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Abstract—This article presents the application of a generic
sensor model (GSM) used in the virtual validation of an
advanced driver-assistance system. The aim is to demon-
strate the feasibility and usefulness of such a model in a
case study. This model transforms an incoming object list
from a virtual simulation to a sensor-specific object list and
applies to all perception sensors acting at the object level.
The procedure for parameterization of the sensor model was
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explained and illustrated with examples of two algorithms: vision- and lidar-based. The validity of the model was confirmed
using the case of a pedestrian crossing where incidents involving pedestrians occur. Based on simulation studies and
the evaluation of the actual configuration of the pedestrian crossing, conclusions were drawn which may contribute to
the increase of pedestrians’ safety, both on the passive and active sides. The obtained results allow for the improvement
of the operation of the transportation system in the field of advanced driver-assistance system (ADAS) development.

Index Terms— Mathematical modeling, sensor model, virtual validation.

|. INTRODUCTION

KEY component in the advanced driver-assistance sys-

tem (ADAS) is 3-D object detection algorithms. They are
currently under heavy development. Novel algorithms employ
deep neural networks to solve 3-D detection problems [1],
[2], [3], [4]. The use of ADAS functions instead of fully
human-controlled vehicles should reduce the number of fatal
accidents. About 90% of accidents are caused fully or in part
by human error [5]. Assuming that there are 40000 fatalities
on the roads in the European Union, 36 000 deaths are caused
by human error [6], [7].

Thus, one of the key challenges is testing ADAS func-
tionality. Algorithms are immensely complex because they
process a large amount of data from sensors like cameras,
radar, and lidar. To train an algorithm and to prove its
robustness in various difficult conditions, one should gather
and label data from hundreds of millions of miles of test
drives [8], [9]. It is very costly and time-consuming to
carry out so many test drives to cover such a great num-
ber of kilometers in various conditions. Contrary to real
test drives, virtual testing allows for completing millions
of kilometers under repeatable conditions. Therefore, virtual
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validation is a critical topic in the process of development of
ADAS algorithms.

Il. RELATED WORK

The general functionality of ADAS can be described by
the principle “sense—plan—act,” which originates from robot-
ics [10]. First, information is received (sense). Based on
this information, a behavior is planned (plan), which is then
transformed into an action (act). In order to be able to operate
the ADAS functionality in the same way as it would function
in the actual vehicle, it is integrated into the simulation system.
The system provides all necessary interfaces to other vehicle
systems as well as interfaces to sensor technology for the
perception of the vehicle environment. The interaction between
the virtual world generated by the simulation system and the
ADAS function is modeled by sensor models. Consequently,
sensor models are a prerequisite for virtual testing. Virtual
environment [11] like CARLA [12], IPG Carmaker [13], and
ASM traffic [14] simulate the scenario and includes the nec-
essary perception information for environmental sensors. The
ground truth, the true state of the environment, propagated to
the sensor model. The role of the sensor model is to capture the
relationship between sensor output and ground truth as realis-
tically as possible. The sensor model processes the perceptual
information and forwards it to ADAS algorithms, which are
responsible for vehicle control: steering, acceleration, and
braking. The future and critical application of the ADAS
system with well-realized sensing of the surrounding is the
mono-cycle [15], [16]. The vehicle dynamics model converts
control values into vehicle movement. The components and
their interaction are shown in Fig. |
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Fig. 1. Simulation setup for development of automated driving systems.
A sensor model provides the environmental perception.

Typically sensor models are classified into three categories:
ideal, probabilistic, and physical, or low-fidelity, medium-
fidelity, and high-fidelity [6], [17]. Ideal sensors simulate zero-
error and perfect sensors, which correctly recognize all objects
in a field of view (FOV) [18]. Probabilistic sensor models set
up a probabilistic function p(output|ground-truth) between the
ground truth and sensor output [19], [20]. The influence of the
environment and sensor error is modeled based on statistics
and observation. The output from both the ideal model and
the probabilistic model is a list containing a detected object.
On the other hand, output from the physical sensor is raw
measurement generated by physical laws [21], [22]. To achieve
that, usually rendering and ray-tracing methods are used.
Moreover, there are models that are a mixture of types, that
is, physical and stochastic aspects are included [23], [24].

The object list models are usually called generic sensor
models (GSMs) or configurable sensor models, because they
can be applicable to sensors like cameras, lidar, and radar.
The input to the model is the object list that contains object
properties like object class, position, orientation, size, velocity,
braking lights status, and so on. Data are processed by a chain
consisting of n modules. The properties of the sensor are
mapped on sensor effects. Each module describes a modifiable
property of a sensor, that is, the object-measured properties
can be adjusted according to the algorithm used in the applied
model. The output is a filtered list of objects that contains only
objects detected by the sensor. Fig. 2 presents a functional
overview of a GSM. It also shows which elements of the real
system are imitated by the GSM. In this case, the behavior
of the whole perception system, including the sensor and
perception algorithms, is modeled.

The properties of a sensor’s effect can be distinguished into
several categories. There are three major categories [25].

1) Properties of sensor physical measurement process such

as FOV, occlusion, or absorption.

2) Signal processing and hardware-based properties such
as resolution, latencies, or noise.

3) Information processing and interpretation based on prop-
erties, for example, object classification, position estima-
tion, or tracking.

In literature GSMs are described in [17], [18], [25], [26],
[27], and [28]. The work [18] presents an efficient way to
handle the complex sensor’s FOV. Borders can be defined
by a user. However, only 0-D objects are considered, and
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Fig. 2. Functional perspective of the GSM architecture.

occlusion is modeled in a straightforward way by reducing
the view angle. An object is detected if the ratio of the
uncovered angle and the reduced angle is still above a defined
threshold.

The focus of [25] and [26] is to define a modular architec-
ture that describes a way how to filter the object list according
to different sensor effects. Additionally, work [25] presents the
logical perspective and implementation technical perspective
of a generic/configurable sensor model. The usability of the
sensor model is demonstrated by testing adaptive cruise control
(ACC) in a virtual simulation.

The work [17] considers a model with object class-specific
FOVs. Object occlusion is included in the calculation but the
assumption is that the world is only 2-D. The detection prob-
abilities assigned to each object class can be used. However,
there is no explanation of how the probabilities are calculated
and assigned to each object.

The article [27] presents a phenomenological lane detection
model to simulate camera performance. The model is in the
form of a feedforward neural network. The inputs include
vehicle dynamics signals such as speed, acceleration, and
the distance between the real trajectory of the vehicle and
the centerline of the road. The model estimates the lateral
distance from the centerline of the host vehicle to the left/right
lane marking and the vehicle heading relative to the lane
heading. The results demonstrate that the phenomenological
model can sufficiently replicate camera detection performance
in the simulation.

The last article [28] presents our solution. The ray-casting-
based algorithm is employed to determine object projection
size and visibility ratio. The calculation is made in 3-D
where each object is described by a 3-D bounding box
(3-DBB). The number of casted rays can be easily adopted
to match the resolution of the camera or lidar. This makes
the solution easily customizable to the physical characteristics
of the camera and lidar. Additionally, a single object can be
described by several 3-DBB and therefore can better map the
shapes of the object. Moreover, the model can be used to assess
the quality of object detection algorithms. One can easily filter
out several corner cases. For example, a large object that is
100% visible and was not detected by the algorithm or an
object that is 100% occluded and is detected. This can also be
used, for example, to find errors in the labeling of the scene.
Furthermore, based on the statistics of the calculated object
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visibility values and its projection size, a probabilistic model
of the object detection algorithm can be established.

I1l. MOTIVATION

Urban mobility research and government initiatives mainly
focus on motor vehicle issues, yet pedestrians are one of the
most vulnerable elements of the urban landscape. The topic
of their safety was often overlooked in the past [29]. In 2020,
around 18800 persons were killed in road accidents in the
EU: 44.2% of the fatalities were passenger car drivers or
passengers; 19.2% were pedestrians. Additionally, there were
5977 pedestrians killed in traffic crashes in the United States
in 2017. Moreover, approximately 137000 pedestrians were
treated in emergency departments for nonfatal crash-related
injuries in the United States in 2017. Currently, research
on pedestrians focuses on the prediction of their trajectory
[30], [31] or a system that is able to create a fine-grained
map of hazard levels across a city and a heuristic to identify
interventions that might simultaneously improve pedestrian
and vehicle safety [29]. This study focuses on the topic of
pedestrian crossing safety and was inspired by a real road
incident witnessed by one of the authors. A pedestrian walking
across a pedestrian crossing was hit by a motorcyclist traveling
in one lane. The pedestrian crossing intersects three lanes,
including the rightmost lane reserved for buses, electric cars,
and emergency vehicles. The incident took place in a traffic
situation of significant intensity, as a result of which vehicles
stopped in both lanes in order to allow pedestrians to cross
the road. The perpetrator of the incident was a motorcyclist
who was moving on the bus lane. He spotted the pedestrian
at the last moment but started to brake too late, due to which
the pedestrian was hit. The immediate cause of the incident
was the limited visibility caused by vehicles standing in front
of the pedestrian crossing. Thus, the following questions are
posed: what information should a vehicle assist with automa-
tion systems have and what controls informing the driver or
taking actions in the vehicle should develop a decision-making
system to make the right decisions in such critical situations
in the future? The research considered the following zebra
crossing as an illustrative example [see Fig. 3]. The distances
L1, L2, and L3 are equal to 2, 58, and 40 m, respectively.
The road signs S1, S2, and S3 are located on the left and
right sides of the road, as well as horizontally—painted on
the road. Additionally, the give way line is not required in
many countries. In Poland, it is only recommended for places
where there is no intersection with other roads, and the law
requires it to be at least 2 m from a pedestrian crossing
(L1 distance) [32]. The upper limit is not defined. In the U.K.,
the give way line should be located at distances from 1.1 to
3 m to the pedestrian crossing. In special cases, the distance
may be extended to 10 m [33].

One can find that the hypothetical stopping distance for a
car traveling at 50 kmph is approximately 14 m. Typically, the
reaction time calculated as the time elapsed between detection
and decision is about 0.8 s. Therefore, the extra 14 m needs to
be added to the braking distance. It seems that there is enough
time and distance to stop the car if one detects the pedestrian
passing the S2 road sign. Unfortunately, there are many other

L1

L2

I3

Fig. 3. Zebra crossing configuration.

cars and events interrupting the driver’s concentration on the
road.

IV. PROBLEM FORMULATION

This article presents the use of the high-level GSM [28] that
operates on the object list level. Moreover, the novel approach
to the characterization of ADAS 3-D object detection algo-
rithms is presented. The new technique uses high-level infor-
mation from GSM allowing a description of the probability of
object detection by respective algorithms. In addition, it allows
the definition of object detection inaccuracies depending on
the class and location of the object in relation to the host.
Two sample algorithms were investigated: FCOS3D [3] and
Centerpoint [2]. The use case is exemplified by a pedestrian
crossing. The behavior of the algorithm described by the GSM
is tested in a virtual environment. Obtained results are used to
discuss the design of pedestrian crossings.

The presented solutions also allow for a more accurate
representation of ADAS functionality in high-level simulations
to determine, among other things, the effective range of
operation of particular functionalities at an early stage of
the design of the entire ADAS system. On the basis of the
conducted research, new insights and conclusions related to
ADAS and pedestrian crossings are given.

V. ALGORITHMS

A. Fully Convolutional One-Stage Monocular
3-D Object Detection

The 2-D information is not enough to correctly perceive
the 3-D real word for an intelligent vehicle. Accurate 3-D
information about objects and the road around is necessary for
a highly automated car to operate safely in traffic. Therefore,
3-D object detection algorithms are becoming increasingly
important. Most state-of-the-art algorithms depend on lidar
inputs which provide accurate 3-D information about object
position. However, the price of lidar solutions and the presence
of moving parts make their use in car production limited.
Therefore, a monocular camera that can provide 3-D object
detection, as a cheaper and simpler solution, becomes a much
more meaningful research problem nowadays. In this article,
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the focus is on fully convolutional one-stage monocular 3-D
object detection (FCOS3D). The solution wins the first place
out of all the vision-only methods in the nuScenes 3-D
detection challenge of NeurIPS 2020 [34]. The algorithm and
code are publicly available at mmdetection3d [35].

FCOS3D is an example of a fully convolutional one-
stage detector consisting of three components: a backbone
for feature extraction, a neck for multilevel scaling, and a
head for dense output. As a backbone, a pretrained ResNet101
was used. Neck, the next module is based on the feature
pyramid network. The last stage, the detection head, follows
the conventional design of RetinaNet and FCOS resulting in
an anchor-free stage detector.

The algorithm was evaluated on the Nuscense dataset [36]
(see https://www.nuscenes.org). The validation dataset incor-
porated 6019 scenes with 117672 labeled objects. The
obtained key performance indicators (KPIs) are presented in
Table I. The L2-norm was used as an association method.
Objects were marked as true positive (TP) if the distance
between the center of the ground-truth bounding box to the
predicted bounding box center was less than 2 m and the object
class matched.

KPIs broken down by the detected object class are presented
in Table II. It is worth pointing out that the number of samples
in class correlates with the results. The proportions of the
number of given class objects were more or less the same in
the training and validation sets. This clearly shows that there
were not enough particular types of objects in the dataset.
The best results were obtained for the “car” and “pedestrian”
object classes. By contrast, the worst results were achieved
for the “heavy” class. The amount of data not only affects the
performance of the algorithm, but also the ability to analyze
obtained results. When there are few objects for classes, then
it is difficult to infer the quality of the algorithm for these
classes. The only conclusion that can be drawn is that it is not
fully representative, which leads to the consequence that the
dataset needs to be supplemented. In our case, only the classes
“car,” ”pedestrian,” and “general” contain enough objects to be
analyzed.

B. Centerpoint

Center-based 3-D object detection and tracking (Center-
point) is a point cloud-fed algorithm that used output from
lidar only as an input [2]. 3DBB is usually used to repre-
sent a 3-D object. This representation imitates a well-known
2-D bounding-box detection on an image plane. However,
additional dimension generates new challenges. One of the
biggest difficulties is to correctly predict the orientation of the
object or fit an axis-aligned bounding box to a rotated object.
To overcome this problem, Centerpoint represents and detects
objects as points.

In the first stage, Centerpoint detects the center of the
objects and their properties [37]. To achieve this, a standard
lidar-based backbone network like PointPillars [38] or Vox-
elnet [39] is utilized. Next, the output is flattened into an
overhead map view and then standard image-based keypoint
detectors are used to find the center of the objects and regress
to other attributes. The light-weighted second stage refined

TABLE |
GENERAL KPI FOR FCOS3D
True positive 72553
False negative 45119
False positive 31545
Recall 0.61657
Precision 0.69758
F1 0.65458
mAP 0.50653
Number of scenes 6019.0
Threshold 0.15

these estimates. It extracts point features at the 3-D centers
of each face of estimated objects 3DBB. The result of this is
a performance increase with minor costs. The general KPIs
calculated for Centerpoint are presented in Table III.

Lidar-based algorithms perform much better than the
camera-only counterparts [36]. In the case of the algorithms
in question, 28% more objects were correctly detected by
Centerpoint in comparison to FCOS3D. Moreover, the number
of false positives also dropped significantly by 32%. This is
related to the threshold that is twice as large in comparison
to FCOS3D. The FCOS3D algorithm does not have direct
information about the depth of the image. The result is that
it generates more or less confident detections that are not
correctly located in 3-D space. The results are worse, but it
should be remembered that this sensor is several times cheaper
and does not contain any moving parts. Thus, its resistance
to damage and robustness should be higher, which is also
important when validating algorithms.

Detailed results for each class are presented in Table IV.
As in the previous case, there is also a correlation between
the number of objects of a given class and the obtained
results for this class. The best results are again achieved for
the classes “car” and “pedestrian.” Nevertheless, the number
and variety of individual classes do not allow the algorithm
to correctly learn to recognize objects that belong to these
classes. The results for “bicycle” are surprising, the algorithm
is characterized by excessive eagerness to find these objects in
the surrounding environment. In addition, it can be observed
that the results for the “general” class are weak despite a
large number of objects. This is a class that is very diverse
and therefore many examples in the training set are needed
to obtain good results. The use of lidar as an input to the
algorithm allows for better results with a limited number of
objects in the dataset. The best algorithms that use data and
information from all sensors such as cameras, lidar, and radar
achieve only slightly better results compared to solutions based
only on lidar input [36]. This shows that lidar is the best source
for algorithms that detect objects in 3-D.

VI. ALGORITHMS ANALYSIS

The probability of detection for each algorithm was derived
on the basis of the data coming out of the GSM.

1) Visibility ratio.

2) Projection size.
These values were determined for all objects included in the
analyzed dataset. Next, using the results that were performed
during the calculation of the KPIs, each object was marked as
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TABLE Il
KPI RESULTS PER CLASS FOR FCOS3D

Class AP TP FN FP Recall Precision F1
car 0.7237 33839 | 12241 13070 | 0.73435 0.72138 0.72781
truck 0.47099 4600 4194 4029 0.52308 0.53309 0.52804
pedestrian | 0.65249 13692 8923 5743 0.60544 0.7045 0.65122
general 0.63811 18356 | 15199 6766 0.54704 0.73067 0.62566
bicycle 0.65458 775 1149 538 0.40281 0.59025 0.47884
motor 0.4314 745 1072 348 0.41002 0.68161 0.51203
heavy 0.16084 546 2341 960 0.18912 0.36255 0.24858
TABLE IlI The optimization problem was defined as follows:
GENERAL KPI FOR CENTERPOINT n y J 5
Xi Vi .
True positive 93052 min ¢ Z In (1 + (f (s 3, = ) =) (3)
False negative 27141 k j=0 ¢
False positive 21549
Recall 0.77419 where
Precision 0.81196 n  number of data obtained for the class of object;
F1 0.79263 cq. .
AP 0.67542 dj calculated recall within the specified range;
Number of scenes | 6019.0 ¢ empirical coefficient used during optimization
ThI'CShOld 032 proceSS.

TP, false negative (FN), or false positive (FP). The sensitivity
of the algorithm was then calculated for each visibility interval
and projection size. In the case of visibility, the interval had
a length of 0.1, while for the projection size, the interval was
set to 2500. The “car” and “pedestrian” classes were analyzed
because of the large number of objects of these classes in the
set and because these two classes were used in the simulation
of pedestrian crossings. The results obtained are shown as
red dots in Figs. 4 and 5 for the FCOS3D algorithm and
in Figs. 6 and 7 for the Centerpoint algorithm. Furthermore,
using optimization methods, a plane describing the probability
of detection was determined on the basis of the previously
determined points.

The function describing the detection probability plane was
chosen in the following form:

F:00, 1) x RYU{0} x R — (0, 1)
f(x,y, k) = max {min {klxkzyk3 (k4xk5 + kﬁyk7) , 1} , O}
(1

where
x  visibility;
y  projection area;
k vector of coefficients.

This construction of the function describing the detection
probability plane ensures that when the visibility is equal to
zero or the projection size is equal to zero, the value of the
function is also equal to zero

fO,y,k) = f(x,0,k) =0 Vq,. )

In addition, the codomain of the function is in the
range (0, 1).

The construction of the objective function was designed to
severely weaken the influence of outliers. The results of the
optimization are shown in Figs. 4-7 using the blue plane.

Compared to the basic KPIs, the presentation of the data in
the form of these graphs gives a more complete picture of the
behavior of the algorithm. It can be seen that objects that are
almost fully visible and their projection size is large enough
are detected correctly with almost 100% efficiency. It can also
be seen that the Centerpoint algorithm obtains better results.
Statistically, it needs less information about an object to make
a correct prediction. This can be seen especially in the case
of pedestrian detection, where for relatively small objects, the
algorithm makes correct predictions. When analyzing these
results, it is also worth noting that through occlusions or the
fact that an object is at a certain distance, it can be more
difficult to detect. These parameters are not considered when
calculating basic KPIs such as mAP, recall, or precision. This
leads to the conclusion that the importance of a given object
and the weighting of its impact on the environment when
calculating such KPIs should be taken into account because
occluded ones that are in the distance have far less impact on
a moving host.

In the case of the estimation error of the position and rota-
tion of the predicted object, it can be noted that they depend
mainly on the size of the object projection on the sensor. This
is noticeable for both algorithms and both “car” and “pedes-
trian” classes. The results are shown in Figs. 8 and 9. For car
detection, the detection error in the direction perpendicular to
the car movement [Figs. 8(b) and 9(b)] is smaller than in the
parallel direction [Figs. 8(a) and 9(b)]. The algorithms have a
worse estimation capability of the depth at which objects are
located than their lateral location. For the FCOS3D algorithm,
the mean estimation error of the position x varies from 0.20 to
0.75 m. In contrast, the estimation of the position y has
an error ranging from 0.15 to 0.60 m. In the case of the
Centerpoint algorithm, the ranges obtained are, respectively,
from 0.10 to 0.28 m and from 0.05 to 0.23 m. In all cases,
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TABLE IV
KPI RESULTS PER CLASS FOR CENTERPOINT

Class AP TP

FN FP Recall Precision F1
car 0.88484 | 39256 6824 3625 | 0.85191 0.91546 0.88254
truck 0.75325 6699 2095 1726 | 0.76177 0.79513 0.77809
pedestrian | 0.85746 | 20455 3575 3681 | 0.85123 0.84749 0.84935
general 0.66924 | 23023 | 11592 | 8037 | 0.66512 | 0.74124 0.70112
bicycle 0.49628 1106 822 2553 | 0.57365 0.30227 0.39592
motor 0.66445 1307 553 1416 | 0.70269 0.47999 0.57037
heavy 0.40239 1206 1680 511 0.41788 0.70239 0.52401
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Fig. 4. Probability of pedestrian detection with respect to visibility and
projection area for FCOS3D.
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Fig. 5. Probability of normal car detection with respect to visibility and
projection area for FCOS3D.
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Fig. 6. Probability of pedestrian detection with respect to visibility and
projection area for Centerpoint.

the estimation error exponentially decreases with increasing
object size and stabilizes at a certain level. In the case of
pedestrian detection, there is no noticeable difference between
x and y position estimation [Figs. 8(d) and 9(d) and (e)]. This
is probably due to the fact that pedestrians are much smaller
than cars. In addition, there are no such significant differences
in absolute length between width and length. This makes it
easier to correctly predict the location of an object. Moreover,
the position estimation error decreases with increasing object
size only for FCOS3D [Fig. 8(d) and (e)]. The Centerpoint
algorithm, on the other hand, shows a constant error that does
not begin to change as the object’s projection size changes

Jed jewiou jo Ayiqeqold
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Fig. 7. Probability of normal car detection with respect to visibility and
projection area for Centerpoint.

[Fig. 9(d) and (e)]. As for cars, the algorithm based on lidar
data has better accuracy in predicting the position of objects.
For Centerpoint, the position prediction error is approximately
0.12 m for x and y. The vision algorithm has an error range
from 0.15 m for large objects to 0.60 m for small objects.
Almost all objects detected by the perception algorithms

are located on the plane defined by the carriageways. Con-
sequently, one parameter, yaw angle, was used to describe
the orientation. The results for yaw estimation are shown in
Figs. 8(c) and (f) and 9(c) and (f). Algorithms have consid-
erable difficulty in determining the correct orientation of an
object and this is particularly noticeable for pedestrians. The
algorithms in this case find the orientation of the pedestrian
correctly when its projection size is very large. For cars,
the Centerpoint algorithm has an average error of 17°. For
FCOS3D, the error was about 30°. The quality of the labeled
objects in the dataset can have a large impact on the amount
of error obtained. It is important to note that the manual data
labeling process will always introduce bias into the actual
data. Manually marking the orientation of objects during the

ground-truth data generation process is more difficult than

marking the location of these objects. This means that the

proportion of errors due to uncertainties in labeling will be

higher for the yaw angle. However, labeling errors also affect

the estimation of object location.

On the whole, the algorithm analysis shows that the algo-

rithm based on lidar data performs much better in a precise
location task. Moreover, the GSM can be used successfully to

describe and imitate perception algorithms at a high level of
abstraction.

VIl. PEDESTRIAN CROSSING CASE
From a number of films recorded with a car camera,
a situation was selected which is the best illustration for
this work. It should be emphasized that the scenario was not
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Fig. 8. Location and size errors for detected cars and pedestrians by FCOS3D. (a) Error in estimation car x location with respect to projection size.
(b) Error in estimation car y location with respect to projection size. (c) Error in estimation car yaw angle with respect to projection size. (d) Error in
estimation pedestrian x location with respect to projection size. (e) Error in estimation pedestrian y location with respect to projection size. (f) Error

in estimation pedestrian yaw angle with respect to projection size.
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size. (f) Error in estimation pedestrian yaw angle with respect to projection size.

planned. Registration of the scene was completely accidental.
For reasons of data protection, the license plates were hidden.

A diagram of the road and its markings is shown in Fig. 3.

It is significant in this situation that the first scene
[Fig. 10(a)], shows complete occlusion of objects (in this case,
a person and a dog) that are about to cross the pedestrian
crossing. It can be seen that the white SUV in the left
lane is intended to give way to the crosswalk and took a
braking action. The vehicle in the middle lane (preceding the

vehicle recording the event) did not take the braking action
early enough, as the objects were occluded and as a result,
it entered the pedestrian crossing which is particularly visible
in Fig. 10(d). It should be noted that from the point of view
of the vehicle recording the event, visibility was also reduced
by the occlusion of objects by the SUV. Another important
observation is that the animal entered the pedestrian crossing
first preceding the entrance of the human [see Fig. 10(b)].
Here, it can also be seen that the person is still occluded
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(d)

Fig. 10. Zebra crossing—selected scenes to illustrate the occluding and visibility of objects. (a) Scene 1, time 0 s. (b) Scene 2, time 0.3 s. (c)

Scene 3, time 0.5 s. (d) Scene 4, time 1.03 s.

by the vehicle in the left lane. Another scene in which the
unveiling of the person occurs is illustrated in Fig. 10(c). The
time difference between successive scenes is worth noticing.
The dynamics of the events is considerable and the times are
relatively short (of the order of hundreds of milliseconds).
Therefore, the reaction time of the driver must be really short.
More than that, it is conservatism, caution, and anticipation
that create demands on the characteristics of the driver and
the assistance system. These short times increase the demands
placed on ADAS systems, which are supposed to work effec-
tively in modern vehicles.

The depicted scene was reproduced in a virtual simulation.
The snapshot from the simulation is presented in Fig. 11. The
gray lines indicate the FOV of the sensor which is indicated
by a red dot. The horizontal FOV was set at 120°, while the
vertical was 60°. A car that is occluding the pedestrian and
dog is marked with a blue 3DBB. The pedestrian and dog are
marked in orange and green, respectively.

The simulation was designed in such a way that the stopping
point of a vehicle marked with a blue 3DBB (blue vehicle)
was defined (L1 distance). Then 100 simulations were run with
different pedestrian and car paths. One of the things that were
changed was the speed of vehicles, but it was always around
50 kmph. Additionally, the starting position of objects and the
moment of entry of a pedestrian on the road were changed,
as well as the speed. The acceleration during braking of the
blue car was selected in such a way that it stopped at a given
distance from pedestrians crossing the road. In addition, it was
assumed that the dog was moving in front of the pedestrian
at a slightly higher speed. Simulations were carried out for
distances L1 of 2, 4, 6, 8, and 10 m. On the basis of simulation
data, GSM was used to determine the probability of object
detection using the functions shown in Figs. 4-7. To describe
the probability of dog detection, data from the pedestrian class
were used.

An example of the results obtained for the 6-m distance is
shown in Fig. 12. As the graphs show, the dog was detected

—— vehicle
—— pedestrian
— dog

® Sensor

Fig. 11. Simulation frame.

faster than the pedestrian as it emerged from under the
occluding car. In this case, the algorithms started detecting
the pedestrian when the sensor was at a distance of about
13 m from the pedestrian and in the case of the dog about
17 m. Given that the braking distance of the vehicle is
approximately 13—14 m, the implication is that assuming zero
system response time, it is impossible to brake in front of
the pedestrian if there were only that pedestrian in the zebra
crossing. Moreover, the differences between the FCOS3D
and Centerpoint algorithms are small and amount to less
than a meter. The Centerpoint algorithm reacts slightly faster.
Howeyver, these are not differences that would avoid a collision.

Table V presents distances to pedestrian for specific detec-
tion confidence levels and L1 distance of a stopped blue
vehicle. The results obtained show that as soon as a blue
vehicle stopped within 10 m of a pedestrian crossing, an object
appeared in the field of vision of the sensors fast enough for
the detection algorithms to detect it in time to brake in front of
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Fig. 12.
(c) Dog, FCOS3D. (d) Dog, CenterPoint.

TABLE V
DISTANCES TO PEDESTRIAN FOR SPECIFIC DETECTION CONFIDENCE
LEVELS AND L1 DISTANCE OF A STOPPED BLUE VEHICLE

Probability of detection

Algorithm L1 distance 03 07 09
2m 5.75m 4.75m 4.25m
4m 8.25m 7.75m 7.25m

FCOS3D 6m 11.75m | 10.25m 7.75m
8m 1475m | 13.25m 7.75m
10m 18.25m | 13.75m 7.75m
2m 5.75m 4.75m 4.25m
4m 8.25m 7.75m 7.50m

Centerpoint 6m 12.25m | 11.25m | 10.25m
8m 15.75m | 14.25m | 13.25m
10m 19.25m | 17.75m | 14.25m

the pedestrian, assuming a legal speed of 50 kmph. Reducing
the speed to 30 kmph and assuming a braking distance for this
speed of about 6 m, the detection algorithms allow sufficient
early detection when the L1 distance is 4 m. In this case,
it is also noticeable that the lidar algorithm performs better
and reacts slightly faster. To obtain a pedestrian detection
probability of 0.9 using the FCOS3D algorithm, the sensor
must be at a distance of about 8 m from the object in question.

The frequency of occurrence of the case study will depend
on the volume of traffic on the road and the number of
pedestrians trying to cross the carriageway. It should be noted
that hypothetically a pedestrian, particularly a child, or an
animal may intrude on the roadway at any point. The research
carried out also generalizes to this case. It can occur on any
multilane road when the preceding vehicle occludes an object
that has encroached on the roadway.

VIII. CONCLUSION

On the basis of the conducted research, the following
improvements of the transportation system, particularly guide-
lines for the reorganization of pedestrian crossing signage, traf-
fic, measurement, and control systems, including algorithms
with the prediction (risk assessment), are put forward.

1) For multilane pedestrian crossings, traffic lights shall be

recommended. In the case of a lack of traffic lights:
a) Speed reduction toward 30 kmph.
b) Distance L1 is critical to pedestrian visibility and
shall be set at least at 4 m for 30 kmph and 10 m
for 50 kmph.

2) Perception systems must take into account that pedes-
trians or animals can also cross the road in unmarked
places. Thus, advanced driver assistance systems should:

a) include a communication system between vehicles
(V2V communication) to receive information on
pedestrians at crossings more quickly;

Probability of detection

Probability of detection

o
-4 -35 -3 -25 -20 -15 -1 -5
Distace to dog (m]

o
-40 -35 -3 -25 -20 -15 -l -5
Distace to dog [m]

(© (d)

Mean probability of object detection with respect to the distance to the object. (a) Pedestrian, FCOS3D. (b) Pedestrian, CenterPoint.

b) include detection algorithms that ought to track
preceding cars that are in the lane next to them and
be able to predict that when they brake, an object
may unexpectedly emerge behind them; and

¢) include V2x communication (vehicle to every-
thing), that is, a pedestrian crossing will detect
when a pedestrian is at a crosswalk despite green
lights for vehicles and inform oncoming traffic.
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