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Abstract—Several unmanned retail stores have been
introducedwith the developmentof sensors,wireless commu-
nication, and computer vision technologies. A vision-based
kiosk that is only equippedwith a vision sensor has significant
advantages such as compactness and low implementation
cost. Using convolutional neural network (CNN)-based object
detectors, the kiosk recognizes an object when a customer
picks up a product. In retail object recognition, the key chal-
lenge is the limited number of detections and high interclass
similarity. In this study, these challenges are addressed by
utilizing the “view-specific” feature of an object; specifically,
an object class is divided into multiple “view-based” sub-
classes, and the object detectors are trained using these data.
Further, the “view-aware feature” is definedby aggregatingsubclassdetectionresults from multiple cameras. A superclass
classifier predicts a superclass by utilizing an informative subclass detection result that distinguishes the target object
from other similar-looking objects. To verify the effectiveness of the proposed approach, a prototype of the vision-based
unmanned kiosk system is implemented. Experimental results indicate that the proposed method outperforms the
conventional method, even on a state-of-the-art detection network. The dataset used in this study has been subsequently
provided in the IEEE DataPort for reproducibility.

Index Terms— Multicamera system, retail product recognition, unmanned retail, vending machine.

I. INTRODUCTION

W ITH the development of various sensors [1], [2], wire-
less communication [3], [4], and Internet of Things

(IoT) technology [5], [6], many enterprises have integrated
self-checkout systems in their businesses [7]. Recently, a
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“checkout-free” system that enables customers to simply walk
out after selecting a product without interacting with any
type of checkout system was introduced. Amazon Go [8]
is a well-known example of fully automated checkout-free
store. In Amazon Go, consumers purchase products in a
grab-and-go style without any checkout process that involves
tagging. These retail automations effectively reduce human
labor, enhance customer shopping experiences, and increase
convenience. However, these systems require numerous sen-
sors and cameras and high computing power, and they are only
applicable to large enterprises.

A vision-based unmanned kiosk that is equipped with only
camera sensors can provide affordable options for reducing
implementation costs. This kiosk is constructed with a display
rack, in which an RGB camera is installed on the shelf.
A convolutional neural network (CNN) detector is utilized to
recognize a product that appears in the input image captured
by the camera sensor. A key problem associated with product
recognition is accuracy degradation caused by the limited
number of detections and high interclass similarity. Retail
products are infamous for their high intraclass appearance
variations and high interclass appearance similarity [9]. For
example, if a kiosk can only detect the flat top of a canned
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drink, it would be difficult to distinguish between two different
drinks because appearances from various viewpoints will be
similar for similar retail products. If the discriminative features
of an object are not utilized for a detection network, the object
can be incorrectly classified into a class that corresponds to a
similar object.

In this study, the confusion caused by high interclass simi-
larity is addressed using multiple cameras. Each camera has a
CNN detector, and each detector conducts detection separately
based on its own input image. Among the multiple detection
results from various viewpoints, the classifier identifies an
“informative” viewpoint (view-specific features) favorable to
object identification and classifies the object by combining the
detection results obtained from multiple detectors. Specifically,
this study presents answers to the following questions.

1) How can we extract distinctive view-specific features
from each camera sensors?

2) How can we utilize the informative appearance
when detection results from multiple viewpoints are
aggregated?

To answer the first question, we propose a “view-based”
annotation method that defines multiple subclasses for a single
object, considering the intraclass variations of the object.
Subsequently, the detection network is trained with these sub-
classes to maximize view-specific saliency. During training,
binary cross-entropy loss is used for enabling the detector to
calculate the classwise probability. A view-specific feature is
then defined as a vector of subclasswise probability.

To answer the second question, a view-aware feature is
constructed by summing view-specific features, and a random
forest (RF) superclass classifier is trained with the feature.
RF has two advantages—it calculates the relative importance
of given features and is robust to missing values. When multi-
ple subclass detections are provided, RF identifies the “infor-
mative” viewpoint, where an object has a distinct appearance
to distinguish it from other objects with similar appearances.

An approach similar to this is part-based detection [10],
which is primarily used for the fine-grained classifications of
various animals and artificial items [11], [12]. These methods
annotated parts that typically appeared in the target object and
extracted feature points from these parts. The extracted fea-
tures were then aligned along a predefined order and input into
the classifier. Despite their adequate performance, they cannot
be applied to vision-based unmanned kiosks with multiple
targets that do not have common parts. Furthermore, objects
are often rotated during the purchase process, leading to
additional computational overhead toward feature alignment.
In addition, the aforementioned methods use datasets [13],
[14], [15] consisting of on-the-shelf images or product-pack
shots captured from a single camera. Classification utilizing
a multicamera system has seldom been explored, and human
action has not been considered.

The proposed classification method is summarized as fol-
lows. First, the newly proposed annotation method defines the
subclasses of objects, which are then annotated using sub-
classes based on their appearances. The detection network is
then trained using the subclass definition, and during inference,

every implemented camera performs subclass detection. The
final decision is made by aggregating the subclass detection
results from multiple viewpoints. To evaluate the proposed
algorithm, a prototype of a vision-based unmanned kiosk
system is developed, along with a real-world retail product
dataset, which comprises 142 420 images of shopping actions.
The experimental results show that the proposed method
outperforms the conventional method by 33.67% in terms
of F1 score. In summary, this study makes the following
contributions.

1) Prototype of a Vision-Based Unmanned Kiosk: The
unmanned kiosk system equipped with multiple cam-
eras is developed, and datasets are collected under this
environment.

2) View-Aware Classification Method: A view-aware clas-
sification method along with a view-based annotation
method, is proposed to resolve the interclass similarity
of retail objects and to aggregate multiview detections.

3) Real-World Dataset for a Vision-Based Unmanned
Kiosk: A real-world dataset capturing purchase process
is devised with 142 420 images and two types of label
sets. One label set has “view-based” labels on which
the proposed annotation method is applied, and the
labels in the second label set are annotated using a
conventional method. For reproducibility, the datasets
have been provided in the IEEE DataPort [16].

II. RELATED WORK

A. Unmanned Retail Stores With Smart Checkout
The key characteristics of unmanned retail stores is a smart

checkout system. Examples of the system include BingoBox’s
unstaffed convenience store, in which customers place prod-
ucts on a smart checkout counter that uses image recognition
to calculate purchase prices. TaoCafé is another example that
utilizes smart checkouts through facial recognition and a series
of exit scanners. Amazon Go eliminated the checkout process,
and customers can pick up products and walk out directly.
This “Just Walk Out” system is enabled by built-in weight
sensors and overhead cameras. Hundreds of cameras detect
every customer and track them from the moment they enter
the store until they leave; however, this real-time detection
and tracking requires a high amount of computational power.
It is worth noting that all smart checkout systems have been
launched by large enterprises rather than small businesses.

This article proposes a vision-based unmanned kiosk as
a compact version of an unmanned store; the kiosk detects
retail products only using multiple cameras and classifies
them using a simple machine learning algorithm with low
computational cost. Additionally, no human detection such
as face recognition is required because only one person can
use the kiosk at a time; hence, possible privacy issues can be
avoided when customers are detected.

B. Retail Object Recognition and Existing Datasets
Research on retail object recognition is highly relevant

for the realization of real-world applications, and therefore,
the real-world environments should be well reflected in the
dataset. One study [15] proposed a method for enhancing
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the localization performance of densely packed objects and
developed a new benchmark (SKU-110K) containing images
of supermarket shelves. Another study [17] recorded 36 videos
capturing products within a shopping cart to test the smart self-
checkout cart. In this study, a specific dataset that reflects the
proposed kiosk system with multiple cameras is constructed.
The established dataset includes various situations of the
purchase process, such as frequent occlusions and viewpoint
changes that can be caused by human actions and the use
of multiple cameras. The dataset closest to our environment
is [18]; however, the target retail product is limited to bever-
ages, and only a single camera is used.

C. Utilizing Semantic Part Features
Several studies have been conducted to improve the perfor-

mance of object recognition in severe environments such as
frequent occlusion, fine-grained classification, and viewpoint
changes. In their study, Girshick et al. [19] detected an object
with handcrafted features from each part. Another study [10]
further extended this study by annotating multiple parts of an
object and building an object-part graphical model. Recently,
an end-to-end network [20] was proposed, in which a network
was trained to associate the local visual concepts with the
semantic parts of the object. The network in [20] exhibited
a significant improvement in performance under occlusion.
Similarly, many studies have utilized the “part visual con-
cept” in fine-grained classification tasks [11], [21], with [22]
showing these approaches can be applied to retail product
classification. In the previous studies, extracted part features
were aggregated via concatenation and pooling for classifica-
tion. Zhang et al. [11] concatenated part features with whole
object features to obtain a pose-normalized representation.
Zhang et al. [21] utilized an ROI-pooling layer to reorganize
part features in a predefined order. Moreover, Srivastava [22]
combined part features by average pooling. Although exist-
ing reports have highlighted their effectiveness in classifying
objects observed from a “fixed” viewpoint, multiview object
classification has seldom been explored. Furthermore, the
target objects of unmanned kiosks do not have common parts,
and therefore, ROI-pooling and re-ordering features is not
applicable.

III. PROPOSED VIEW-AWARE CLASSIFICATION

A. Overview
Fig. 1 shows the entire process of the proposed method.

First, multiple subclass detectors are distributed to each camera
to detect the subclass defined by the proposed view-based
annotation method. The subclass detection results are then
utilized as a view-specific feature that represents the specific
appearance of an object observed from each viewpoint. Sub-
sequently, a view-aware feature is constructed by combining
view-specific features from multiple cameras. A superclass
classifier determines the final superclass of an instance using
a view-aware feature. The details of view-aware detection,
including the view-based annotation method and view-specific
features, are presented in Section III-B. The view-aware clas-
sification is described in Section III-C. The specifications of
the prototype unmanned kiosk are presented in Section IV,
along with those of the image collection method.

Fig. 1. Overview of the proposed method.

B. View-Aware Detection
1) View-Based Annotation: The goal of view-aware detec-

tion is to resolve the interclass similarity of the target objects
by obtaining view-specific features. To obtain view-specific
features, this study proposes a view-based annotation scheme.
In the proposed view-based annotation, an object is divided
into several subclasses considering its intraclass variations
and is defined for the top, middle, and bottom of each
object. The original category of an object is denoted as a
superclass. Fig. 4 shows the superclasses and their subclasses
in the proposed dataset. The proposed subclass definition
helps improve recognition performance by separating distinct
appearances from confusing appearances. For example, the
easiest way to distinguish different canned beverages is to
verify their product logo from the side view, thus serving as
an informative differentiator between objects. By contrast, the
top-view appearance will be a confusing subclass, as identify-
ing the differences between the two canned beverages simply
by observing at the flat top from the topview is difficult.
The details of the annotation scheme and image collection
are presented in Section IV.

2) View-Specific Feature: A view-specific feature is
designed to represent the distinctive appearance observed from
each viewpoint. To maximize view-specific saliency, a CNN
is trained using a view-based annotated dataset; subsequently,
the view-specific features are defined as vectors of subclass
probabilities that are extracted from the CNN. The class
confidence score indicates the probability of the class and
how well the detected bounding box fits the object. When
view-based annotation is applied, a single object is annotated
with multiple subclass bounding boxes, which may overlap
with each other. Therefore, binary cross-entropy is selected
as a classification loss that enables multilabel classification.
Each subclass has a probability that the predicted bounding
box belongs to the subclass. We adopted YOLO [23], [24],
a widely used real-time detection network that utilizes binary
cross-entropy loss with a sigmoid function, as a subclass
detector. When the bounding box i is predicted, its class
confidence score of the j th subclass si j is defined by the
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following equations:
si j = P

(
Subclass j |Object

) ∗ P (Object)i ∗ IOUi (1)

= P
(
Subclass j |Object

) ∗ Objectness (i) . (2)

Here, P(Object)i is the probability that box i contains objects,
and IOUi refers to the intersection of union of box i .
Objectness(i) is an objectness score obtained by multiplying
P(Object)i and IOUi . Given that the sigmoid function is
used to extract the classwise probability, each bounding box
detection has a vector of class-specific confidence scores with
values from 0 to 1. We only utilize features with scores
above the threshold, θ . If the number of subclasses is N and
the number of bounding boxes is B , then the view-specific
feature C extracted from a single camera is expressed as
follows:

C =
B∑
i

( ¯si0, ¯si1, . . . , ¯si N ) (3)

¯si j =
{

0, 0 ≤ si j ≤ θ

P
(
Subclass j |Object

)
, θ < si j ≤ 1.

(4)

Here, we use classwise probability ¯si j because we empir-
ically determined that classwise probability exhibits superior
performance than that exhibited by class-specific confidence
score, si j . The optimal value of θ is determined to be 0.25 with
multiple experiments. It is worth noting that the constructed
feature does not require geometric information such as the
camera position or orientation of an object. Therefore, this
feature is robust to sudden changes in pose of the object that
may occur during the purchase process.

C. View-Aware Feature and Superclass Classifier
A superclass classifier determines the most probable super-

class when multiple view-specific features are provided.
To achieve this goal, a new feature, obtained by aggregating
features from multiple viewpoints, is proposed. The descriptor
is built using a view-aware feature F , by extending the
view-specific feature to a multicamera system. When there
are N subclasses in a dataset and M cameras in the system,
the view-aware feature F of an instance can be expressed as
follows:

F =
M∑
k

Ck (5)

=
M∑
k

(Ck (0) , Ck (1) , . . . , Ck (N)) (6)

=
(

M∑
k

Ck (0) ,

M∑
k

Ck (1) , . . . ,

M∑
k

Ck (N)

)
. (7)

Here, Ck( j) refers to the j th element of the kth view-specific
feature. The superclass classifier determines the final super-
class by identifying the relative importance of given subclasses
and the RF classifier [25], a widely used machine learning
method, determines which subclass from Ck(0) to Ck(N)
is “informative.” The RF leverages the power of multiple
decision tree. A decision tree is a treelike structure with

multiple branches that determine the final output. A tree is
constructed to maximize the information gain, which is the
difference in entropy before and after the split is calculated.
When a view-aware feature F is provided, the final prediction
ŷ is obtained by averaging the predictions from the trees.

In the proposed superclass classifier with the RF, an “infor-
mative subclass” has a more significant effect on superclass
prediction. Given a particular prediction, ŷ, the importance
of individual subclasses can be obtained by analyzing the
decision path of the trees. This is accomplished by cal-
culating subclass contributions using a previously reported
method [26]. If a node is split by a subclass, the effect of
the subclass on superclass prediction is defined as a change in
superclass probabilities at the node. The superclass probability
of a node is calculated by averaging the final prediction result
of every training sample that flows into individual nodes. For
instance, the superclass probability of the root node can be
interpreted as a prior of the superclass because every training
sample runs through the node. If the number of superclasses
is P , the total contribution of subclass j for superclasses
with view-aware feature F , contr( j,F)t ∈ R

P , is obtained by
summing the probability changes of superclasses in all nodes
associated with subclass j along the decision path. Given that
there are N subclasses, the prediction for a superclass c is
defined as follows:

ht (F , c) = biast (c) +
N∑

j=1

contr ( j,F)t (c) . (8)

Here, biast (c) represents the cth element of the root
node probability and contr( j,F)t(c) refers to the cth ele-
ment of the contribution. Finally, the relative importance
Importance(F , c) j of subclass j for RF prediction is obtained
by averaging all predictions of the individual trees

Importance (F , c) j = 1

T

T∑
t=1

contr ( j,F)t (c) . (9)

To train the RF classifier, a set of subclass detection results
was collected using additional RF training dataset. The training
feature of the classifier is defined as follows:

Ftrain =
(

M∑
k

Ck (0) ,

M∑
k

Ck (1) , . . . ,

M∑
k

Ck (N) , y

)
.

(10)

Here, y denotes the ground truth superclass label. The
specifications of the RF training dataset are described in
Section IV.

It is worth noting that RF is trained to learn feature impor-
tance inherently by our view-aware annotation and view-aware
feature, without any manual manipulations. We utilized the
aforementioned equations to analyze the effect of the relative
importance of each subclass in Section V.

IV. DATASETS FOR THE VISION-BASED

UNMANNED KIOSK

A. Image Collection
Fig. 2 shows a prototype of the proposed vision-based

unmanned kiosk, which consists of three levels of racks,
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Fig. 2. Illustration of a prototype of the vision-based unmanned kiosk.

Fig. 3. Camera with the CMOS OV2710 image sensor installed in the
vision-based unmanned kiosk.

each containing two cameras. Consequently, six cameras are
present in the system. As shown in Fig. 3, high-definition USB
cameras were installed at each end of the layer. Equipped
with the 1/2.7” CMOS OV2710 image sensor, the camera can
capture up to 60 frames/s at a resolution of 1280 × 720, with
a 150◦ super-wide-angle lens. To mimic a real-world shopping
environment, this study demonstrates scenarios in which six
retail products are purchased. The entire process was recorded,
and each frame was saved as 360 × 640 JPG images.

In the system, the classification is conducted on an instance-
level, aggregating multiple detection results from multiple
cameras. Therefore, multiple cameras should be synchronized
to ensure the inputs are captured simultaneously. This can
be guaranteed with multithread programming, where a thread
computes the detection on each camera.

B. Dataset Details and Statistics
1) Training Dataset: This study provides two types of train-

ing datasets. The first is a “view-based” dataset, to which the
proposed view-based annotation is applied, and the second
is a “conventional dataset,” which is annotated in a typical
manner using only superclasses. These two datasets share
identical images; however, they have different label sets that
are annotated with different schemes. Table I lists the statistics
of the training and validation datasets. The dataset contains six
retail products as superclasses, and the products were selected
owing to their similar appearance from certain viewpoints.
Fourteen subclasses are then defined for the six superclasses,
and definitions of the superclasses and subclasses are shown
in Fig. 4.

In the view-based dataset, the label data consists of bound-
ing boxes and their subclass labels. The bounding box is drawn
such that it completely covers the boundary of the object. From
some viewpoints, a single product may be annotated using

TABLE I
STATISTICS OF VIEW-BASED ANNOTATED DATASET AND

CONVENTIONALLY ANNOTATED DATASET

Fig. 4. Definition of superclasses and subclasses in the proposed view-
based dataset.

overlapping bounding boxes. The definition of a bounding box
is not strictly limited because our objective is not to establish
a precise box location for a single image. The total numbers
of labels and images in the dataset are 48 323 and 48 364,
respectively, including the validation set.

2) Test and RF Training Datasets: To evaluate the effec-
tiveness of the proposed method, a multicamera dataset was
constructed. In the dataset, a single instance consisted of
six frames captured from six cameras. Unlike the training
dataset, we denote only the superclass of an instance. The test
dataset contains 10 306 instances. The number of instances
for each superclass ranges from 1699 to 1780. The total
number of images in the dataset is 61 836. The RF training
dataset contains 5370 instances and 32 220 images, with
870–900 instances for each superclass. The statistics for the
datasets are summarized in Table II. To reduce bias in the RF,
we constructed an RF training dataset separate from the
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TABLE II
STATISTICS OF TEST DATASET AND RF TRAINING DATASET

TABLE III
OPTIMAL CONFIGURATIONS OF RF

training dataset by balancing the number of instances of each
superclass.

V. EXPERIMENT

A. Experimental Setting
1) Detection Network: In the experiment, three types of

real-time object detector YOLOv3 [23], Tiny-YOLOv3 [23],
and YOLOv4 [24] are used as detection networks, and an
identical training scheme is applied to train all networks. Net-
works are trained for 28 000 iterations with batch size 64. The
learning rate is initialized to 0.0013, and decreased by 1/10
when the step number reaches 22 400 and 25 200 iterations.
Conventional data augmentation is used with saturation 1.5,
exposure 1.5, and hue 0.5.

2) Superclass Classifier: We construct a training dataset for
RF with the subclass detection results collected from the
RF training dataset in Section IV. Subsequently, we split
the dataset into a sixfold cross-validation set. The optimal
configurations of the RF is determined by varying the number
of trees, minimum samples of leaf nodes, and minimum
samples to split a node. The configurations identified for the
different detection networks are listed in Table III.

B. Baselines
The proposed method utilizes a view-aware subclass detec-

tor and an RF superclass classifier, denoted by “View +
RF.” To verify the effectiveness of the proposed method, two
baseline methods were compared.

The first baseline is a conventional approach that uses
a conventional detector with the majority voting method,
which is denoted as “Conv + Major.” In this approach, the
detector is trained using a conventionally annotated dataset
with superclass. The final class decision is made by selecting
the class that is most frequently detected. If the number of
detections is identical, the class with the largest sum of the
classwise probability is considered to be the final prediction.

The second baseline uses the view-aware subclass detector
with the majority voting method, denoted as “View + Major.”

The detector is trained with the proposed view-based
annotation method. The superclass of which the subclasses
are most frequently detected is selected as the final predic-
tion. Similar to the first baseline, the sum of the classwise
probability was used when the number of subclass detections
was the same.

C. Evaluation Metric for Multicamera Instance
For the multicamera instance evaluation, the Macro- and

Micro-F1 scores presented in [27] are utilized. The Macro-F1
score (F1M ) is used to represent the overall performance of
the method, while the Micro-F1 score (F1μ) represents the
performance of each superclass. The Micro-F1 score (F1μ) is
the harmonic mean of precision and recall of each class. The
Micro-F1 score of superclass i can be calculated using the
following equation:

Precisionμi = TPi

TPi + FPi
(11)

Recallμi = TPi

TPi + FNi
(12)

F1μi = 2 · Precisioni · Recalli
Precisioni + Recalli

. (13)

It is necessary to consider the definition of FNi for an instance.
As presented in Fig. 1, a superclass classifier determines a
superclass using the detection results from multiple detectors.
If every detector fails to recognize a product in an instance,
the classifier cannot yield a prediction. Thus, this missed case
must to be considered.

For every instance x in the dataset, we denote ground truth
of x by y(x), prediction of x by ŷ(x) and the number of
instances by l. The true positives (TPs), true negatives (TNs),
false positives (FPs), and false negatives (FNs) of a superclass
i ∈ (0, 1, 2, . . . , K − 1) are defined as follows:

TPμi =
l∑

x :ŷ(x)=i

I (y (x) = i) (14)

(15)

FPμi =
l∑

x :ŷ(x)=i

I (y (x) �= i) (16)

TNμi =
K∑

i �= j

TPμ j (17)

FNμi = FNwμi + FNmμi

=
K−1∑
j �=i

l∑
x :ŷ(x)= j

I (y (x) = i) +
l∑

x :y(x)=y

·1 − TPμi .

(18)

Here, I () is an indicator function that returns one when the
equation is true. FNw refers to the FNs caused by incorrect
predictions, and FNm refers to the missed case. FNm is
calculated by subtracting TP from the number of true instances
of a class.

Subsequently, the Macro-F1 score (F1M ) is computed as the
arithmetic mean of the Micro-F1 scores (F1μi ) of each class,
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TABLE IV
MACRO-PERFORMANCE OF THE THREE METHODS

Fig. 5. Confusion matrix of Conv + Major applied on YOLOv4.

Fig. 6. Confusion matrix of View + RF applied on YOLOv4.

as follows:

PrecisionM =
∑K−1

i=0 Precisionμi

K
(19)

RecallM =
∑K−1

i=0 Recallμi

K
(20)

F1M =
∑K−1

i=0 F1μi

K
. (21)

D. Experimental Results
Table IV summarizes the experimental results of the three

methods applied to the test set. The proposed superclass
classifier with a view-aware detector (View + RF) outperforms

all other baselines in every detection network. Compared to
majority voting classification with the conventionally trained
detector (Conv + Major), View + RF improves the accu-
racy on Tiny-YOLOv3, YOLOv3, and YOLOv4 by 17.31%,
33.67%, and 18.69%, respectively.

Figs. 5 and 6 present the confusion matrixes of the conven-
tional and the proposed methods, respectively. Figs. 5 and 6
show that the confusion caused by interclass similarity is
significantly alleviated by the proposed method.

It is worth noting that the view-based annotation method and
RF play an important role in the performance improvement.
Table IV also shows that applying only the view-based anno-
tation can improve the performance for all detection network.
In YOLOv4, the view-aware detector with the majority voting
method has 0.046 (+5.28%), 0.124 (+16.32%), and 0.130
(+16.96%) points higher precision, recall, and F1 scores,
respectively, compared to those of the conventionally trained
detector with the majority voting method. Likewise, using
RF with a view-aware detector improves the precision, recall,
and F1 scores by 0.044 (+4.79%), 0.059 (+6.67%), and
0.056 (+6.26%) points, respectively, compared with those
obtained with majority voting. The effects of the annota-
tion method and superclass classifier are further analyzed in
Sections V-E and V-F.

E. Effect of the View-Based Annotation Method
First, we analyze the impact of the view-based annotation

method on a single camera object detection network. Specif-
ically, we compare the numbers of FP and TP of the proposed
view-aware detector and conventionally trained detectors. Each
detector is evaluated using the corresponding validation set
described in Section IV. In Table V, we summarize the results
of the evaluations performed on Tiny-YOLOv3, YOLOv3,
and YOLOv4. As shown, view-aware detector reduces the FP
by 33.77%, 58.61%, and 45.90%, respectively, compared
with the conventional detector. In the proposed view-based
dataset, the intraclass variance is reduced as a single object is
divided into multiple subclasses, which leads to a reduction in
FPs. However, simultaneously, the intraclass bias increases,
which leads to a considerable increase in the number of
FNs. Overall, these single-view results show that the detection
network trained with the view-based dataset has high precision
but relatively low recall, which is desirable in a multicamera
system because high precision ensures that each detection
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Fig. 7. Examples of instances that have been misclassified in View + Major and then corrected using View+RF. (a) Captured input frames.
(b) Subclass detection results—each numbered circle denotes a detected bounding box and the classwise probability of each bounding box is
shown in parentheses. (c) Subclass importance for the true prediction (Beer) and false prediction (Cider). (d) Captured input frames. (e) Subclass
detection results. (f) Subclass importance for the true prediction (Beer) and false prediction (Freshener).

TABLE V
VARIATION IN THE DETECTION RESULTS FOR A SINGLE IMAGE WHEN

THE VIEW-BASED ANNOTATION METHOD IS APPLIED TO THE

DETECTION NETWORKS

result is sufficiently distinct; thus, it can serve to represent
a specific viewpoint.

We now present the numerical results for the effect
of the annotation methods in multicamera classification
on the test dataset in Tables VI and VII. The models in
Tables VI and VII are the conventional and view-aware detec-
tors, respectively, and the superclass is determined using the
majority voting method in both methods. The method with
the view-aware detector outperforms that with the conven-
tional detector in terms of the Micro-F1 score. Table VII
shows that the view-aware detector reduces a large number
of FPs and FNws for confusing pairs such as (Cider-Beer)

TABLE VI
MICRO-PERFORMANCE OF “CONV + MAJOR”

METHOD APPLIED ON YOLOV4

and (Jam-Tuna). Consequently, the total number of TPs is
significantly increased by 16.13%, and the numbers of FP
and FNw are decreased by 59.10%. These results demonstrate
that when combined with a multicamera system, the proposed
view-based annotation alleviates the classification error caused
by interclass similarity. Tables VII and VIII show that View +
Major misses the target object (FNm ) more frequently than
Conv + Major, which stems from the precision-recall trade-
off. This problem, which can be addressed by utilizing tem-
poral information such as object tracking, can be explored in
future work.

F. Effect of RF Classification
To validate the effectiveness of the proposed superclass

classifier, the performance of the proposed RF is com-
pared with that of the majority voting method. The same
view-aware detection network is used in this experiment.
Tables VII and VIII show that View + RF exhibits perfor-
mance superior to that exhibited by View + Major across
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TABLE VII
MICRO-PERFORMANCE OF “VIEW + MAJOR” METHOD

APPLIED ON YOLOV4

TABLE VIII
MICRO-PERFORMANCE OF “VIEW + RF” METHOD

APPLIED ON YOLOV4

all superclasses in terms of the Micro-F1 score. The subclass
detection results for these two methods are identical; thus,
the number of FNm is the same, which implies that the
improvement is solely achieved by correcting false predictions
(FP, FNw) in the proposed RF.

Fig. 7 introduces two examples in which Beer is misclas-
sified by View + Major, whereas the proposed View + RF
classifies it correctly. Fig. 7(a) shows two captured images of
Beer, and Fig. 7(b) shows six images from the six cameras
and the detection results with classwise probability. In Fig. 7,
a view-aware detector confuses the subclass of Beer with
that of Cider because they appear similar in the top view.
The number of subclasses of Cider is larger than that of
Beer, and thus, Cider is a superclass in the View + Major
method. Fig. 7(c) shows the importance of each subclass for
each superclass using (9). The subclass importance for the
true prediction (Beer) is illustrated by the blue bar in the
graph. By contrast, the subclass importance for the confusing
class (Cider) is represented by the gray bar. Fig. 7(c) shows
that Bmid contributes the most to the correction among the
subclasses, and thus, the superclass is determined as Beer in
View + RF. This result is in line with the initial hypothesis
that two different canned beverages are confused by the
similar appearance of the top view (Btop), and they can be
distinguished by utilizing a discriminative side view (Bmid).
In this case, Btop is an uninformative view and Bmid is an
informative viewpoint.

Fig. 7(d)–(f) show another example in which Beer is mis-
classified as Freshener because the number of Freshener
subclasses is larger than that of Beer. In this instance, the
side view of Freshener is very similar to that of Beer, and the
top view of Beer (Btop) is an informative view. Fig. 7(f) shows
that this confusion is resolved with Btop, which contributes the
most to the correct prediction of Beer in View + RF.

The two examples in Fig. 7 indicate that the informative
subclasses are not fixed; however, they change with respect to
the composition of the subclass detection results. In this study,
view-based annotation divides an object into several subclasses
considering intraclass variation, and the proposed superclass
classifier of RF is trained to utilize the informative subclasses
adaptively to resolve interclass similarity.

VI. CONCLUSION

This article proposed a retail product classification method
for a vision-based unmanned kiosk system. To resolve the
interclass similarity and limited number of detections, a mul-
ticamera system with view-aware classification method was
introduced. The proposed method includes a view-based
annotation method that enables a CNN detector to extract
view-specific features with advantages in multicamera sys-
tems. The superclass classifier predicts the category of an
object by collecting view-specific features, considering the
relative importance of each viewpoint. For evaluation, a real-
world dataset was constructed and released to the public.
The experimental results demonstrated the effectiveness of
the proposed method on various types of CNN detectors.
Currently, the proposed system performs classification for
instant input images. This method can be improved by utilizing
temporal information and applying object tracking and can
be explored in future research. Attention-based techniques are
another promising approach for accuracy improvement, partic-
ularly when attention is used to identify relationships between
regional features or the importance of specific features.
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