoring.
This applicationpresents two ubiquitous challenges typical of
sensing applications of the Internet of Things: limited dataset
size and dataset imbalance. Recently, data augmentation has
emerged as a way of addressing their negative influences on
the training process without overburdening the data acqui-
sition phase. However, there remains no consensus regard-
ing which methods should be applied to time series and in
what combination. Here, we present the first comprehensive
analysis that synergistically combines multiple approaches.
These approaches are benchmarked on a dataset of triaxial
accelerometer time series, which were acquired from six freely
roaming cows through a collar-mounted sensor and labeled
by experienced human observers according to five behaviors.
Our results indicate that integrating data augmentation with
the training process can substantially improve the time-series classification performance while retaining a fixed
convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying
a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time
series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and
the classification accuracy of an under-represented behavior, namely, grazing, is elevated from 45% to 91%. This work
provides a direction toward a general methodology, motivating research on other datasets and applications.

Index Terms— Accelerometer, animal behavior, data augmentation, Fourier surrogates, imbalanced dataset, sensor
data processing, time series.
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I. INTRODUCTION

CATTLE behavior is a valuable and easily observable
indicator of livestock health and well-being, which influ-

ence the amount and quality of the end products that can
be obtained [1]. Therefore, monitoring cattle behavior is a
necessary aspect of effective livestock welfare support systems
aiming to improve the yield and reduce the environmental
impact of farming [2], [3]. However, it is impractical to per-
sonally monitor livestock behaviors, especially in large herds,
at all times. Identifying all individuals in a herd and accurately
determining their health statuses via direct observation requires
excessive effort and is prone to error since it depends heavily
on expertise. Automatic behavior monitoring systems address
these limitations by recognizing and quantifying the preva-
lence of a predetermined set of behaviors through instrumental
measurements, often consisting of triaxial accelerometer time
series [4], [5].

However, due to the diversity of behaviors, interindivid-
ual variability, and the presence of various external noise
sources, drawing inferences from these time series is not
trivial. Recently, neural networks have become a powerful
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behavior and activity recognition tool, but the success of neural
network-based classifiers across diverse fields rests primarily
upon the availability of large amounts of high-quality training
data [6]. Accordingly, data quantity is universally associated
with model robustness and generalization performance [7].
The process of training suitable classifiers for cattle behavior
classification, in particular, encounters two practical issues
that tend to be ubiquitous in edge-based sensing applications
of the Internet of Things, namely, limited dataset size and
dataset imbalance [8], [9]. The first problem, namely, limited
dataset size, arises because of the human and financial costs
of data gathering. In the present case, long-term video mon-
itoring requires dedicated personnel for footage acquisition
and subsequent behavioral labeling; it also encounters prac-
tical difficulties associated with filming while attempting not
to disturb the natural cattle behavior. The second problem,
namely, dataset imbalance, arises because it is rare to observe a
balanced prevalence across behaviors. On the contrary, natural
and artificial processes exhibit some activity patterns more fre-
quently than others because their daily functioning requires it.
Similar situations are encountered when considering wearable
systems for livestock activity monitoring [10], human behavior
classification [11], gesture recognition [12], as well as room
occupancy and activity detection [13].

One way of addressing these situations is by applying
data augmentation techniques, that is, suitable algorithmic
manipulations that enlarge the amount of data entered into
the training process without overburdening the data acquisi-
tion stage. In essence, augmenting data can be considered a
preprocessing step that leverages prior information regarding
the expected invariant features of the time series concerning
certain transforms, such as sensor axis rotations, scalings,
and temporal manipulations. When appropriately applied, data
augmentation generates synthetic patterns that expand the
classifier’s decision boundaries [14], improving network gen-
eralization performance at a minimal cost.

Data augmentation has recently become a common practice
in the image domain. For example, many well-established
deep learning architectures for image classification, such as
AlexNet [15], residual networks (ResNets) [16], and very
deep convolutional networks (VGGs) [17], include data aug-
mentation approaches as a standard practice in the process
of model training. Considerably fewer time-series-based clas-
sifiers benefit from data augmentation [18]. Most existing
time-series augmentation approaches for sensor signals are
based on random transforms, such as window slicing [19],
warping [20], and scaling [21]. These transforms are, in fact,
mainly inspired by image augmentation, suggesting that data
augmentation has not yet been thoroughly investigated in the
time-series domain.

This article proposes the integrated and synergistic use of
multiple approaches to better tackle classifying cattle behav-
iors while facing limited data availability. Namely, it com-
bines three key ideas resulting in substantially increased
classification performance and having possibly general
usefulness.

1) We propose using a random selection of time-series
snippets during each training epoch to provide a built-in

source of variability that aids the determination of clas-
sifier boundaries, yielding a high generalization ability.

2) We propose applying a form of biased sampling, which
aims to offset the dataset imbalance problem, further
aiding the training process in determining the boundaries
between the most and least represented behaviors.

3) We propose combining the above with the generation
of Fourier transform-based surrogates to alleviate the
issue of data duplication encountered when repeatedly
sampling over the least represented behaviors.

In particular, we apply a multivariate version of the Iterative
amplitude-adjusted Fourier transform (IAAFT) method, pre-
serving the autocorrelations and cross correlations alongside
the value distributions [22]. Finally, we perform a step-by-
step reduction to reveal the time-series properties supporting
the generalization performance.

Throughout the remainder of this article, in Section II,
we first discuss related works on time-series data augmen-
tation. Section III introduces the dataset and describes the
methods for data processing, model training, data augmen-
tation, and performance evaluation. Section IV presents the
classification performance results across the sampling and
surrogate schemes, followed by an analysis of the relevance of
surrogate time series based on a deductive approach. Finally,
Section V offers general conclusions regarding the benefits
of the proposed method, its drawbacks, and the possible
directions for future work.

II. RELATED WORKS

The majority of existing augmentation approaches used in
time-series-based research are based on random transforma-
tions originally inspired by image data augmentation. Some
examples include scaling (global magnitude changes), window
slicing (equivalent to image cropping), magnitude warping
(modulating signal magnitude by a smooth curve), rotating
(flipping for univariate cases and rotating for multivariate
cases), and jittering (e.g., adding Gaussian noise). These aug-
mentation operations have been widely applied across diverse
data sources and time-series classification tasks. Three recent
reviews, namely, Iwana and Uchida [14], Wen et al. [18], and
Ge et al. [23], offer a comprehensive survey of this field.

For instance, Le Guennec et al. [19] proposed a window
slicing and warping method, which generates new samples by
randomly slicing the original time series and speeding up or
slowing down the extracted small-size slices. Um et al. [24]
applied various data augmentation methods, including per-
mutating, cropping, rotating, scaling, jittering, time-warping,
and magnitude-warping methods to wearable sensor data, with
a focus on the application of convolutional neural networks
(CNNs) to Parkinson’s disease monitoring. Frequency warping
is also a prominent approach in augmenting time-series data,
although it is mainly used for audio and speech recognition.
The issue with random transformation-based augmentation is
that such methods do not rigorously consider which signal
properties should be invariant; instead, they rely on simple
heuristics.

The method proposed in this work attempts to be more
principled. It involves extracting a fixed-length snippet from
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each segment of the time series, in which a segment is
defined as the time interval between two behavior transi-
tions. Given that such transitions are irregular, some seg-
ments are longer than others; however, a fixed snippet is
always extracted, starting from a random time. Within the
framework of Iwana and Uchida [14], this resembles an
implementation of the slicing method. According to Wen
et al. [18], this method, while not explicitly mentioned,
would be an instance of cropping. However, it should be
underlined that neither cropping nor slicing, unlike the method
that we have implemented, provides a homogeneous snippet
length.

Another critical aspect of the proposed sampling method is
that, as clarified in the following, it is performed online and
fully integrated with the training process. While online data
augmentation is commonplace in computer vision applications,
it remains almost unexplored in time-series analysis, as con-
firmed by three recent reviews [14], [18], [23]. In line with
the results reported next, the present work shows that even a
relatively straightforward method such as segment sampling
can significantly improve the performance when implemented
in an online form, that is, running during training rather than
only once before training.

For completeness, it should also be mentioned that an alter-
nate approach to random transformations is pattern mixing,
which combines multiple samples of intraclass data to generate
new ones. An example application is the one reported by
Takahashi et al. [25]. A problem with this approach is that
out-of-phase overlap can occur, and nonperiodic time-series
data may lead to malformed patterns. Therefore, this approach
is not well-suited for applications such as animal behavior
recognition.

As regards the issue of dataset imbalance, broadly put,
three approaches are possible: undersampling, that is, artifi-
cially reducing the prevalence of the most frequent behaviors,
oversampling, that is, increasing the prevalence of the least
frequent behaviors either by repetitive presentation or by
interpolation, and generating new data based on heuristic
rules. Comprehensive reviews of these approaches can be
found by Kaur et al. [26], Patel et al. [27], and Tanha
et al. [28], with additional considerations about the impact
on the learning process given by Krawczyk [29] and He and
Garcia [30].

Our approach, further detailed in the following, is dis-
tinguished by two aspects. First, it explicitly leverages the
temporal adjacency of samples so that, rather than rejecting
or inserting new data points as done customarily, it effec-
tively biases how densely the time-series segments covering
a particular behavior get covered by the snippets that are
extracted and submitted to the training process. Second, it is
performed online, which represents a fundamental differ-
ence with respect to most existing literature in this field.
This aspect implies that, no matter the relative under- or
over-representation of specific classes, a high level of variabil-
ity is retained in the data input to the training process across
epochs. It is a crucial advantage and contribution of this work
because the most severe drawback of performing under- or
over-sampling prior to training is the reduction or magnifica-

tion of the variance in each class as observed by the training
algorithm.

In other words, an integrated approach to dataset imbalance
mitigation appears to alleviate the difficulties encountered
in learning the boundaries between differently represented
classes while ensuring that the majority of the available input
data variance is still made available to the training process.
It appears noteworthy that, even in the specific survey on
resampling provided by Moniz et al. [31], these aspects are
not considered; this indicates that the focus remains firmly
on precalculated dataset adjustments and that the beneficial
impact of integrated preprocessing remains largely to be
clarified. An exception is the work of Cao et al. [32], which,
however, is different from the present one in that it relies on
oversampling by interpolation between neighbors in the feature
space rather than sampling in the time domain.

Finally, as regards the generation of Fourier surrogates,
it is worth pointing out that the IAAFT method was ini-
tially devised for a purpose different from data augmen-
tation, namely, the generation of null-hypothesis datasets
against which to compare experimental data [33]. Because
phase randomization destroys any nonlinear structure, this
method can detect nonlinear features over noise, for example,
in brain activity time series [34]. In the course of previous
research [35], we noted that time reversal could serve as
a helpful data augmentation method. Because this operation
inherently alters the nonlinear properties of the data, we con-
cluded that the features necessary for behavior classification
would plausibly be found in linear properties of the kind
preserved by the IAAFT method. Therefore, in this article,
we consider it a data augmentation technique.

As reviewed by Ge et al. [23], this approach has been
gradually emerging as a potential candidate for data augmen-
tation. Unlike simple operations such as cropping, it ensures
that no time-domain data duplication can occur; importantly,
it does not suffer from the issues associated with potentially
class-altering operations such as scaling. It is also more desir-
able compared to pattern mixing, as it avoids data corruption
in the presence of nonstationarity [36], and compared to gen-
erative approaches such as adversarial networks, which have
considerable potential but require resource-intensive training
to become reliable data generators [37], [38].

The exact modality of using surrogates for data augmen-
tation varies across studies, and the literature remains scant.
For example, Lee et al. [39] used surrogate data intermixed
with original accelerometric and neurophysiological record-
ings, drawing the training and test data from the resulting
pool. Schwabedal et al. [40] adopted a similar approach, but
applied surrogates only to the training data, while performing
cross validation. On the other hand, in a later study, Lee
et al. [41] proposed using surrogates as the exclusive basis
for training and validation, reserving the entirety of the exper-
imental recordings for testing. In this article, we consider
three possibilities more systematically: training only on the
original data, training only on the surrogates, and training
on an evenly mixed pool. In all cases, validation and testing
are performed exclusively on the original data and remain
unchanged throughout the entire training process. As a result,
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Fig. 1. Representative video frames for the behavioral classes and
sensor positioning, taken on the farm at Shinshu University, Nagano,
Japan.

it is possible to explicitly address the effect of surrogate data
inclusion.

Three more aspects of this work stand out with respect
to the existing literature. One advancement is that, similar
to sampling, surrogate generation is integrated, ensuring that
each training epoch can receive uncorrelated input vectors.
In the field of time-series analysis, data augmentation tends
to be performed just once on the entire dataset prior to
model training. In addition to the obvious drawback of requir-
ing additional storage size, this approach suffers from the
fundamental limitation that the surrogates are, on par with
experimental data, static, i.e., identical across epochs. As our
results have shown, generating the surrogates during training
and integrating this approach with the random subsampling
of data segments can confer a substantial performance boost
that would not be available when precalculating the surrogates.
Importantly, this also counters the risk of overfitting. Another
innovation is that, unlike the existing studies such as the one by
Lee et al. [41], we explicitly consider the multivariate nature of
the triaxial vector accelerometer data and consequently employ
an iterative method that preserves not only the autocorrelations
but also the cross correlations, more appropriately representing
the real-world kinematics. Finally, the authors are unaware
of any studies that explicitly attempt to demonstrate why
surrogate data help for data augmentation. In this work, we rig-
orously deploy a step-by-step, deductive approach under which
the retained features are gradually removed, observing how
the classification performance declines and therefore inferring
which statistical aspects support the use of surrogate data.

III. DATA AND PROPOSED PROCESSING METHODS

A. Data Acquisition
Data acquisition was conducted on a sample of six Japanese

black beef cows at a cattle farm located at Shinshu University,
Nagano, Japan. The animals were allowed to roam freely
over a grassy field and a farm pen. The presence of disease
conditions was excluded via veterinary monitoring. All animal
handling procedures were reviewed and approved by the

Fig. 2. Relative behavior prevalence (normalized).

TABLE I
DESCRIPTION OF THE OBSERVED (LABELED) BEHAVIORS AND THE

CORRESPONDING NUMBER OF SAMPLES

Institutional Animal Care and Use Committee of Shinshu
University.

The acceleration data were acquired utilizing KX122-1037
silicon micromachined accelerometers (ROHM Company Ltd.,
Kyoto, Japan). The sampling rate was set to 25 Hz, the
conversion precision was set to 16 bit, and the range was set
to ±4 g, providing a noise floor of 0.75 mg. The data were
recorded using a microcontroller and a local storage device.

The sensor device was strapped to the cow’s neck during the
experiments using a dedicated nylon collar belt. Throughout
the existing studies, the majority of sensors used for cattle
behavior monitoring are positioned within collars because this
reduces the risk of chewing while allowing the installation of
sufficiently sized batteries [42]. The tightness was adjusted
to provide good acceleration coupling in response to natural
movement while minimizing discomfort.

Table I lists the five prevalent behaviors alongside their
descriptions and number of samples available, and example
video frames are shown in Fig. 1. These represent the most
prevalent behaviors in the cattle’s daily activity, and subtle
changes in their distribution are diagnostic of subclinical or
“hidden” disease [43]. Other behaviors were less prevalent and
therefore excluded from the analyses.

To label the data, synchronized video recordings were
acquired while maintaining the time axes aligned as accurately
as possible through GPS time stamping. Experienced human
observers manually annotated the data frame-by-frame based
on the videos and later reviewed it. Subsequently, the time
series were cut into segments according to the annotated
behaviors, with a median length ranging between 200 and
1200 points. Fig. 2 shows the relative prevalence of data
samples across the activities. The data logger and underlying
raw time series have been made publicly available [44], [45],
and the representative examples are shown in Fig. 3.

B. Machine Learning Model
The machine learning model consisted of a CNN receiving

three-axial time-series snippets as inputs and outputting the
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Fig. 3. Representative time-series excerpts for the behavior classes. Mean subtracted for visualization purposes (unit: gram).

Fig. 4. Temporal CNN architecture, showing the input time-series
segment length (100), the feature size (30), and the number of output
classes (5).

predicted classes. CNNs are widely used for detecting local
features through filters sliding across temporal sequences [46],
[47] and automatically extract features while keeping the
computational complexity down to a minimum [48]. They are,
therefore, particularly desirable in wearable edge Internet-of-
Things devices, for which the additional complexity of feature
extraction (such as Fourier transform calculation) would com-
plicate low-power deployment, and feeding raw sensor signals
is preferable [4].

A multilayer CNN having eight convolutional layers was
used in this work. The basic architecture comprised two
logical entities: a cascade of convolutional blocks and a mul-
tilayer “head” of the network (see Fig. 4). Convolutional and
max-pooling layers were alternatively instantiated to extract
a series of feature maps from the original time series, and
each convolutional layer comprised convolution and batch nor-
malization operations alongside a rectified linear unit (ReLU)
activation function [49].

The input layer had a size of 100 × 3, where 3 denotes the
axes and 100 indicates the input data length (corresponding
to a fixed snippet of 4 s). The convolutional layers had the
sizes of 100 × 6, 100 × 12, 50 × 12, 50 × 18, 25 × 18,
25 × 24, 12 × 24, and 12 × 30, and the convolution kernels
had the sizes of 6 × 3, 12 × 3, 12 × 3, 18 × 3, 18 ×
3, 24 × 3, 24 × 3, and 30 × 3. Global average pooling
(GAP) [50] was used in the final step of the feature extractor,
aggregating the deep features along the spatial dimensions.
Finally, the features were entered in the network “head,” which
consisted of two fully connected layers having 30 inputs and

five outputs. A five-way softmax layer was instantiated to
obtain the predicted labels, i.e., resting, ruminating, walking,
grazing, and salting.

Model training and evaluation were performed in Python
using Keras with the backend of TensorFlow (version
2.4.0) [52]. The model was trained using the adaptive moment
estimation (Adam) optimizer [51], setting the initial learning
rate to 0.02, the number of epochs to 1500, and the batch size
to 256. The optimal convolutional blocks, kernel sizes, initial
learning rate, and number of epochs were determined during
preliminary work, omitted for brevity, aiming to maximize the
overall validation performance in the baseline case, that is,
in the absence of sampling and augmentation (case OA).

C. Model Evaluation Metrics
After learning was completed, the effectiveness of the

classifier model was examined based on an independent test
set. The overall accuracy was calculated as the agreement
between the behaviors predicted by the classifier and the
human annotations from video analysis and was defined as
overall accuracy = C/(C + I), where C and I denote the
number of correct and incorrect classifications, respectively.

As regards the accuracy separately for each class (i.e.,
behavior), the following metrics were calculated based on
the number of true positives (TPs), false positives (FPs), true
negatives (TNs), and false negatives (FNs) derived from the
confusion matrix. The precision and recall were first obtained
as Precision = TP/(TP + FP) and Recall = TP/(TP + FN).
Then, the F1 score was calculated as the harmonic mean of
them, namely, F1 = 2 × (Precision × Recall)/(Precision +
Recall) [53]. Finally, the Matthews correlation coefficient
(MCC) was obtained with MCC = (TP × TN − FP ×
FN)/(((TP + FP)(TP + FN)/(TN + FP)(TN + FN)))1/2 [54].

D. Data Augmentation
Fig. 5 shows the data flow supporting the experimental

design. Stratified splitting was performed following data seg-
mentation according to behavior labels, retaining 72% of the
overall data for training and the remaining 20% and 8% for
test and validation, respectively. After that, the analysis split
into three homologous branches: a first one involving only the
original data, a second one involving only the surrogates, and
a third one involving an even mixture of the two (identified,
respectively, with “O,” “S,” and “M”). This branching per-
tained to the training data only, and only the original data were
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Fig. 5. Data processing flow, showing the 3 × 3 split according to surrogate usage (O, S, M) and sampling scheme (A, 1, n).

Fig. 6. Sampling schemes (A, 1, n) used in deriving snippets (fixed length
of 4-s time intervals submitted to the CNN) from segments (variable
length of 8–48 s time intervals of homogeneous behavior).

used for validation and testing. Within each branch, a further
split into three sampling approaches, detailed in Fig. 6, was
present. These consisted of considering adjacent windows (all

data entered during each training epoch, retaining the original
class distribution), considering one window per data segment
(extracting one snippet per segment starting from a different
random location for each epoch and retaining the original class
distribution), and considering n windows per data segment to
approximately balance the distribution (identified, respectively,
with “A,” “1,” and “n”). In other words, the study followed
a 3 × 3 design according to surrogate usage and window-
ing/sampling approach.

All aspects of the data augmentation methods were seam-
lessly integrated with the training process; in other words,
no precalculation was performed, and the surrogate generation
and sampling were performed independently for each training
epoch. Surrogate time series were generated through the
IAAFT method, separately for each segment of the original
data, ensuring that no labels were mixed. The method is
described in detail elsewhere [33] but, in brief, consists of the
iterative adjustment of value distributions and Fourier spectra,
starting from a shuffle of the initial data points. The Fourier
transform is calculated at each iteration, retaining the phases
but replacing the amplitudes with those of the original time
series. Then, the values of the iterated time series are replaced
with those from the original time series, according to their
ranks. This process is iterated until the initial signal’s value
distribution and autocorrelation are both sufficiently preserved.
The obtained time series is entirely uncorrelated in the time
domain, which prevents data duplication. In addition, for
triaxial data, useful information may be contained in the cross
correlations; therefore, we applied a multivariate extension
of this method, which also preserves cross correlations. The
entire calculation details and a source code are available [55].

Finally, previous works have used surrogate time series
solely based on empirical evidence that they can aid the
training process. Here, as shown in Fig. 7, we adopted a
deductive approach to understanding precisely, which retained
features render the surrogate time series usable for training.
Starting from the original data, the nonlinear structure was first
destroyed by the IAAFT method itself. After that, we switched
from a multivariate approach to a univariate one, thereby ceas-
ing to retain the cross correlations. Next, we relinquished the
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TABLE II
PERFORMANCE OF THE CLASSIFICATION RESULTS ON A TEST DATASET ACROSS THE SAMPLING AND SURROGATE

SCHEMES. SEE FIG. 5 FOR DEFINITION OF THE CASES

Fig. 7. Deductive steps used to determine the elements of surrogate
data supporting high training performance.

IAAFT iterative approach and randomized the Fourier phases,
leading to time series that retains the autocorrelation but not
the value distribution. Finally, we subtracted the average and
normalized the variance to unity: this aspect is essential since
useful information about the behavior can be conveyed by the
average and variance, which are in part represented within the
Fourier amplitudes, even when the value distribution is not
adjusted.

IV. RESULTS

A. Classification Performance Across the Sampling and
Surrogate Schemes

The classification accuracy values, aggregated and sepa-
rate for each behavior class, are given in Table II, while
the corresponding confusion matrices are shown in Fig. 8.
Considering the original data only and dividing up all segments
into adjacent windows (case OA), an overall accuracy of
90% was observed. With respect to this, the most significant
improvement, to 95%, was obtained by introducing random
sampling (case O1), according to which one window is
extracted starting from a different random time point for each
training epoch. The improvement was particularly notable for
the least-represented behaviors, namely, grazing and salting,
whose scores increased, respectively, from 45% to 83% and
from 83% to 98%.

When introducing biased sampling, which rendered the
number of windows entered in the training process approxi-
mately even across behaviors (case On), a further improvement

TABLE III
ADDITIONAL EVALUATION METRICS ON A TEST DATASET. SEE FIG. 5

FOR DEFINITION OF THE CASES

to 96% was recorded; even though the additional score
increase was quantitatively smaller, it was consistent across
all classes.

Considering that next, the training performed exclusively
on the surrogates, the principal finding was that the accuracy
levels across the three sampling schemes were closely compa-
rable to those obtained when using the original data, namely,
90% for both cases OA and SA, 95% and 94% for cases O1
and S1, respectively, and 96% for both cases On and Sn. When
considering the score for the grazing class, the performance
was better when training using the surrogates rather than the
original data, namely, with 45% versus 52% for cases OA and
SA, 83% versus 85% for cases O1 and S1, and 86% versus
89% for cases On and Sn. This could plausibly be ascribed to
statistical aspects such as improved stationarity. It should be
noted that the online generated surrogates, being uncorrelated
across epochs, strongly counter overfitting; therefore, even
when the performance is the same as the original data, they
help rule out overfitting.

The most favorable performance was obtained via combin-
ing the original data and the surrogates, randomly intermixing
them for each epoch. At the overall classification accuracy
level, the case Mn scores were comparable to those obtained
using only the original data or only the surrogates, namely,
with 96% (case On) and 96% (case Sn). However, considering
the individual behaviors, the score for Grazing was maximized,
reaching 91% for case Mn as opposed to 86% for case
On. Due to a saturation effect, this was not evident for
salting. The advantage of mixing the surrogates and original
data plausibly stems from their different statistical properties
as regards which features are retained and from the data
variability.

Further insight into the performance of the proposed method
could be obtained by considering separately the precision and
recall, as well as the MCC, which are given in Table III for
cases OA and Mn. It can be seen that these metrics were
consistently higher for case Mn across all behaviors, with the
most marked improvement being observed, again, for grazing
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Fig. 8. Confusion matrices for a selection of sampling and surrogate schemes (test data).

Fig. 9. Value distributions across the behavior classes.

followed by salting. Overall, the improvement was similar
across precision, recall, and MCC.

B. Analysis of the Relevance of Surrogate Time Series
Considering the ability of the surrogates to sustain high

training performance, the following results were noted (see
Table IV); for brevity, they are presented concerning case Sn,
but similar considerations hold for cases SA and S1. Starting
from the attained score of 96%, switching to a univariate
approach not retaining the cross correlations had a negligible
effect on the overall accuracy, which remained high at 95%.
Removing the iterative process in the IAAFT algorithm, thus
retaining the Fourier amplitudes without the value distribution,
also did not reduce the performance.

On the other hand, removing the average outright by sub-
tracting it from the data had a more complex effect. The overall
accuracy for case Sn remained similar, down to 94%; however,
for case SA, the accuracy for the grazing class collapsed to
4%. Overall, removing the variance information by normaliza-
tion had a stronger and more generalized detrimental effect,
reducing the overall accuracy down to 80% for case Sn.

Altogether, these results suggest that the bulk of relevant
information was contained in the autocorrelation, the only fea-
ture retained after this cascade, and in the variance. Therefore,
to further characterize the dynamical features retained by the
IAAFT surrogates that support the use of surrogate generation
as a data augmentation technique, the value distribution,
autocorrelation, and cross correlation were considered in detail
across the behavior classes.

First, we note that, as shown in Fig. 9, the five behaviors
were characterized by markedly different distributions of the
acceleration values; for convenience, they are illustrated after
detrending. For resting, a narrow Lorentz-like distribution

was observed, with near-complete overlap between the three
axes (standard deviations of 0.03, 0.03, and 0.02 g for X ,
Y , and Z , respectively). For ruminating, the distributions
were marginally broader and less peaked around zero, albeit
retaining a comparable standard deviation (0.02 for all three
axes). By contrast, for walking, the acceleration distributions
for all three axes were markedly broader and more Gaussian-
like (standard deviations of 0.10, 0.13, and 0.11 g). For
grazing, the situation was comparable, albeit with larger noise
due to the smaller amount of data (standard deviations of 0.11,
0.10, and 0.08 g). For salting, the variability was intermediate,
and there was an evident difference between a Lorentz-like
distribution for the X-axis and Gaussian-like distributions for
the Y - and Z -axes (standard deviations of 0.03, 0.04, and
0.05 g). In summary, the resting and ruminating behaviors
appeared closely comparable and well-separated from walk-
ing and grazing, which were similar to each other, whereas
salting represented an intermediate condition. Therefore, the
relevant information contained in the value distribution con-
sisted mainly of different variances, supporting the distinction
between these classes.

Second, we note that, as shown in Fig. 10, across the three
axes, the five behaviors were characterized by visibly different
autocorrelation and cross correlation profiles, in which the lat-
ter tended to be smaller. On the whole, resting was associated
with a relatively slow and monotonic autocorrelation decay,
which was comparable for the three axes; its cross correlation
dwelled around zero, except for the Y Z combination, which
was strongly anticorrelated. These features plausibly stem
from the absence of regular movements alongside occasional
head rotations during resting. By comparison, the autocorrela-
tion envelope for ruminating showed a faster decay, which was
additionally associated with a prominent periodic oscillation
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TABLE IV
PERFORMANCE OF THE CLASSIFICATION RESULTS ON A TEST DATASET

Fig. 10. Autocorrelation and cross correlation across the behavior classes.

peaking at a lag of around ten samples, particularly for the
Y -axis; this periodicity could also be appreciated for the
cross correlation. Ruminating knowingly involves prolonged
chewing and associated rhythmic neck movements, which
may explain the observed pattern. Conversely, walking was
associated with the fastest autocorrelation decay, minimal peri-
odicity, and weakest cross correlation. These features plausibly
reflect the fact that, regardless of leg movement, the head
movements are minimized in this condition due to staring
forward. Grazing exhibited properties intermediate between
ruminating and walking, as regards both the autocorrelation
decay and the strength of cross correlation; compared to
ruminating, this behavior was associated with a somewhat
slower periodicity, peaking at a lag of around 15 samples,
again in line with behavioral expectations of slower chewing
in this condition. Finally, salting was markedly different from
all other behaviors in which it was hallmarked by a very strong
periodicity at an intermediate frequency, again peaking at a
lag of around 15 samples, which was visible on all three axes
for autocorrelation and all three axis combinations for cross
correlation. Since salting involves large repetitive “sliding”
movements associated with licking, this pattern was expected.
Therefore, the most crucial distinguishing feature appeared to
be autocorrelation, followed by the value distribution. Notably,
the separability of the behaviors was different and complemen-
tary between them since resting and ruminating, walking, and
grazing had similar value distributions but markedly different
autocorrelation profiles.

V. CONCLUSION

This article introduced and systematically evaluated a set
of time-series augmentation methods, especially suitable for
short, low-dimensional sensor time series, aiming to address
the challenges stemming from small dataset size and dataset
imbalance. The case of cattle behavior recognition using a
CNN-based classifier was considered; however, the results
are expected to be relevant beyond the specific example
under consideration. The key finding is that the performance
is maximized when combining a suitable random sampling
scheme with surrogate data and integrating it with the training
process to realize online augmentation. In particular, our
results demonstrate that dynamically sampling time-series
snippets during each epoch can facilitate the training process
by expanding the classifier boundaries. Introducing a biased
coverage that compensates for the imbalanced original dis-
tribution further enhances the performance, not only for the
least-represented behavior classes. The issue of limited dataset
size is effectively addressed through Fourier surrogates, which
support high training performance while avoiding any dupli-
cation in the time-domain data submitted to the training algo-
rithm. Extending previous works in which this technique was
used empirically, we show how a deductive approach can be
used to dissect and identify explicitly which properties retained
from the original time series are most relevant. Overall, the
proposed method improved the average performance from
90% to 96%, and the classification accuracy of grazing from
45% to 91%, without modifying the classifier architecture.
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The potential downsides of the proposed method with
respect to other time-series augmentation approaches should
be considered. First, since the process of surrogate generation
by construction destroys all nonlinear content in the time
series, the proposed method entails the assumption that the
linear features are sufficient to support high classification
performance. The extent to which this assumption holds also
for other datasets and applications remains to be clarified.
Second, the processes of surrogate generation and sampling
do not include any physical assumptions about the specific
application, such as, in this case, the influence of collar
rotation. Given that such assumptions may be a powerful
basis for data augmentation, the proposed method and other
approaches should not be viewed as adversarial but eventually
combined.

In light of the fact that the proposed method is in prin-
ciple generally applicable, future work should be directed
at systematically investigating other possible scenarios. First,
since triaxial accelerometer time series are widely used in
monitoring the behavior of other animals as well as human
activity, it is expected that the proposed method will lead
to improved performance across a broad range of possible
applications. Second, since no aspect of the proposed method
is specific to accelerometer time series, its application to
other multivariate datasets, for example, derived from multiple
sensors, should be considered. Third, as the issues of dataset
imbalance and size affect network training in general, the
usefulness of the proposed method should also be evaluated
on other types of networks, such as recurrent neural networks.
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