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Estimating Relative Angles Using Two Inertial
Measurement Units Without Magnetometers

Seung Yun Song , Yinan Pei , Student Member, IEEE, and Elizabeth T. Hsiao-Wecksler , Member, IEEE

Abstract—Inertial measurement units (IMUs) are used in
biomechanical and clinical applications for quantifying joint
kinematics. This study aimed to assist researchers new to
IMUs and wanting to develop an inexpensive IMU system to
estimate the relative angle between IMUs, while understand-
ing the different algorithms for estimating angular kinematics.
Thus, there were three subgoals: 1) to present a low-cost and
convenient IMU system utilizing two 6-axis IMUs for comput-
ing the relative angle between the IMUs; 2) to examine seven
methods for estimating the angular kinematics of an IMU; and
3) to provide an open-source code and working principles of
these methods. The raw gyroscopic and accelerometer data
were preprocessed. The seven methods included gyroscopic
integration (GI), accelerometer inclination (AC), basic complementary filter (BCF), Kalman filter (KF), digital motion
processor (DMP, a proprietary algorithm), Madgwick filter (MW), and Mahony filter (MH). An apparatus was designed
to test nine conditions that computed angles for rotation about three axes (roll, pitch, yaw) and three movement speeds
(50◦/s, 150◦/s, 300◦/s). Each trial lasted 25 min. The root-mean-squared error (RMSE) between the gold-standard value
measured from the apparatus’ encoder and the value calculated from each of the seven methods was determined. For roll
and pitch, all methods accurately quantified angles (RMSE < 6◦) at all speeds. For yaw, all methods except AC and DMP
displayed RMSE < 6◦ at all speeds. AC could not be used for yaw angle computation, and DMP displayed RMSE > 6◦.
Researchers can utilize appropriate methods based on their study’s application.

Index Terms— Accelerometer, complementary filter, gyroscope, Kalman filter (KF), Madgwick filter (MW), Mahony
filter (MH).

I. INTRODUCTION

RESEARCHERS have utilized compact, accurate, and
affordable inertial measurement unit (IMU) sensors and

developed algorithms to compute angular kinematics of one or
more body segments in biomechanics and clinical applications
[1], [2], [3], [4], [5], [6]. An IMU provides a 3-D vector
representing the spatial orientation of the IMU. Thus, two
IMUs can be used to measure the relative joint angle between
two adjacent body segments by placing the IMUs on the
body segments. This approach can be used for computing
joint kinematics in biomechanical (e.g., knee flexion/extension
angle during slow gait) [1], [2], [4], [7] and clinical applica-
tions (e.g., quantifying elbow joint kinematics during a clinical
assessment of abnormal muscle behavior) [5], [6].
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Previous studies have investigated the accuracy of high-
performance IMUs under dynamic conditions encountered in
human subject testing or test apparatuses. Seel et al. developed
a method for quantifying human knee and ankle angles using
6-axis (i.e., 3-axis accelerometers and gyroscopes) IMUs while
exploiting kinematic constraints. They validated the accuracy
of IMUs via human subject testing using a motion capture
system [1]. Favre et al. [8] introduced a method for measuring
3-D knee joint motion by aligning the reference frames of the
two 6-axis IMUs of the thigh and shank segments. Lebel et al.
validated multiple commercially available 9-axis IMUs under
various testing conditions (e.g., various speeds and rotation
axes) using an instrumented gimbal table [2], [9]. Ricci et al.
[10] quantified the accuracy of commercial 9-axis IMUs
under various speeds and rotation axes using a robotic arm.
Bergamini et al. [11] proposed an adaptive Kalman filter (KF)
method with a 6-axis IMU for quantifying the trunk angles of
sprint runners. Caruso et al. [12], [13] utilized a magneto-IMU
and presented a method for suboptimally tuning the input para-
meters for the IMU filter designs. However, these studies had
some limitations such as the 1) dependence on magnetometers;
2) use of costly IMUs; 3) incomprehensive study design; and
4) lack of an open-source code for computing angles from
IMU data.
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First, some studies relied on IMUs with magnetometers
(i.e., 9-axis IMUs) for computing the orientation of the IMUs
[2], [9], [10], [12], [13]. While the magnetometers provide a
measurement of absolute heading angle, the magnetometers
are vulnerable to magnetic interferences caused by ferrous
objects and electrical appliances (e.g., space heaters, metal
filing cabinets), making magnetometers difficult to use in
indoor environments [14], [15]. Although calibration proce-
dures exist to compensate for the magnetic interferences [16],
the procedures must be conducted periodically, making the
device less practical in an indoor setting. Other studies have
observed or noted the effect of magnetic disturbances in an
indoor lab environment [9], [10], [17], [18]. However, a 6-axis
IMU (i.e., 3-axis accelerometers and gyroscopes) does not use
magnetometers to compute the orientation of the IMUs. While
a 6-axis IMU cannot compute absolute yaw angle like the
9-axis IMU, the 6-axis IMU can still compute relative yaw
angle which is still valuable in computing angular kinematics
in biomechanics or clinical application [1], [2], [3], [4], [5],
[6]. Thus, we utilized 6-axis IMUs in this study, since they
are more robust, simpler, and equally effective choices than a
9-axis IMU for our application (i.e., indoor applications).

Second, some studies did not fully control the dynamic test
conditions [1], [8]. Movement speeds, range of motion, rota-
tion axes, and test duration are critical factors that can affect
the accuracy and behavior of the IMUs [12], [13], [19], [20].
However, some studies only validated their methods using an
arbitrarily defined movement speed and range of motion, or a
very short test duration (<2 min) [9], [10], [11], [12].

Lastly, most of the studies did not provide an open-source
code for researchers in other fields to easily imple-
ment these newly proposed methods [1], [8], [10], [11].
Researchers unfamiliar with control/estimation theory may
have difficulty replicating and utilizing the newly proposed
methods.

Thus, the goals of this study were to: 1) provide a
low-cost and convenient IMU system utilizing two 6-axis
IMUs without magnetometers for computing a relative
angle between a stationary and a moving IMU; 2) validate
various methods of computing 3-D absolute angles (roll,
pitch, yaw) of an IMU following strict test conditions
(i.e., long test duration, three movement speeds, three
rotation axes); and 3) provide an open-source code and
working principles of these methods to assist researchers
unfamiliar with IMUs. The open-source code and data are at:
https://github.com/ssong47/compute_relative_angle_between_
two_IMUs, https://ieee-dataport.org/open-access/estimating-
relative-angle-between-two-6-axis-inertial-measurement-units-
imus

II. METHODS

A. Hardware and Test Apparatus
We developed an apparatus that performed programmable

and repeatable rotations of IMUs and a gold standard mea-
surement of the rotation angles (via an encoder) to validate the
accuracy of our IMU system (see Fig. 1). Unlike other studies
that validated their system through human subject testing by
using optoelectronic motion capture data as the gold standard
[1], [21], [22], our IMUs were mounted on this apparatus for

Fig. 1. Test apparatus for validating the IMU system. The setup shown
here is configured for pitch rotation [see Fig. 2(b)].

testing to remove the errors due to motion artifacts from the
attachment on a body segment. The apparatus consisted of two
IMUs (MPU-6050; TDK-InvenSense, San Jose, CA), a stepper
motor (NEMA 17, 42BYGH3401; Han Ding Motor, China)
with an optical rotary incremental encoder (HEDS-9040#T00;
Broadcom, USA) attached at the shaft, a stepper motor
driver (A4988; Allegro Microsystems, Manchester, NH), and
two microcontrollers (Teensy 3.6; PJRC, Sherwood, OR, and
Arduino Uno; Arduino LLC, Italy). The MPU-6050 was
chosen due to its compact size (smaller than a U.S. quarter),
low power consumption, and low cost (∼$US 4). An onboard
proprietary digital motion processor (DMP1) algorithm was
available for computing the 3-D orientation of each IMU,
represented in quaternion form. Other system components are
also economical and popular off-the-shelf choices (Arduino
Uno ∼$US 27, Teensy 3.6 ∼$US 27, and NEMA 17 stepper
motor ∼$US 12).

The test apparatus used the Teensy 3.6 microcontroller to
ensure a consistent sampling rate (100 Hz) for data collection
and reliable transmission of data [i.e., timestamp, encoder
angle, two IMUs’ output data (quaternion from DMP, 3-D
linear accelerations, and 3-D angular velocities in x , y, z axes)]
to a PC. The I2C protocol ensured synchronous sampling of
the data from the two IMUs since the sampling of each IMU
was done simultaneously by using a shared clock signal. The
Arduino Uno sent the PWM signals stepper motor driver to
control the motor speed and range.

The encoder measurement served as the ground truth to
evaluate the performance of the IMU system. The two IMUs,
fixed on their custom mounts, were placed on different parts
of the apparatus: IMU 1 on the stationary motor mount and
IMU 2 on the rotating motor hub. The custom 3-D printed parts
were designed to allow relative rotation about three orthogonal
axes (i.e., yaw, pitch, roll) between the two IMUs (see Fig. 2).
Depending on the axis of rotation of interest, the IMU mounts
were configured differently (see Fig. 2). Note that the yaw
rotation was configured such that the rotation axis was parallel
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Fig. 2. Hardware and IMU setups of test configurations for three rotation
axes [(a) roll, (b) pitch, and (c) yaw] and (d) θ, ω profiles for controlling
the stepper motor. Orange and blue rectangles represent the stationary
and moving IMUs. The red arrow indicates the rotation axis.

to the gravity vector [see Fig. 2(c)] to simulate a case in which
gravity could no longer be a reference vector for the angle
computation.

B. Testing Protocol
A total of nine test trials (three rotation axes × three

movement speeds) with each trial length of 25 minutes and
a range of motion of 180◦ was performed. 25 min was chosen
as the test length since previous studies involving clinical
research on neuro-rehabilitation lasted approximately 25 min
for each test subject [3], [23], [24], [25]. The range of motion
was set to 180◦ since most anatomical joints do not exceed
180◦. Three speeds were chosen as the following: slow (max
speed, ωmax = 50◦/s), medium (ωmax = 150◦/s), and fast
(ωmax = 300◦/s) to simulate the kinematics of an elbow or
wrist joint during a clinical assessment (20◦/s–180◦/s) [6],
[26], [27], [28] as well as of a knee joint during the walking
phases at a slow cadence (23◦/s–250◦/s) [29], [30], [31].
Similar movement speeds and rotation axes were used in
other studies [9], [10]. The motor driver controlled the angular
position and speed profile shown in Fig. 2(d).

Before each trial, the two IMUs were removed from the
test apparatus and calibrated to remove any unwanted bias and
scaling factor of the IMU readings. The calibration protocol
followed the common six-position static test mentioned in
[32], [33]. At the beginning of each trial, the principal axes
of IMU 1 and 2 were aligned parallel to each other. Also, the
encoder angle was set to zero. During each trial, the two IMU
and encoder readings were sampled at 100 Hz.

C. Methods for Computing Relative Angles
Seven methods of computing relative angles about a single

rotation axis were investigated. These included the DMP
method, gyroscopic integration (GI), accelerometer inclination
(AC), basic complementary filter (BCF), KF, Madgwick filter
(MW), and Mahony filter (MH). The mathematical formulas,
as well as the pros and cons of each method, are discussed
here.

The testbed setup had one stationary IMU (IMU 1) and
one rotating IMU (IMU 2), where two IMUs’ local frames
were always aligned by construction in all test configura-
tions (see Fig. 2). The relative angle (θm,û) was defined
as how much the moving IMU (IMU 2) rotated relative
to stationary IMU 1 around the testing axis, where m ∈
{GI, AC, BCF, KF, MW, MH, DMP}, indicating the algo-
rithm being used for calculation. For pitch and roll [see
Fig. 2(a) and (b)], θm,û was obtained by calculating the
inclination angle of each IMU relative to the horizontal plane
and then subtracting the two inclination angles (1). For yaw
[see Fig. 2(c)], since the motion is in the horizontal plane,
instead of inclination angle, the change in the angle with
respect to the initial angle of each IMU was first calculated
and then subtracted to obtain θm,û

θm,û = θ2
m,û − θ1

m,û (1)

where the superscript denoted the IMU of interest and û
denoted the rotation axis (û ∈ {î(roll), ĵ(pitch), k̂(yaw)}).
In the case of pitch and roll rotations, to obtain the inclination
angle of each IMU, when using quaternion-based methods
(i.e., DMP, MW, and MH), θ1

m,û and θ2
m,û were obtained by

converting the quaternion of each IMU into intrinsic Euler
angles (“ZYX” order) and then selecting the Euler angle of
interest (roll, pitch, or yaw angles), whereas when using axis-
angle-based methods (i.e., GI, AC, BCF, and KF), θ1

m,û and
θ2

m,û were obtained directly around the rotation axis being
tested.

Each IMU outputted 3-D gyroscope values, accelerometer
values, and a unit quaternion vector (q) from DMP. q con-
tained four values (a, b, c, d , where a defined the amount of
rotation and b, c, d defined the axis of rotation in the 3-D
Cartesian space) to quantify rotation relative to the reference
frame of the IMU (î,ĵ, k̂) (2) [34]

A
A� q = a + bA

A� î + cA
A� ĵ + d A

A� k̂. (2)

This article follows the vector notation recommended by
Arkfen and Weber [35]: bold serif for vectors (e.g., q), bold
lowercase letter with circumflex for unit vectors of a reference
frame (e.g., î), and left superscript and subscript indicating
the reference frame {A} and inertial frame {A�}, respectively
(e.g., A

A� q). The frames of IMU 1 and 2 are defined as i ∈ {1, 2}⎡
⎣ θx

θy

θz

⎤
⎦ =

⎡
⎣ atan2

�
2 (bc + ad) , a2 + b2 − c2 − d2

�
a sin (−2 (bd − ac))

atan2
�
2 (cd + ab) , a2 − b2 − c2 + d2

�
⎤
⎦ . (3)

Each quaternion can be converted into Euler angles using
MATLAB scripting (3) [34], [36].

1) Digital Motion Processor (DMP): The DMP method, devel-
oped commercially by TDK—InvenSense, is a proprietary
algorithm that fuses the 3-D acceleration and 3-D gyroscope
data and outputs the 3-D orientation of an IMU in quaternion
form [37]. While the computation of a quaternion from an
IMU is proprietary, the computation of relative angles of the
two IMUs is not. These quaternions (1

1�q or 2
2�q) were converted

to Euler angles (θ i
z , θ

i
y, θ

i
x ) using (3). The angle of interest from

the Euler angles was used to compute the absolute angle of
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IMU 1 or IMU 2, and (1) was used to compute the relative
angle between IMU 1 and 2.

Algorithm 1 Digital Motion ProcessorTM (DMP)

quaternioni
i �q → Euler angles

�
θ i

z , θ
i
y, θ

i
x

	
θ i

DM P = θ i
x (roll) θ i

DM P = θ i
y (pitch) θ i

DM P = θ i
z (yaw)

2) Gyroscopic Integration (GI): GI integrates gyroscopic data
at each sampled time [38]. Since integrating raw gyroscopic
data would cause drift due to inherent noise and bias insta-
bility [38], the raw gyroscopic signals were preprocessed
using a fourth-order Butterworth high-pass filter with a cut-
off frequency of 0.07 Hz. A similar approach was done by
other studies [39], [40], [41]. While the most optimal cut-off
frequency may be unique for different movement speeds,
we wanted to investigate if a single filter design was robust
enough to accommodate a range of movement speeds. The cut-
off frequency was chosen low enough to ensure that signals
related to the motion at all speeds were collected but high
enough to reduce the effect of the long-term effect of drifting
of gyroscopes [42], [43]. The lowest frequency of motion
was 0.139 Hz (=(1/360◦/(50◦/s))), which was determined by
calculating the time it takes to complete one cycle of motion
(θc = 360◦ = 2 × 180◦, since the motor rotated 180◦ in one
direction and came back) at the slowest rotational speed (ω =
50◦/s). Thus, a cut-off frequency of 0.07 Hz (<0.139 Hz)
ensured that signals related to motions at all speeds were
collected with minimal unwanted gyroscopic drift.

Algorithm 2 Gyroscopic Integration (GI) [38]

θ i
t,G Iû

= ωi
h f,tû

�t + θ i
t−1,G Iû

For IMU i , θ i
t,G Iû

, θ i
t−1,G Iû

, ωi
h f,tû

, and �t were the angles
from GI at the t th data point about the rotation axis û, the angle
from GI at t − 1th data point about û, the high-pass-filtered
angular velocity gyro at the tth data point data about û, and
sampling time (=0.01 s), respectively. The advantages of GI
are easy implementation and low computational cost [44], [45].

3) Accelerometer Inclination (AC): AC solely uses the
accelerometer data and computed the inclination angle using
the gravity vector and its projection on the axes of the
accelerometer [45]. The accelerometer data were preprocessed
using a low-pass fourth-order Butterworth filter with a cut-off
frequency of 4 Hz to fully capture the signals with a frequency
(4 Hz > 0.833 Hz = (1/2(180◦)/(300◦/s))) of the motion
even at the fastest speeds [46]. A single cut-off frequency was
chosen for similar reasons as the high-pass filter mentioned
above. The yaw angle cannot be obtained for this method since
the yaw has a rotation axis parallel to the gravity vector g,
making the projections of g on the accelerometer to be zero.
θ i

t,AIî
, θ i

t,AIĵ
, Ai

t,î
, Ai

t,ĵ
, and Ai

t,k̂
were angles from AC about î

(roll), ĵ (pitch) axes and low-pass-filtered acceleration readings
about î, ĵ, k̂ axes, respectively.

The advantages of the AC method were drift-free computa-
tion of angle, simple implementation, and low computational

Algorithm 3 Accelerometer Inclination (AC) [45]

θ i
t,AC î

= tan−1

⎛
⎝ Ai2

t,î�
Ai2

t,ĵ
+Ai2

t,k̂

⎞
⎠ , θ i

t,AC ĵ
= tan−1

⎛
⎝ Ai2

t,ĵ�
Ai2

t,î
+Ai2

t,k̂

⎞
⎠

cost [45]. The disadvantages of AC were the high sensitivity
to motion/dynamic accelerations (i.e., acceleration not due
to gravity) and the inability to compute yaw angles [42],
[47]. The angle from AC contained high-frequency noise,
which could be mitigated using low-pass-filtered accelerome-
ter readings [42], [43], [45].

4) Basic Complementary Filter (BCF): The BCF method
combines two filters: a low-pass filter for accelerometer sig-
nals and a high-pass filter for gyroscopic signals [42], [48],
[49]. The two filters are complements of each other, so the
summation of the two filtered signals results in a gain of one.
The advantages of BCF were smooth, accurate, and drift-free
angle computation that combined the benefits of GI and AC
while maintaining low computational costs. Also, the tuning
process was simple due to only one tunable parameter (γ ) that
determined the cut-off frequency of the low- and high-pass
filters [50]. γ was determined by the sampling rate (100 Hz)
and time constant (τ ) of the system. τ was determined by
the gyroscope’s drift rate (ωdrift) and the tolerable error (etol).
For our test setup and data, the measured ωdrift of MPU
6050 was 0.25◦/s. For etol, 3◦ was chosen to ensure the
tolerable error was at least half of the threshold for allowable
error in biomechanics studies (6◦) [1], [2], [21], [51]. Thus, τ
was set to 0.083 s−1 (=0.25/3), which meant that BCF would
perform GI for signals with frequencies larger than 0.083 Hz,
while the accelerometer readings would be filtered out. For
signals with frequencies smaller than 0.083 Hz, BCF would
rely on AC angles, while the gyroscopic readings would be
ignored. Thus, γ = 0.11 ∼= 1 − (0.083/0.083 + 0.01) was
chosen. For pitch and roll angles, the raw gyroscopic signals
were not filtered for BCF, since the BCF algorithm already
corrects for the gyroscopic drift using accelerometer values.
Having extra high-pass filters is redundant and may increase
unwanted filter artifacts (e.g., delays) that have an adverse
effect on real-time applications. For yaw angles, a small value
of γ (= 10−7) was used to put less weight in the accelerometer
readings since the accelerometer did not provide any relevant
information regarding the yaw rotation. Also, the gyroscopic
signals were high-pass filtered through the same filter settings
used in GI, since the accelerometer readings could not properly
correct for the gyroscopic drift.

Algorithm 4 Basic Complementary Filter (BCF) [42],
[48], [49]

τ = ωdri f t
etol

γ = 1 − τ
τ+�t

θ i
t,C Fû

= (1−γ )(ωi
t �t + θ i

t−1,C F) + γ θ i
t,AC û

θ i
t,CFû

was the BCF angle about the û axis.

5) Kalman Filter (KF): KF computes angle via an optimal
state estimator algorithm, consisting of prediction and update
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steps [16], [42], [52]. The prediction step involves estima-
tion of the a priori (i.e., at current time step without any
observation information from current time step) system states
([2×1]x̂i

t |t−1) and a priori error covariance ([2×2] P i
t |t−1) from

state-space system dynamics and inputs (ui
t ). The updating

step combines the current observation information ([2×1]ỹi
t )

to improve the state estimates, obtaining a posteriori (i.e.,
current time step with observation information) state estimates
([2×1]x̂i

t |t ), as well as updating the a posteriori estimate
covariance ([2×1] P i

t |t ). In this step, the Kalman gain ([2×1] K i
t )

was found by optimally balancing the error of sensor mea-
surements and state estimates, given the initial estimates of
the states ([2×1]x̂i

0) and process covariance matrix ([2×2] Q)
and measurement noise covariance matrix ([2×2] R). Note that
the KF in our setup did not calculate the full 3-D orientation
of the IMU, but only computed the angle of interest about
the rotation axis at a time (i.e., roll, pitch, yaw). For example,
the angle about the roll axis (θ i

t,KFx̂
) was computed using ωi

t,x̂
and θ i

t,ACx̂
.

Algorithm 5 Kalman Filter (KF) [16], [42], [52]
I. State Space Definition

x̂i
t =

�
θ i

t,K Fû

bi
t,gyro

�
ui

t = ωi
t,û

û = �
x̂, ŷ, ẑ

�
for {roll, pi tch, yaw}, respectively.

x̂i
0 =

�
0
0

�
P0 =

�
106 0
0 106

�

A =
�

1 −�t
0 1

�
B =

�
�t 0
0 0

�
C =

�
1 0
0 0

�

II. Prediction Step
P i

t |t−1 = AP i
t−1|t−1 AT + Q

x̂i
t |t−1 = Ax̂i

t−1|t−1 + Bui
t ŷi

t = C x̂i
t |t−1

III. Update Step
K i

t = P i
t |t−1CT �

R + C P i
t C

T �−1

ỹi
t = [θ i

t,ACû
0]T − ŷi

t x̂i
t |t = x̂i

t |t−1 + K i
t ỹ

i
t

P i
t |t = �

I − K i
t C

�
P i

t |t−1

bi
t,gyro was the bias of the gyroscope. Note that the initial error

covariance ( P0) was set to a relatively high value in our study
to ensure fast convergence [53].

Q was a diagonal matrix since we assumed that the variance
of accelerometer noise and gyroscope noise was independent.
Q22 was equivalent to the variance (σ 2

ω) of raw gyroscopic
noise. Assuming all zero mean gyroscopic noise ( p̄ω = 0),
σ 2

ω = p2
ω,RMS, where pω,RMS was the rms noise of our

gyroscope. pω,RMS = pω,nspd
√

�t−1, where �t−1 was our
sampling rate (=100 Hz), and pω,nspd was the noise spectral
density (=0.005◦/s/

√
Hz) of MPU6050 [37]. pω,RMS was

computed using �t−1 and pω,nspd rather than using the
reported total rms noise value, since the gyroscopic noise level
depends not only on the performance of the sensor, but also
on the sampling rate [54]. Thus, Q22 = 2.5 × 10−3. Like
other studies [42], Q11 was set to 1.0 × 10−3 to maintain

similar order of magnitude as Q22. R(=I2 × 3.76◦) was
determined by empirically measuring the variance of the AC
angle’s noise. For pitch and roll, the raw gyroscopic signals
were not filtered for KF, since the KF algorithm already
tries to remove the gyroscopic bias through estimation of the
bias within the state space model. For yaw rotations, R was
set to a matrix with large numbers (=I2 × 108) since the
accelerometer measurements were not reliable for yaw. Like
BCF, the gyroscopic signals were high-pass filtered through
the same filter used in GI, since the accelerometer readings
could not properly correct for the gyroscopic drift. The benefit
of KF is that it optimally computes the gain that balances the
inaccuracy of the measurements and the model at every time
step.

6) Madgwick Filter (MW): The MW is a sensor fusion algo-
rithm that combines the gyroscope and accelerometer data in a
quaternion representation to analytically derive and optimize
a gradient-descent (GD) algorithm to compute a quaternion
derivative of the IMU [47], [55]. First, the MW estimates the
IMU (i ) quaternion derivative (i

i � q̇ω,t ) using the vector (iωt )
containing gyroscopic measurement (iωx,t ,

iωy,t , or iωz,t )
and previous estimate of orientation (i

i � qest,t−1). Only one
gyroscopic signal of iωt was nonzero, since the IMU is rotated
about a single axis. To minimize the drift from this gyroscopic
measurement, a corrective quaternion derivative term (i

i � q̇�,t ) is
computed by estimating the direction of the gravitational vec-
tor i gest using the GD-based algorithm on the accelerometer
data (i

i �at ). Note that we assumed that the accelerometer mostly
measures the direction of i gest. In the GD, objective function
f is minimized by using the Jacobian matrix ( J) of f which
computed the error direction ((∇ f / |∇ f |)) on the solution
surface. A corrected quaternion derivative term (i

i � q̇est,t ) is
computed by fusing the quaternion derivative estimations from
the gyroscope (i

i � q̇ω,t ) and the accelerometer (i
i � q̇�,t ) using an

adjustable gain β. β represents all mean zero gyroscope mea-
surement errors (ω̃β ), expressed as the quaternion derivative
form. ω̃β (= 0.05◦/s) is dependent on the sensor’s gyroscopic
performance. The value of β = 0.043 was chosen by using the
equation (β = √

3/4ω̃β) suggested by Madgwick et al. [47].
For yaw rotations, β = 0 since the accelerometer readings
did not describe the movement of the IMU properly when the
rotation axis is parallel to g. The IMU’s orientation estimation
(i
i �qest,t ) was computed by integrating the corrected quaternion

derivative (i
i � q̇est,t ). Similar procedure from DMP involving

conversion from quaternion to Euler angles was used in MW
to compute the relative angles between IMU 1 and 2.

For pitch and roll, the raw gyroscopic signals (iωx,t ,
iωy,t ) were used without a high-pass filter since the gyro-
scopic drifting behavior was corrected by the accelerometer
data. An additional high-pass filter was redundant and added
delays. However, for yaw, high-pass-filtered gyroscopic signals
(iωhf,z,t ) were used, since MW cannot rely on the accelerom-
eter data to compensate for gyroscopic bias.

The advantages of MW are its low computational load, low
sampling rate requirement, and simple tuning method (only
one adjustable parameter—β). Since MW uses a quaternion
representation, the filter is not subject to gimbal lock prob-
lems associated with Euler angle representations. Note that
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a potential issue with MW is the unpredictable convergence
behavior and a more recent version of this algorithm with
enhanced robustness was reported in [56].

Algorithm 6 Madgwick Filter (MW) [47], [55]
iωt = �

iωx,t 0 0
�

for roll
iωt = �

0 iωy,t 0
�

for pitch
iωt = �

0 0 iωh f,z,t
�

for yaw
iω

q
t = �

0 iωt
�

i at = �
0 i ax

i ay
i az

�
i gest = �

0 0 0 9.81m/s2
�

i
i � q̇ω,t = 1

2
i
i � qest,t−1 ⊗ iω

q
t

minimize f
�

i
i � qest,t−1,

i at
�

f
�

i
i � qest,t−1,

i at
� = i

i � q
∗
est,t−1 ⊗ i gest ⊗ i

i � qest,t−1 − i at

i
i � q

∗
est,t−1 = i �

i qest,t−1

∇ f = J
�

i
i � qest,t−1

�
f

�
i
i � qest,t−1,

i at
�

i
i � q̇�,t = ∇ f

|∇ f |
i
i � q̇est,t = i

i � q̇ω,t − β i
i � q̇�,tβ = √

3/4ω̃β

i
i � qest,t = i

i � qest,t−1 + i
i � q̇est,t�t

⊗, i were the quaternion product to define sequential rotations
[47] and IMU of interest (i ∈ {1, 2}), respectively.

7) Mahony Filter (MH): The MH is another variation
of a BCF that corrects the gyroscopic measurement by
a proportional-integral (PI) compensator [55], [57]. First,
MH computes the error (i et ) between the estimated gravity
vector (i aest,t ) and accelerometer readings (i at ) represented
by the cross product between i at and i aest,t . Then, the
gyroscopic vector (iω

q
t ) containing gyroscopic measurements

(iωx,t ,
iωy,t , or iωz,t ) is combined with i et adjusted by PI

gains (K p, Ki ) to obtain a corrected estimate of the gyro-
scopic vector (iω

q
est,t ). Afterward, the quaternion derivative

(i
i � q̇est,t ) is obtained from the previous estimate of quater-

nion (i
i � qest,t−1) and iω

q
est,t . Like MW, only one gyroscopic

signal of iωt is nonzero. The IMU’s orientation quaternion
(i
i � qest,t ) is obtained by integrating the quaternion derivative

(i
i � q̇est,t ). A similar procedure as DMP, that is, conversion

from quaternion to Euler angles, was used in MH to compute
the relative angles between IMUs 1 and 2. The filter gains
(K p, Ki ) were initially set to their default values (1.0, 0.3)
and then fine-tuned heuristically (5.0, 0.3) for pitch and roll
rotations. For yaw rotations, K p = Ki = 0 due to similar
reasons as MW. Like MW, raw gyroscopic signals were used
for pitch and roll, while high-pass-filtered gyroscopic signals
were used for yaw. The MH has been reported to be an efficient
and effective solution by other studies [55], [58].

D. Data Processing
The performance of each method was evaluated using

root-mean-squared error (RMSE) between the encoder and
the seven computed methods for evaluating the accuracy of

Algorithm 7 Mahony Filter (MH) [55], [57]
i aest,t = i

i � q
∗
est,t−1 ⊗ i gest⊗i

i � qest,t−1
i et = i at × i aest,t

iω
q
est,t = iω

q
t + �

0 K p
i et

�− �
0 Ki

i et�t
�

i
i � q̇est,t = 1

2
i
i � qest,t−1 ⊗ iω

q
est,t

i
i � qest,t = i

i � qest,t−1 + i
i � q̇est,t�t

Fig. 3. Angle across time near the end of a 25-min trial at medium
speeds (150◦/s) for roll rotations (left). A magnified plot was also shown
(right). All seven methods computed accurate angles following the
encoder (E) angles. Trials for other speeds and rotations displayed similar
behavior, with the exception of DMP during yaw trials.

the computed angle’s magnitude. For RMSE computation,
a window size of one minute, or 6000 sample points (=60 s ×
100 points/s) were chosen for two reasons: 1) to better
visualize the trends of RMSE changes and 2) since each test
trial from other research studies lasted approximately 1 min
[11], [59], [60]. RMSE of 6◦ was chosen as the maximum
acceptable limit for biomechanical research studies [1], [2],
[21], [51]. All RMSE data were truncated such that the start
(0–1 min) and end (24–25 min) data were removed. The
artifacts were due to the preprocessing of gyroscopic and
accelerometer signals. For each speed, the average (RMSE)
and standard error (σRMSE) RMSE were computed for the
truncated data. In addition to the RMSE data, the average
computational time (tcomp) required to execute a single iter-
ation for each algorithm was calculated for all seven methods.
All data were processed using MATLAB R2020a.

III. RESULT

A. Roll and Pitch
All methods exhibited high accuracy (RMSE < 6◦) at

all movement speeds and no signs of drift across the entire
duration (see Figs. 3–5). Also, the RMSE of these methods
was generally proportional to speed (see Fig. 4). While the
RMSE differences between these methods were less than 3◦,
the methods displayed differences in terms of consistency of
RMSE trends across time and movement speeds.

The four sensor fusion algorithms (BCF, KF, MW, MH)
displayed the lowest RMSE across all speeds for all rotation
axes (see Figs. 4 and 5). In addition, the RMSE remained
consistent across time with only minor fluctuations (∼0.5◦).
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Fig. 4. RMSE across time for trials at medium speeds (150◦/s) for roll
(top), pitch (middle), and yaw (bottom). For yaw trials, MW and MH had
identical RMSE values. Tolerable RMSE (6◦) is shown as a black dashed
horizontal line.

The RMSE was proportional to movement speeds, since the
RMSE was the highest (3◦–5◦) at fast speed and the lowest
(1◦–3◦) at slow speed.

AC, GI, and DMP displayed slightly larger errors than the
previously mentioned four methods. The magnitude of RMSE
was higher by 1◦–3◦ for all speeds. While GI had a relatively
large error and fluctuations compared to others, GI’s RMSE
did not drift and remained consistently below the 6◦ threshold.

B. Yaw
Five of the methods (GI, BCF, KF, MW, MH) displayed

high accuracy (RMSE < 6◦) and consistency (σRMSE < 3◦)
without any drifting behavior for yaw rotations. Like pitch and
roll, the RMSE of these methods was generally proportional
to the movement speed with a few exceptions (e.g., for yaw,
RMSECF at slow >RMSECF at medium speed). GI exhibited
the highest error among the five methods, followed by KF and
BCF. MW and MH showed the lowest error. Note that MW
and MH had identical RMSE values (see Figs. 4 and 5).

The other two methods (AC, DMP) either could not be
computed at all (AC) or displayed high errors (DMP). DMP
drifted, resulting in high RMSE and high σRMSE.

C. Computational Execution Time
The average computational execution times required for a

single update step were lowest for the GI, AC, followed by
BCF, KF, MH, and MW (see Fig. 6). The execution time for

Fig. 5. Average RMSE with standard error of each algorithm for each and
all speeds (slow—50◦/s, medium—150◦/s, fast—300◦/s) for roll (top),
pitch (middle), and yaw (bottom). For yaw trials, the average RMSE of
MW and MH were identical. Tolerable RMSE (6◦) is shown as a black
dashed horizontal line.

Fig. 6. Average computational execution time needed for a single update
step by each method across all speeds and rotations. Note that DMP was
unknown since DMP was computed using a proprietary algorithm.

BCF was marginally higher (×8) than GI and AC. For KF,
the execution time was higher than GI and AC by ∼65×.
The execution times for MW and MH were significantly
higher than GI, and AC by a factor of almost 160×. The
computational time for DMP could not be calculated since
DMP was an onboard proprietary algorithm.

IV. DISCUSSION

The purpose of this study was to systematically validate
seven computational methods (GI, AC, DMP, BCF, KF, MW,
MH) to the gold standard (encoder) using two low-cost 6-axis
IMUs without magnetometers. An explanation of the inner
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workings and open-source code of the seven methods were
presented to assist newcomers to the field of IMUs. A custom
test apparatus and strict test protocols were used to control for
critical factors affecting IMU accuracies, such as movement
speeds, range of motion, rotation axes, and sufficiently long
test durations.

The result of this study suggests that most methods (all
methods for pitch/roll. GI, BCF, KF, MW, MH for yaw) using
6-axis IMUs can be used in a controlled indoor environment
to accurately quantify angles for various movement speeds
(50◦/s–300◦/s) and test durations of 25 min. The RMSE for
these methods were all below the maximum acceptable RMSE
for biomechanical study (=6◦). The RMSE for our methods
was generally proportional to movement speed, which was also
observed in other studies [9], [10], [12], [19]. Noise introduced
from the larger accelerations at faster speeds may be the cause
for the slightly increased error. For pitch and roll rotations, all
methods did not require retuning of filter parameters for this
study’s movement speeds, illustrating the method’s robustness
to the given movement speeds.

Adjustments in the filter parameter and preprocessing of
gyroscopic signals had to be made for yaw trials. Filter
parameters for BCF, KF, MW, and MH had to be changed
to rely only on gyroscopic reading due to the absence of a
magnetometer and unusable accelerometer readings for yaw
rotations. Some methods could not be used (AC) or were
inaccurate due to drift (DMP). Also, high-pass filtering of raw
gyroscopic signals was necessary to remove the gyroscopic
bias since accelerometer signals could not correct for the
drifting of gyroscopic signals.

A. Roll and Pitch
BCF, KF, MW, and MH demonstrated the best performance

(i.e., lowest ¯RMSE) and consistency (i.e., lowest σRMSE),
compensating for the weaknesses of each sensor to accurately
compute the angles (Figs. 4 and 5, top and mid). While the
sensor fusion algorithm innerworkings differed greatly for
each method, the accuracy and consistency of each method
were similar in our study. With carefully tuned filter parame-
ters, relatively simple sensor fusion algorithms, such as BCF
and KF performed as well as more advanced algorithms, such
as MW and MH. BCF, KF, MW, and MH were easy to tune
and implement since they required only one or two tuning
parameters. The ability to tune the filter algorithm specifically
to our test setup was critical to remove noise and correct
estimates of IMUs, as others have reported [12].

AC and DMP also demonstrated sufficiently accurate and
consistent but slightly poorer performance than the previously
mentioned methods. AC displayed no drifting behavior and
slightly higher errors due to the sole dependence on accelerom-
eters that are sensitive to external accelerations (e.g., sudden
acceleration/deceleration of the IMU) irrelevant to the gravity
vector [42]. It is difficult to discuss the details of the DMP
since the inner workings of DMP were proprietary. The default
parameter values for DMP were not tunable and thus could
not be optimized for our test setup. Others also have noted
the importance of adjusting parameters for the given specific
experimental scenarios [19], [20].

GI using high-pass-filtered gyroscopic signals displayed no
drifting behavior and high enough accuracy and consistency
for all speeds. The high-pass-filtered gyroscopic signals were
useful for obtaining accurate and nondrifting angles since
the high-pass filter inherently removes the gyroscopic bias
[dc (=0 Hz) offset of a signal]. This bias instability of the
gyroscopes is one of the main causes of the drifting behavior
of gyroscopes [61]. Interestingly, a single high-pass filter could
be used on different movement speeds ranging from 50◦/s to
300◦/s to provide drift-free and accurate GI angles.

B. Yaw
GI, BCF, KF, MW, and MH demonstrated stable and accu-

rate computation of angles across all speeds during yaw rota-
tions for the entire trial albeit in the absence of magnetometers
(Figs. 4 and 5, bottom). For these methods, only high-pass-
filtered gyroscopic signals were used to remove the gyroscopic
bias since accelerometer readings could not be used to correct
the gyroscopic drift. Thus, the use of a high-pass filter was
necessary since the drift could not be compensated due to the
absence of magnetometers, which provide the reference for
the heading. The accelerometer could not read any meaningful
signals related to the motion of the IMU but the gravity vector
in the z-axis.

Filter parameters for BCF, KF, MW, and MH were modified
to minimize the effect of accelerometers on the angle com-
putation. For BCF, γ was set to close to zero such that the
majority of computation was based on gyroscopic signals. For
KF, R was set to a larger value to minimize the dependency
on accelerometers. For MW and MH, β, K p, and Ki were
all set to zero to compute angles solely using the gyroscopic
signals. Since MW and MH computed angles from gyroscopic
signals using identical equations (i.e., integrating the quater-
nion derivative of the IMU and converting the quaternion back
to Euler angles), the computed yaw angle from MW and MH
was identical. Thus, the RMSE for MW and MH was identical
for yaw angles.

AC and DMP could not be used for computing yaw angles.
AC could not be implemented since the rotation axis was
parallel to the gravity vector, making the accelerometer reading
impossible to quantify the relevant motion of the IMU. DMP
yaw angles drifted significantly from the beginning, exceeding
the RMSE threshold after minutes of running time. The
accuracy of DMP was worse than the other fusion filters since
DMP uses a default set of parameters for its algorithm which
may not guarantee accurate results in our experimental setup.
The ability to tune filter parameters is essential for achieving
accurate angles [12].

If the z-axis of the IMUs were not parallel to gravity, the
computation of the yaw angle would be similar to roll and
pitch angles: AC and DMP could be viable options, but the
filter parameters of BCF, KF, MW, and MH do not need
to be modified, and all methods except for GI would not
require high-pass filtering of GI. Conversely, had the x- or
y-axes been parallel to gravity then angle calculations for roll
or pitch would become difficult and require modifications in
preprocessing and filter parameters. Recall that roll, pitch, and
yaw are just rotational terms relative to the body, not gravity.
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C. Computational Execution Time
The computational execution time for nonsensor fusion

algorithms (i.e., GI, AC) was significantly faster than the
other sensor fusion algorithms (i.e., BCF, KF, MW, MH). The
BCF, a relatively simple sensor fusion algorithm, required
the computation of GI and AC simultaneously, increasing
its computational time. The KF iteratively and optimally
computed the Kalman gain at every time step, which involved
more computationally heavy matrix operations, increasing the
computational time even more. Finally, the advanced sensor
fusion algorithms (i.e., MW, MH) required the most computa-
tional time due to the heavy computation of optimization using
GD algorithms (MW), more estimations and corrections of the
error terms and reference vectors (MH), and conversion from
quaternion to Euler angles (MW, MH). Also, the MW and
MH computed the full 3-D orientation of the IMUs, whereas
KF only calculated a single angle at a time, which resulted in
higher computational time for MW and MH. Thus, depending
on the available computational resources, one may select more
advanced (e.g., KF, MW, MH) or simpler algorithms (e.g., GI,
AC, BCF).

D. Notes on High-Pass Filtering of Gyroscopic Signals
A few key points need to be considered when applying a

high-pass filter to the raw gyroscopic signals. First, the use
of a high-pass filter should be used as a last resort to remove
the gyroscopic drift behavior, and the use of sensor fusion
algorithms is preferred. This is because high-pass filtered
gyroscopic signals cannot be used to estimate static angles,
but only the change in angle between two instants of time,
therefore not suitable for applications requiring the knowledge
of the IMU static angle (e.g., gravity compensation of human
limb in the field of biomechanics).

Second, a proper selection of high-pass filter type, order,
and cut-off frequency is critical for removing the gyroscopic
bias while maintaining the integrity of the signals of interest.
In practice, the cut-off frequency of the high-pass filter for
raw gyroscopic signals can be set below the lowest frequency
of the motion experienced by the gyroscope. However, if the
cut-off frequency is set too close to zero, edge effects (i.e.,
large spikes at the initial and end of the signal) and delays
become larger [62]. If the cut-off frequency is too large, it may
compromise the integrity of the signals of interest. Certain
methods can be used to reduce the magnitude of edge effects
[63], such as: 1) padding the data with the reflected version
of the signal in the beginning and at the end of the signal
or 2) including a small amount of “warm-up” time before
conducting the experimental trial.

Once a high-pass filter is properly selected, it can be used
to output accurate dynamic angle estimations for a range of
speeds rather than a single speed. We demonstrated that, even
though we utilized a single high-pass filter, the RMSE of yaw
angles was below the acceptable threshold for all movement
speeds for all methods except for AC and DMP.

E. Other Limitations and Future Work
Although this study was able to systematically validate vari-

ous angle computational methods, there were some limitations.

First, our study only focused on computing the relative angle
of a single rotation axis at a time. Interestingly, multiaxis
rotation may only have a small effect on IMU accuracy as
other studies reported similar accuracy during multiaxis versus
single-axis rotations [9], [10]. Also, only one IMU was rotated,
while the other was kept stationary. Thus, the accuracy of
the computed angle depended on the static estimates from
the stationary IMU and dynamic estimates of the moving
IMU. This setup was appropriate in clinical applications (e.g.,
spasticity assessment about elbow joints), but may not be
appropriate for applications involving extreme movements
(e.g., jumping or sprinting). Second, the test apparatus did not
have a moment arm to understand the effect of acceleration
artifacts due to the offset between the rotation axis and IMU
introduced to the system. While our previous studies displayed
a similar level of IMU accuracy even when a moment arm
was introduced [3], more rigorous testing may be needed to
fully evaluate the performances of the computational methods.
In cases where the IMUs experience significant motion-related
disturbances that introduce a large amount of noise to IMUs,
KF, MW, and MH may perform better than other methods
since KF, MW, and MH not only fuse multiple sensor readings,
but also removes the effect of these external accelerations by
updating the gains of the filter every time step (KF) or using
a GD-based algorithm (MW) or a PI compensator (MH). The
AC and BCF do not have any algorithms for reducing the
effect of large external accelerations like KF, MW, and MH,
so the accuracy may suffer in dynamic conditions. Third, the
maximum angular speed of the moving IMU was not high
or low enough to simulate all possible movements observed
in biomechanics. Higher speeds may result in higher error
regardless of the rotation axis, as observed in other studies [9],
[10]. This may be because a greater range of speed requires a
different set of optimal filter parameters [12]. In addition, low
movement speeds may require different filter parameters (e.g.,
lower cut-off frequency for a high-pass filter of gyroscopic
readings) since the frequency of motion is lower. Fourth,
this study did not test the IMU system on human subjects.
In real-world biomechanics, the computation of joint angles
becomes more complex: 1) IMU axes may not be parallel to
the body segment of interest and move separately from the
body segment due to soft tissue, irregular muscle geometry,
and skin motion artifacts [1]; 2) the rotation axis of human
joints is not always clear and may change during motion
[12]; and 3) the IMU axes may not be always parallel to the
underlying anatomical axes [64]. Fifth, the filter parameters
in this study were specifically tuned for our test setup. These
parameters should be custom-tuned for different applications,
as others have reported [12]. For different applications and
models of IMUs, movement speeds, and rotation axis, the
filter parameters may be completely different. Lastly, the
presented methods in this study required the two 6-axis IMUs
to be parallel throughout the data acquisition, which may
present a practical limitation due to the irregular shapes of the
human body. Other calibration methods can be explored [1].
Albeit these limitations, the proposed 6-axis IMU system with
these algorithms can be valuable for certain biomechanical
and clinical applications (e.g., slow gait analysis, knee/elbow
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flexion/extension assessments, spasticity assessment in which
one body segment is moving while the other is relatively
stationary.

For future work, other advanced estimation algorithms
([17], [18], [65], [66], [67]) that utilize kinematic constraints
or spatial relationships between the IMUs can be investi-
gated. These algorithms exploit the kinematic constraints (e.g.,
ball-socket or hinge joint) to accurately compute relative
orientation between two 6-axis IMUs. In addition, the use of
combinations of different estimation algorithms for the moving
and stationary IMUs can be explored. For example, one may
utilize AC (i.e., a simple, drift-free, computationally light,
and accurate method) and use only accelerometer readings
for computing the orientation of the stationary IMU while
using more advanced sensor fusion algorithms that use both
gyroscopic and accelerometer readings for computing the
orientation of the moving IMU.

V. CONCLUSION

This study aimed to assist researchers new to the field of
IMUs by providing a basic understanding of different IMU
algorithms and an open-source code of the algorithms. In addi-
tion, the study systematically evaluated the performances of
various angle computational methods (GI, AC, BCF, KF, DMP,
MW, and MH) using 6-axis IMUs without magnetometers
on a test apparatus following a strict testing protocol. Most
(GI, BCF, KF, MW, and MH for yaw) if not all methods
(for pitch/roll) accurately computed relative angles that were
within the acceptable RMSE range of 6◦ at all speeds and test
duration. For yaw, filter parameters were modified, and high-
pass filtered gyroscopes were used. Even simple algorithms
such as GI can output accurate and drift-free angles for
various speed and rotation axes by properly preprocessing
the raw signals. Proper filtering parameters for methods and
preprocessing are essential and can be done by utilizing
the information (e.g., movement speed, rotation axis) of the
motion that IMU experiences.
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