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Bayesian Sensor Calibration
Moritz Berger , Member, IEEE, Christian Schott, Member, IEEE, and Oliver Paul , Senior Member, IEEE

Abstract—The calibration of multisensor systems can
cause significant costs in terms of time and resources, in par-
ticular when cross-sensitivities to parasitic influences are to
be compensated.Successfulcalibrationensures the trustwor-
thy subsequent operation of a sensor system, guaranteeing
that one or several measurands of interest can be inferred
from its output signals with specified uncertainty. As shown
in the present study, this goal can be reached by reduced
calibration procedures with fewer calibration conditions than
parameters that are needed to model the device response.
This is achieved using Bayesian inference by combining
the calibration data of a sensor system with statistical prior
information about the ensemble to which it belongs. Optimal
reduced sets of calibration conditions are identified by the method of Bayesian experimental design. The method is
demonstrated on a Hall–temperature sensor system whose nonlinear response model requires seven parameters in the
temperature range between −30 and 150 ◦C and for magnetic field values B between −25 and 25 mT. For the prior,
a multivariate normal distribution of the model parameters is acquired using 14 specimens of the sensor ensemble.
I-optimal calibration at one, two, and three temperatures reduces the root-mean-square (rms) standard deviation of B
inferred from sensor output signals from 203 µT before calibration down to 78, 41, and 34 µT. Similar conclusions apply to
G-optimal calibration. This article describes how to implement the Bayesian prior acquisition, inference, and experimental
design. The proposed approach can help save resources and cut costs in sensor calibration.

Index Terms— Bayesian inference, calibration, compensation, experimental design, sensor system.

I. INTRODUCTION

THE goal of this article is to demonstrate the power of
Bayesian inference and experimental design in the con-

text of sensor calibration. Besides fabrication and packaging,
calibration contributes a significant fraction to the final sensor
cost [1], [2], [3], [4]. Among the reasons are parasitic sen-
sitivities requiring compensation and the variability of sensor
materials and fabrication processes [5], the need for individual
sensor calibration in view of achieving demanding specifi-
cations [5], [6], the time consumed by some, in particular
thermal, calibration steps [5], and expensive infrastructure [1],
[2], [7]. Therefore, it is an endeavor of scientific interest
and economic value to identify methods allowing to reduce
the number of calibration conditions needed to achieve a
prescribed accuracy goal of a sensor system over its operating
range. The question is particularly pressing in the case of large
production volumes, where sensors may require individual
calibration.
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To the best of our knowledge, a single conference paper has
so far addressed the subject of Bayesian experimental design
at the service of sensor calibration [8]. It has demonstrated
the benefit of prior information in decreasing the standard
deviation of temperature-cross-sensitive pressure sensors and
showed that sensors can be validly calibrated using fewer
conditions than the parameters in their response model. The
apparently modest echo of that paper among the sensor
community, as measured in citations, was possibly due to
its highly concise formulation constrained by the imposed
four-page format. In this present article, we take up its lead
and strive to expand its mathematical formulation, extend its
conclusions, and demonstrate the approach in detail using an
industrial Hall sensor. In doing so, we aim to make Bayesian
sensor calibration more accessible to the broader sensor
community.

For the sake of readability and unless stated otherwise,
the term sensor will be used synonymously for multisensor,
sensor system, measuring system, and transducer in general.
An individual sensor is considered to be a member of a sensor
ensemble with statistically distributed properties, as realized in
approximation, for example, by a sensor production volume.
In metrology, the term population is used as an alternative for
ensemble [9]. Individual members of a sensor ensemble will be
termed specimens. The properties of each specimen constitute
a sample of the statistically distributed properties of the
ensemble.

Bayesian methods [10], [11, Chs. 2 and 3], [12], [13],
[14], [15], including Bayesian regression [11, Ch. 3], [12,
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Ch. 14], [14, Ch. 2], Bayesian learning and inference [10],
[11, Chs. 2 and 3], [14, Ch. 2], Bayesian design of experi-
ment [16], and Bayesian model selection [11, Sec. 3.4], [12,
Ch. 7], [14, Ch. 5], have long offered a broad framework
for fusing statistical prior information with new evidence.
Bayesian methods have found a wide range of applications,
from industrial process control [17] to the life sciences [18]
and Kalman filtering in telecommunication, dynamic systems,
and robotics [19]. In the present context, Bayesian methods not
only allow to find minimal sets of optimal calibration condi-
tions but also, as importantly, allow to infer the measurement
uncertainty of the optimally calibrated sensors.

Various sensor calibration methods, such as classical cal-
ibration [20, Ch. 3] also called simple, standard [21] and
conventional [22] calibration, inverse calibration [20, Ch. 3],
half-blind calibration [23], [24], the shape from motion
method [22], [25], and device hyperplane calibration [26],
have served to obtain estimates of the parameter values
in parameterized sensor response functions. For this pur-
pose, a variety of regression and optimization techniques,
including the methods of ordinary [11, Sec. 3.1.1], [13,
Ch. 6], partial [27], regularized [11, Sec. 3.1.4], and total
least squares [28], the least absolute shrinkage and selection
operator [29], [30], [31], and ridge regularization [30], [32],
have been used. Besides polynomial regression, a variety
of machine learning (ML) methods have been successfully
used to calibrate liquid mixture sensors [33], [34], [35],
gas sensors [36], [37], [38], [39], [40], pH sensors [41],
thermal and differential-pressure anemometers [42], a tactile
sensor [43], and a photonic sensor [44]. Some of these
sensors were successfully compensated against the influ-
ence of temperature [33], [34], [38], [45], relative humidity
[38], [45], and chemical cross-sensitivities [38].

The question of the measurement uncertainty achievable
with calibrated sensors is extensively addressed in the Guide
to the Expression of Uncertainty in Measurement (GUM)
elaborated by the Joint Committee for Guides in Metrology
(JCGM). However, although the GUM mentions Bayes’ theo-
rem in several of its documents [46, Sec. 6], [47, Sec. 6.2] and
thus reflects the discussions in the metrology community [48],
it does not explicitly put forward the form of Bayesian
inference in sensor calibration that is developed in this present
article, where the calibration of a specimen is allowed to
rely on prior information about the ensemble to which it
belongs.

Central to the present analysis is the response function of
a sensor, which involves, on the one hand, its output signals
x1, . . . , xD , arranged as the column vector x = (x1, . . . , xD)�,
where (·)� denotes the transpose of a vector or a matrix.
Such signals may be output voltages, currents, frequencies,
phase shifts, and so on [49], [50]. On the other hand, the
response involves the physical or chemical measurand y the
sensor has been designed to measure. To measure y means
to allow to infer y from x. The connection is made by a
model y = φ(x, w), i.e., a functional description of the sensor
response parameterized by the response parameter vector
w = (w1, . . . , wM )� of dimension M . Provided that a sen-

Fig. 1. (a) Bayes’ theorem combines the prior probability density p0(w )
of a sensor specimen’s response parameter vector w with calibration
data (X , y ) acquired with the specimen, i.e., experimental observations
of its response, to infer the posterior response parameter distribution
p1(w |X ,y ) of w , given (X ,y ). The connection is ensured by the likeli-
hood p(y |X ,w ) modeling the measurement process. (b) Both prior and
posterior w distributions serve to derive predictive probability densities
indicating the level of consistency of measurand values y with the
specimen’s output signal vector x . Such predictions before and after
calibration are denoted by p0(y|x ) and p1(y|x ,X ,y ), respectively. The
two needed marginalizations involve the likelihood p(y |x,w ) reflecting
again the measurement process.

sor specimen’s w is known, y can, with limited accuracy,
be inferred from the specimen’s output signals x. It is, there-
fore, crucial to estimate the value and the accuracy of its w.
This is the goal of calibration [51, Definition 2.39].

Calibration of a specimen proceeds by exposing it to a
well-designed series of N experimental conditions involving
controlled measurand values y1, . . . , yN , summarized as y =
(y1, . . . , yN )�, and parasitic influences. Together, these lead
to measured output signals x1, . . . , xN , summarized as X =
(x1, . . . , xN ). The goal of cost-effective calibration is to keep
N small, possibly smaller than M , while guaranteeing a spec-
ified accuracy. For N < M , this is possible only if additional
information can be relied on. Such prior information may be
provided by parameters that are so well-defined within a sensor
ensemble that they can be considered as known and do not
need separate individual determination. Alternatively, ranges
or distributions of parameter values of a sensor ensemble and
correlations among them may have been obtained previously.
The Bayesian framework teaches how such imprecise prior
information can be merged with new evidence that a speci-
men’s calibration reveals about its response.

The core of Bayesian methods is Bayes’ theorem [10],
[11, Sec. 1.2], [13, Sec. 1.4.3], [15, Sec. 1.2], recalled in
Fig. 1(a). In the present context, prior inaccurate and imprecise
knowledge of a specimen’s w is expressed as a probability
density p0(w). Thanks to Bayes’ theorem, new evidence (X, y)
enables one to update p0(w) into the more sharply defined
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posterior probability density p1(w|X, y), i.e., the probability
distribution of w, given (X, y). As shown in Fig. 1(a), (X, y)
enters Bayes’ theorem as the conditional probability density
p(y|X, w) reflecting in the present case the measurement
process by the specimen; it describes the likelihood that the
entries of y are the measurand values applied to a specimen
during its calibration, given that the observed output signals
are X and the response parameter vector of the specimen is w.
Finally, the denominator in Bayes’ theorem is equal to the
numerator integrated over all w values, or in the language
of statistics, marginalized over w. As a result, the right-hand
side and, by the same token, p1(w|X, y) denote a properly
normalized probability density.

As shown in Fig. 1(b), during the operation of a speci-
men, its prior and posterior response parameter distributions
allow measurand values y to be inferred from its output
signals x. In view of the inherent imprecision of the prior
and posterior, this inference is statistically formulated as the
so-called prior and posterior predictive probability densities
[11, Sec. 3.3.2], [14, Sec. 2.1] p0(y|x) and p1(y|x, X, y),
respectively. They quantify the level of consistency of y with
an output signal vector x of the specimen, before and after
acquisition of the new evidence. As shown in Fig. 1(b), the
predictive distributions are obtained by weighted integrals of
p(y|x, w) over w, with the prior and posterior probability
densities of w serving as respective weight functions. Again,
these integrals are marginalizations. Like p(y|X, w), p(y|x, w)
represents the measurement process. It states the likelihood
that y is the measurand being determined, given that the
specimen’s output is x and its response parameter vector
is w.

This, in a nutshell, is the foundation on which this present
paper rests. Mathematical details are clarified in Section II
and Appendixes I and II. Although Bayes’ theorem is of
broad validity [11], [12], [14], [18], all likelihoods and prob-
abilities in this article are assumed to be univariate or mul-
tivariate normal distributions [11, Ch. 1], [12, Appendix A].
This is justified by the fact that noise and uncertainty in
technical measurements are often well modeled by Gaussian
random processes. Under these conditions, many procedures
and consequences of Bayes’ theorem can be formulated in
the language of linear algebra relying on the basic matrix
operations.

The methodology proposed in this article is demonstrated
using the temperature-sensitive semiconductor-based Hall sen-
sor system presented in Section III. Due to a cointegrated
temperature sensing element, the system offers the benefit of
potential temperature compensation. Without prior knowledge,
the compensation of the parasitic thermal effects would require
at least five thermal calibration conditions per sensor speci-
men. In Section IV, we show that a suitably generated prior
can bring the number of these conditions down to one while
guaranteeing the satisfactory performance over the specified
operating range. Other examples of sensors to which the
methods reported in this article may apply are considered
in Section V. In addition, we identify the salient features of
the present Bayesian approach in the light of alternative ML
methods.

II. CALIBRATION RELYING ON BAYESIAN INFERENCE

In Section II-A, we define the required probability densities
and likelihoods. Section II-B is then dedicated to the Bayesian
inference of p1(w|X, y) of a specimen from its calibration data
(X, y) and an available p0(w). Conclusions on the achievable
accuracy valid for the entire sensor ensemble are formulated.
These are then used in Section II-C to optimize the achievable
measurement accuracy by the Bayesian experimental design of
the calibration procedure. Finally, Section II-D addresses the
question of how to acquire the needed prior.

A. Definitions
The following definitions rely on univariate and multivariate

normal distributions as defined in Appendix I. The likelihood
p(y|x, w) is assumed to be described by the Gaussian distri-
bution [11, Ch. 1], [12, Appendix A]

p(y|x, w) = N
�

y|φ(x)�w, σ 2
�

(1)

where the measurand y inferred from x and w is distributed
around the mean φ(x)�w with variance σ 2. The sensor model
is written as

φ(x)�w = φ1(x)w1 + · · · + φM (x)wM (2)

where φ(x) = (φ1(x), . . . , φM (x))� is the column vector of
basis functions. The model is linear in the parameters w, while
the basis functions can be nonlinear.

Let us concretize these definitions in view of the demon-
stration case in Sections III and IV, where the role of the
measurand y is played by the magnetic induction B , while
x = (VH, VT) comprises the output signals VH and VT of the
Hall sensor and the cointegrated resistive temperature sensor,
respectively. Similar to an earlier non-Bayesian calibration
study of a related system [24], we model B as a polynomial
function of VH and VT.

On the assumption that the random contributions to the
calibration measurements are independent, the joint likelihood
p(y|X, w) can be written as [14, Sec. 2.1]

p(y|X, w) =
N�

i=1

p(yi |xi , w). (3)

With the N × M-dimensional design matrix [11, Ch. 3]

�(X) =
⎛
⎜⎝

φ1(x1) · · · φM (x1)
...

. . .
...

φ1(xN ) · · · φM (xN )

⎞
⎟⎠ (4)

(3) is transformed into the multivariate normal distribution [14,
Sec. 2.1]

p(y|X, w) = N
�

y|�(X)w, σ 2IN

�
(5)

where IN denotes the N-dimensional identity matrix and
the distribution of y spreads around the mean �(X)w with
isotropic covariance σ 2IN .

The prior probability density of w is described by the
multivariate normal distribution

p0(w) = N (w|w0,�0) (6)
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with mean w0, covariance matrix �0, and precision matrix
�0 = �−1

0 . Since p0(w) is a conjugate prior of p(y|X, w)
[11, Sec. 2.4], we can write the posterior as the multivariate
normal distribution as well, namely

p1(w|X, y) = N (w|w1,�1) (7)

with mean w1, covariance matrix �1, and precision matrix
�1 = �−1

1 to be determined in Section II-B.
Note that the argument of the maximum of a univariate

or multivariate normal distribution, also known as its mode,
coincides with its mean [11, Sec. 1.2.4].

B. From Prior to Posterior
Before calibrating a specimen, any prediction about its

response has to rely on the unsharply defined prior knowledge
p0(w). Such prior knowledge may have been established by
theoretical considerations about the sensor operation, comple-
mented with statistical data about variations in its fabrication
process and material properties. Alternatively, specimens of
the same ensemble may already have been calibrated previ-
ously and may thus have provided an experimental database
for constructing p0(w). Depending on the experimental his-
tory, the prior can contain data from a few specimens or from
a large production volume, or anything in-between.

For illustration, the example of a hypothetical bivariate
Gaussian prior p0(w) is shown in Fig. 2(a). It spreads around
its maximum at w0. The dashed ellipse geometrically repre-
sents �0, where p0(w) is reduced from its maximum by e−1/2.
The interior of the ellipse is the bivariate analogy of the ±1σ
interval of the univariate normal distribution. A representative
specimen with putative response parameter vector wr is shown
in green.

According to Fig. 1(b), the prior allows to obtain the
prior predictive sensor response distribution p0(y|x) for the
ensemble by the marginalization of p(y|x, w)p0(w) over w,
where the two terms are given by (1) and (6). This procedure
yields the x-dependent normal distribution

p0(y|x) = N
�

y|y0(x), σ 2
0 (x)

�
(8)

with the predicted maximum at

y0(x) = φ(x)�w0 (9)

inferred from any x and the corresponding variance

σ 2
0 (x) = σ 2 + φ(x)��0φ(x). (10)

Details of the marginalization are reported in Appendix I.
Via σ 2 in (10) on the one hand, the standard deviation
σ0(x) of y inferred from x reflects the uncertainty of the
measurement process, as defined in (1). On the other hand, the
term φ(x)��0φ(x) captures the uncertainty in the inferred y
due to uncertainty of the response parameters of the ensemble
described by p0(w).

Fig. 2(b) schematically shows p0(y|x) in gray shades, with
its x-dependent mean measurand y0(x) and its ±1σ0(x) range
delimited by the dashed lines. It also shows the probability
distribution p(y|x, wr) of the representative specimen, as given
by (1), with wr substituted for w. This distribution is centered

Fig. 2. (a) Schematic 2-D multivariate Gaussian prior distribution
p0(w ) of the parameter vector w = (u, v), defined by its mean w0
and its covariance matrix �0 symbolized by the dashed ellipse. Darker
shades correspond to higher probabilities. A representative specimen is
assumed to have the response parameters w r. (b) Prior allows to infer
the prior predictive distribution p0(y|x ) from measured sensor signals x ,
with mean measurand y0(x ) and standard deviation σ0(x ); y0(x ) is
shifted by the measurement error Δyr0 from the mean measurand
yr(x ) of the representative specimen indicated by the green line. The
green shading represents the uncertainty of the response p(y|x ,w r)
of the representative specimen. (c) Based on calibration data (X , y )
obtained with that specimen, p0(w ) is updated into the narrower posterior
distribution p1(w |X , y ) of the specimen’s response parameter vector w ,
defined by the updated posterior mean parameter vector w 1(X , y )
and the updated covariance matrix �1(X ). (d) x -dependent posterior
predictive distribution p1(y|x ,X ,y ) is obtained from p1(w |X , y ). It has
the updated mean measurand y1(x ,X ,y ) and the updated standard
deviation σ1(x ,X ) ≤ σ0(x ). The posterior measurand value y1(x ,X , y )
inferred from x differs from yr(x ) by the smaller error Δyr1(x ,X ,y ).

in the y-direction on the mean measurand yr(x) = φ(x)�wr
indicated by the green line in the center of the green shading:
yr(x) is the response curve that would be used to infer y
from output signals x of the representative specimen if its
response parameter vector were known to be wr. The green
shade shows the uncertainty of this inference, which has a
standard deviation σ in the y-direction.

If measurand values y are inferred from x for specimens
randomly sampled from the ensemble, for large samples, the
statistical distribution of these y values is asymptotically given
by p0(y|x). This is the textual translation of the marginal-
ization yielding p0(y|x). In other words, p0(y|x) describes
the distribution of the y values inferred from x for the entire
ensemble modeled by the prior. As a consequence, when
using y0(x) to infer y from x for random specimens of
the ensemble, one makes random errors normally distributed
with the standard deviation σ0(x). In Fig. 2(b), p0(y|x) can
therefore be interpreted as the graphical representation of
this x-dependent error distribution. In conclusion, based on
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the output signal x produced by any sensor specimen of the
ensemble, the measurand y is best determined to be y0(x).
This then constitutes the measured value of y corresponding
to x and the limited accuracy of this measurement is defined
by the standard deviation σ0(x). This conclusion holds when
the prior is the only source of information about the specimen.
It also holds for the representative specimen, whose response
parameter vector is in reality known only within the constraints
of p0(w). Its response curve in Fig. 2(b) illustrates this by
lying safely within the ±1σ0(x) range of y0(x).

Assume now that a specimen is subjected to calibration.
As a result, it yields evidence about its response in the form
of calibration data (X, y). Bayes’ theorem then allows to infer
the posterior probability distribution p1(w|X, y) of its response
parameters w compatible with (X, y). Note that this is the
w distribution of all specimens that have produced or might
produce (X, y) during calibration. Their posterior probability
distribution of w [cf. (7)] is centered on the updated mean
parameter vector [11, Sec. 3.3.1]

w1(X, y) = �1(X)

�
�0w0 + 1

σ 2 �(X)�y
�

(11)

where

�1(X) =
�

�0 + 1

σ 2 �(X)��(X)

�−1

= �1(X)−1 (12)

defines its updated covariance matrix [11, Sec. 3.3.1].
The updated probability distribution of w is shown in

Fig. 2(c) in blue. It is more compact than the prior distri-
bution. Only specimens within the restricted range defined
by p1(w|X, y) are likely to have yielded the data (X, y), and
the maximum of p1(w|X, y) is attained by specimens with
parameter vector w1(X, y).

Mathematically, the shrinkage of the w distribution due
to the condition (X, y) is caused by the second term in the
bracket added in (12) to the prior precision matrix �0. Because
�(X)��(X) is positive semidefinite, one has �0 ≤ �1(X)
in the sense of the Loewner order [52]. The shrinkage of �0
into �1(X) symbolized by the two dashed ellipses in Fig. 2(c)
is a consequence thereof. In plain language, the precision
of our knowledge about the calibrated specimen’s response
parameters has increased.

Furthermore, the center of the w distribution has been
updated according to (11) from w0 into w1(X, y). The rep-
resentative specimen whose putative wr actually served to
generate the calibration data underlying Fig. 2(c) and (d) is
also recalled in Fig. 2(c). Not surprisingly, wr lies within the
range of p1(w|X, y).

According to Fig. 1(b), like the prior, the posterior allows to
obtain the posterior predictive distribution p1(y|x, X, y) by the
marginalization of p(y|x, w)p1(w|X, y) over w. This results in

p1(y|x, X, y) = N (y|y1(x, X, y), σ 2
1 (x, X)) (13)

with the x-dependent maximum at

y1(x, X, y) = φ(x)�w1(X, y) (14)

and the predicted variance

σ 2
1 (x, X) = σ 2 + φ(x)��1(X)φ(x) (15)

analogous to (9) and (10), respectively. Details of the deriva-
tion are again reported in Appendix I. The posterior predic-
tive sensor response distribution is schematically shown in
Fig. 2(d) in blue, to be compared with the prior predictive
response in Fig. 2(b). In the posterior case, the inferred range
of measurand values y compatible with x is significantly
narrower over the entire x range.

By the same reasoning as in the prior case, the measurand
value y inferred from an output x produced by specimens
randomly sampled from p1(w|X, y) is distributed according to
p1(y|x, X, y). As mentioned, these specimens are randomly
sampled according to their likelihood of having yielded (X, y)
as calibration data. As a consequence, one makes a predic-
tion error by using y1(x, X, y) as the measured value of y
inferred from an output x of specimens with calibration data
(X, y). This error is normally distributed and has the standard
deviation σ1(x, X).

After a specimen has yielded the calibration data (X, y), the
value y implied by an output signal x of the specimen is there-
fore best taken as y1(x, X, y); the measurand value determined
thereby is uncertain with the standard deviation σ1(x, X). Both
y1(x, X, y) (white curve) and the ±1σ1 confidence interval
(black dashed curves) are shown in Fig. 2(d). Note that the
response curve yr(w) of the representative specimen again lies
within the range of this predictive distribution that it has helped
generate.

C. Experimental Design of the Calibration Procedure
It is noteworthy that the measurement uncertainty σ1(x, X)

of a calibrated specimen depends on X. By a suitable selection
of X, one is, therefore, able to minimize σ1(x, X) according to
some optimality criterion of one’s choice, such as G-optimality
or I-optimality [8], [53], thus implementing the concept of
Bayesian experimental design [16].

G-optimality minimizes the maximum variance (and, equiv-
alently, the standard deviation) over the range � of x values
covered by the operating conditions of the sensor. Consider-
ing (15), we therefore minimize the objective function

fG(X) = max
x∈�

σ 2
1 (x, X) (16)

with respect to X.
In contrast, I-optimality [53] minimizes the rms measure-

ment uncertainty over �. The corresponding objective function
reads

fI(X) = 1

V�


�

σ 2
1 (x, X)dx (17)

where V� denotes the volume of � in x-space. Both
G-optimality and I-optimality are applied in Section IV to
illustrate the choice of optimal calibration conditions.

D. Obtaining a Prior
A prerequisite for carrying out the above procedures is the

availability of a prior. In the absence of any other knowledge
about the response variability among the specimens of the
ensemble, a viable approach is to first thoroughly characterize
a small, yet sufficiently large sample of specimens drawn from
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the ensemble. We term them prior-generation specimens. For
each one of them, the characterization is designed to provide
a sufficiently accurate individual response parameter vector
wi , with i = 1, . . . , Q, where Q designates the number of
specimens. The vectors w1, . . . , wQ are scattered in w space
with a probability distribution p(w|w1, . . . , wQ) that can be
identified using the method of multivariate Bayesian linear
regression [12, Sec. 3.6], as outlined in Appendix II.

From the results of such analysis, p(w|w1, . . . , wQ) is found
to be the multivariate t-distribution [12, Sec. 3.6]

p(w|w1, . . . , wQ)

= tQ−M

�
w

����w,
Q + 1

Q(Q − M)
�W��W

�
(18)

centered on the mean w = (w1 + w2 + · · · + wQ)/Q. The
second argument of tQ−M is the scale matrix defined in terms
of �W = (w1 − w, . . . , wQ − w)�, whose rows list the
mean-centered response parameter vectors wi .

Finally, the multivariate t-distribution is approximated by
a multivariate normal distribution with the same mean and
covariance, which is

p(w|w1, . . . , wQ) ≈ N (w|w0,�0) (19)

with

w0 = w (20)

and

�0 = Q + 1

Q(Q − M − 2)
�W��W. (21)

For details, cf. Appendix II.
The main advantage of the multivariate normal approxi-

mation is that it allows to straightforwardly derive analytic
results, as described in Section II-B. It is noteworthy that the
t-distribution has fatter tails than its normal approximation and
more pronouncedly so for smaller Q − M . Related questions
are addressed in Section V.

III. EXPERIMENT

The Bayesian sensor calibration methodology formulated
in Section II is now demonstrated on a sensor system for
measuring the magnetic field. We present first the design of
the system with exemplary raw data (Section III-A), then the
measurement setup (Section III-B), and finally the acquisition
of the database for demonstrating the concept of Bayesian
calibration (Section III-C).

A. Sensor Chip
The sensor system is a packaged Hall sensor microsys-

tem fabricated in complementary metal–oxide–semiconductor
(CMOS) technology. It is shown in Fig. 3. Besides analog
and digital circuitry and mechanical stress sensors not used
in this study, the system comprises horizontal Hall plates for
measuring the out-of-plane magnetic field component B and a
temperature-sensitive resistive element, whose output signal
VT is intended for temperature compensation. For further
details about the Hall sensor system, we refer to [56].

Fig. 3. Optical micrograph of the CMOS-fabricated sensor chip compris-
ing n-doped silicon Hall plates and a resistive temperature sensor based
on n- and p-doped elements [54], besides analog and digital circuitry.
Two Hall plates are used to measure the out-of-plane component B of
the magnetic field. Adapted from [55].

In the Hall sensor chip, two interconnected Hall plates
are operated using the current spinning method [57], [58],
[59], [60], [61], [62], [63]. As a result, contributions to the
Hall sensor output voltage VH caused by mechanical stress
and geometrical imperfections are largely, yet incompletely,
compensated. Consequently, the resulting Hall voltage output
by the sensor is described by

VH = SA(T ) B + Voff(T ) (22)

where SA(T ) and Voff(T ) denote the temperature-dependent
absolute Hall sensitivity of the device and its residual offset
voltage at B = 0, respectively. Reversely, by rearranging (22),
defining the offset field Boff = Voff/SA, and considering that
the temperature sensor transduces T into VT, we seek to infer
B from VH and VT using a relationship like

B(VH, VT) = VH

SA(VT)
− Boff(VT) (23)

where 1/SA(VT) and Boff(VT) will be modeled by calibration.
The sensitivity SA depends on T because of the

T -dependent Hall mobility [64] and the piezo-Hall and
piezoresistance effects due, e.g., to thermomechanical
stress [65], [66], [67], [68], [69], [70], [71]. Fig. 4 shows the
measured values of 1/SA and Boff of a representative specimen
as a function of VT. For the purpose of the present analysis,
the digital output signal of the temperature sensor is shifted
and rescaled, ranging from VT = −0.97 corresponding to
T ≈ −30 ◦C to VT = 2.31 corresponding to T ≈ 150 ◦C,
with VT = 0 corresponding to T ≈ 30 ◦C. From its value at
VT = 0, SA increases by about +40% toward the lower limit
of the T range and decreases by about −43% toward its upper
limit. Like 1/SA, Boff is a function of VT.

Similar to VT, the digital output signal of the Hall sensor is
shifted and rescaled for the subsequent analysis. Consequently,
VH covers the range from −2 to +2. Based on (23) and Fig. 4,
it seems justified to infer B from VH and VT in terms of
a polynomial model. Leaving the topic of Bayesian model
selection [11, Sec. 3.4], [12, Ch. 7], [14, Ch. 5] to a separate
study, we propose to work here with the set of basis functions

φ(VH, VT) = �
1, VT, VH, VHVT, VHV 2

T , VHV 3
T , VHV 4

T

��
(24)
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Fig. 4. In blue, inverse absolute Hall sensitivity 1/SA, i.e., the factor of
VH in (23) versus temperature sensor signal VT, with a polynomial least
squares fit of degree 4. In orange, VT-dependent offset term Boff in (23),
i.e., Voff/SA, with a linear least squares fit. Both datasets are from the
same representative specimen.

whose first two terms are intended to model Boff. The remain-
ing five terms are all linear in VH and are designed to model
VH/SA. The model dimension M is 7. Without the benefit of a
prior, calibration measurements need to be performed under at
least five thermal conditions in order to determine a specimen’s
response parameter vector w.

Seven pairs of such sensor chips were assembled in dual-
die TSSOP-16 packages [24]. Each packaged system was then
soldered onto a printed circuit board (PCB). The number of
sensor specimens is therefore Q = 14.

B. Experimental Setup
For the characterization, the PCBs are inserted into a

thermal chamber of an automated measurement setup where
they are exposed to well-controlled B values and to less
precisely controlled temperatures T . A Helmholtz coil cali-
brated using a Tesla meter (Gauss/Tesla Meter Series 8000,
F.W. BELL, Milwaukie, Oregon) serves to apply B . An air-
streamer (Dragon Air Streamer, Froilabo, France) connected
to the chamber is used to vary T . A schematic of the measure-
ment setup is shown in Fig. 5 with a close-up photograph of a
packaged sensor system on its PCB and a nearby temperature
reference sensor.

C. Characterization
In order to acquire the data that are needed to perform the

numerical studies of Section IV, we exposed the sensors to
the following calibration conditions.

1) T was varied between −30 and 150 ◦C in steps of
nominally 10 ◦C;

2) At each T value, B was set to −25, 0, and 25 mT.
Overall, the sensors, therefore, experienced 57 conditions.

Fig. 6 shows the measurement history with a representative
specimen. The two top graphs show T , as measured by the
temperature reference sensor, and the applied B values. The
last two graphs show the resulting output signals VH and VT.

In preparation of the Bayesian data evaluation in Section IV,
the data of each specimen are arranged as the list of inde-
pendent variables Xi = (xi1, . . . , xi57) with i = 1, . . . , Q
and xin = (VHin , VTin) with n = 1, . . . , 57, from which the

Fig. 5. Schematic of the characterization setup for the automated
thermomagnetic calibration of Hall sensor systems. The magnetic field
B and the temperature T are applied using a Helmholtz coil and an air
streamer, respectively. The photograph shows a sensor package on its
PCB and a temperature reference sensor.

Fig. 6. Exemplary characterization history of a sensor chip with
57 characterization conditions consisting of three B values applied each
at 19 nominal T values. (a) Nominal T values. (b) Applied B values.
Resulting sensor output signals: (c) VH and (d) VT.

corresponding design matrix �(Xi ) was computed. Similarly,
the dependent variable vector of the Bayesian analysis is
defined as y = (B1, . . . , B57).

IV. RESULTS

After determining the response parameter vectors wi of all
specimens in Section IV-A, we use them in Section IV-B to
identify the multivariate normal prior of the sensor ensem-
ble to which they belong. In Section IV-C, a posterior is
inferred for each specimen from a calibration measurement
performed under a single near-optimal thermal condition.
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Fig. 7. Sensor accuracy improvement due to (b) calibration at a single temperature (m = 1) in comparison with (a) no calibration (m = 0). Heat
plots of the size of the elements of (a1) �0 and (b1) �1 of a representative specimen after near-I-optimal calibration. The specimen was calibrated
at VTcal ≈ 1.86 near the I-optimal VTmin = 1.77. (VH,VT)-dependent modes (a2) B0 and (b2) B1 of the predictive B distributions before and after
calibration, respectively, of the same specimen, as inferred from its prior and posterior w probability distributions. Ω represents the operating range
−30 ◦C ≤ T ≤ 150 ◦C and −25 mT ≤ B ≤ 25 mT. Corresponding standard deviations: (a3) σ0 and (b3) σ1 as a function of (VH,VT). Gray dots in
(b2) and (b3) indicate the calibration conditions X̃ cal constituted of load case nos. 49–51 of the specimen. Distributions of the relative measurement
errors: (a4) (B0 − B)/σ0 and (b4) (B1 − B)/σ1, i.e., of the discrepancies between inferred and true B values, normalized by the predicted standard
deviations, as derived from the 798 characterization data of all 14 specimens.

Finally, in Section IV-D, the same is done for two and three
thermal conditions.

A. Response Parameter Vectors of the Specimens
The response parameter vectors wi of the 14 specimens

were determined from their individual characterization data
by the method of least squares [11, Ch. 3], i.e., wi =
{�(Xi )

��(Xi )}−1�(Xi )
�y. This is equivalent to apply-

ing (11) and (12) with a noninformative prior where �0 is
the zero matrix.

B. Prior Generation
The response parameter vectors wi were then used to

compute the prior for the subsequent Bayesian calibration
analysis, applying (20) and (21) for its mean w0 and covariance
matrix �0, respectively. The covariance matrix is shown by the
heat plot in Fig. 7(a1) highlighting the order of magnitude of
its elements.

From the prior, we infer the prior predictive distribution
of the ensemble according to (8)–(10). With B playing the
role of y and (VH, VT) that of x, we therefore obtain the
prior predictive B distribution with on the one hand its mode
B0((VH, VT)) = φ((VH, VT))�w0 (where the distribution is
maximal) and on the other hand the uncertainty of the infer-
ence quantified by σ0((VH, VT)). The results are shown in
Fig. 7(a2) and (a3), with quantitative values indicated by level
lines. The dashed border delimits the range � of sensor

output signals caused by −30 ◦C ≤ T ≤ 150 ◦C and
−25 mT ≤ B ≤ 25 mT. The maximum σ0 in � and the
rms σ0 over � are listed in Table I. The σ value underlying
these results is 27.5 μT and was obtained independently.

Fig. 7(a4) shows the distribution of the relative error (B0 −
B)/σ0 for all 14 × 57 = 798 measurements of all specimens,
where B0 − B is the deviation of the prior prediction of B
from the known, applied B . An absolute ratio ≤1 means that
the applied B lies within one predicted standard deviation σ0
of B inferred from x. The fraction of the data in Fig. 7(a4)
satisfying this condition is listed in Table I for m = 0, where
m denotes the number of thermal calibration conditions.

C. Calibration at a Single Temperature
We now take a step back and assume not to know any-

thing about the 14 specimens except for the prior response
parameter distribution of the ensemble which they repre-
sent as samples. For each specimen, we refine the prior
by incorporating calibration data obtained at a single tem-
perature Tcal. At that temperature, the B values listed in
Bcal = (−25 mT, 0 mT, 25 mT) are applied, producing
the calibration data X(VTcal) = ((VH(−25 mT, VTcal), VTcal),
(VH(0 mT, VTcal), VTcal), (VH(25 mT, VTcal), VTcal)), where
VTcal denotes the temperature sensor signal correspond-
ing to the calibration temperature Tcal. The dependence
of VH(B, VTcal) is taken from the prior and repre-
sented by the level lines in Fig. 7(a2). From X(VTcal),
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TABLE I
MEASUREMENT UNCERTAINTIES OF HALL SENSOR SYSTEMS AFTER

G-OPTIMAL AND I-OPTIMAL CALIBRATION AT m = 1, . . . , 3 OPTIMAL

T SENSOR OUTPUT SIGNALS VTMIN IN COMPARISON TO THE

UNCERTAINTY RESULTING FROM THE PRIOR, I.E., WITHOUT

CALIBRATION (m = 0). THE RESULTS ARE SHOWN FOR THE

TWO APPLIED PRIOR GENERATION / VALIDATION STRATEGIES.
FOR m = 0, THE VALUES TABULATED IN COLUMNS 3 AND 5

ARE THE MAXIMUM σ0 AND THE RMS σ0 OVER THE OPERATING

RANGE Ω FOR G-OPTIMALITY AND I-OPTIMALITY, RESPECTIVELY.
FOR m �= 0, THEY CORRESPONDINGLY ARE THE MAXIMUM σ1 (=f1/2

G )

AND THE RMS σ1 (=f1/2
I ). OPTIMUM VALUES ARE PREDICTED FOR

HYPOTHETICAL CALIBRATION UNDER THE OPTIMUM CONDITIONS

LISTED IN COLUMN 2. CALIBRATION WITH THE NEAREST AVAILABLE

T SENSOR OUTPUT SIGNALS OF EACH SPECIMEN IS DOCUMENTED

WITH THE RESULTING SMALLEST AND LARGEST UNCERTAINTIES

AMONG THE 14 SPECIMENS. FOR VALIDATION, COLUMNS

4 AND 6 LIST THE FRACTIONS OF 798 AVAILABLE DATA

POINTS OF THE 14 SPECIMENS FOR WHICH THE APPLIED

B VALUE LIES WITHIN ONE PREDICTED STANDARD

DEVIATION OF THE INFERRED B VALUE (σ0 AND B0
FOR m = 0 AND σ0 AND B1 FOR m �= 0)

we infer the VTcal-dependent posterior predictive distribution
p1((VH, VT), X(VTcal), Bcal), according to (13)– (15). In par-
ticular, we obtain σ1((VH, VT), X(VTcal)) depending on the
calibration condition VTcal.

Fig. 8. VTcal-dependence of the objective functions for (a) G-optimality
and (b) I-optimality for calibration at a single temperature. Minima are
achieved at respective arguments VTmin.

From this result, we derive the VTcal-dependent objective
functions fG and fI using (16) and (17). Both dependences
are plotted in Fig. 8. Each objective function is minimal at a
distinct value VTmin, as listed also in Table I for m = 1. The
calibration of any specimen can only approximate the ideal
calibration conditions X(VTmin). For each specimen i , instead
of X(VTmin), we therefore take the calibration conditions X̃cal
composed of the three available load cases xin whose VTin

values are closest to VTmin. From X̃cal and Bcal, we compute
w1(X̃cal, Bcal) and �1(X̃cal) of each specimen using (11)
and (12). The covariance matrix �1 of an exemplary case
is shown in Fig. 7(b1). Here, X̃cal consists of load case
nos. 49–51.

On the basis of w1 and �1 of each specimen, one obtains
its posterior predictive distributions of B , with predicted
maximum at B1 = φ((VH, VT))�w1(X̃cal, Bcal) and variance
σ 2

1 ((VH, VT), X̃cal) given by (14) and (15), respectively. They
are plotted in Fig. 7(b2) and (b3) for the same specimen,
as shown in Fig. 7(b1). As shown by Fig. 7(b3) in comparison
with Fig. 7(a3), the calibration near the single optimal VTmin
significantly improves the accuracy of the inferred B . Maxi-
mum σ1 values in � resulting from G-optimality and the rms
σ1 values obtained under I-optimality are listed in Table I for
m = 1. These are significantly lower than the corresponding
values before calibration, documented in the rows with m = 0.

In analogy with Fig. 7(a4), Fig. 7(b4) shows the distribution
of the relative error (B1 − B)/σ1 of all 798 available data
points. This is the distribution of the discrepancy between
the posterior predicted B values from the applied B values,
normalized with the corresponding standard deviation. Again,
the dominant fraction of the inferred B values lies within
the predicted ±1σ1 confidence range, as also documented
numerically in Table I for m = 1.

D. Calibration at More Than One Temperature
The optimization was carried out analogously for two and

three independently selectable calibration temperatures, corre-
sponding to the customary two- and three-point calibrations.
The results are again listed in Table I for m = 2 and m = 3.
Note that in all cases, at least 68% of the applied B values
lie within the respective predicted ±1σ1 confidence ranges of
the inferred B .

V. DISCUSSION

A. Comments on the Present Gaussian Approach
The first four columns of Table I show that the 14 sen-

sor specimens were successfully calibrated near only one,
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two, and three optimal temperatures, despite the number of
seven parameters of the sensor response model of polynomial
degree 4 in VT. In fact, in view of the three magnetic
field values applied per temperature, the calibrations were
carried out with three, six, and nine measurements. However,
as we verified numerically, one of the magnetic measurement
conditions per temperature is essentially redundant since the
magnetic response of the Hall sensor is highly linear [72]
in the range of the applied B values. Leaving out the 0-mT
condition and, thereby, simplifying the calibration to two, four,
and six measurements at ±25 mT only marginally degrades
the achieved measurement accuracy.

The calibration with fewer measurements than model para-
meters owes its success to the Bayesian update of the avail-
able, statistically broad prior information about the sensor
parameter distribution of the ensemble. As quantified by the
rms σ1 over �, the accuracy achieved after an I-optimal
two-temperature calibration, for example, is 82 μT (a width
of the ±1σ1 confidence interval), which is about 0.2% of
the full B range of 50 mT. Based on the prior alone, the
corresponding value is 406 μT, i.e., about 0.8% of the full
range. A similar improvement was reported in the context
of temperature-dependent pressure sensors [8] described by
five model parameters. The Bayesian update of a prior using
three calibration measurements per specimen yielded a smaller
integrated variance than a non-Bayesian calibration using five
measurements. For five or more calibration measurements, the
integrated variances, equal to V� fI, were about a factor of
2 smaller in the case of the Bayesian update of a prior than
for the prior-free analysis [8].

For the investigated calibration scenarios, the fourth column
of Table I shows that in all cases except one, more than 68.3%
of the applied magnetic induction B values lie within the ±1σ1
range around the inferred values B1. However, the use of
the 14 available samples for both prior generation and vali-
dation may be questioned. For this reason, we also performed
14-fold cross validation according to the leave-one-out strategy
[11, Sec. 1.3], where one specimen at a time served as the
validation case, while the remaining 13 specimens were used
for generating the prior. As a quality measure of the Bayesian
inference, we again determined the fraction of applied B
values lying within ±1σ1 of the inferred B values. Again,
data for the six calibration scenarios (m = 1, . . . , 3) for each
fG and fI are reported in Table I. In all six cases, among the
798 measurements, the fraction of case where the applied B
lies within ±1σ1 of the inferred B1 is at least 70.8%.

Clearly, prior data generation constitutes a more substantial
effort per specimen than the subsequent Bayesian calibration
where only a few measurements need to be performed per
specimen. It may therefore be tempting to reduce the number
of prior-generation specimens Q. However, reducing Q comes
at the cost of a lower precision of the prior, via (21), and thus
reduces the Bayesian calibration accuracy as well. How to
optimally balance this tradeoff is an open question, whose
answer likely depends on the specifics of the calibration
process, the production volume, and the specified accuracy
goal. This question warrants detailed, separate investigations.

A related aspect of interest of the Gaussian prior is its
deviation from the correct normal-inverse-Wishart distribution
from which it was derived. The discrepancy is particularly
pronounced at smaller Q, where the long tails of the inferred
multivariate t-distribution of the ensemble may not be negli-
gible [12, Sec. 3.7, p.77]. To our knowledge, analytical results
for handling the ensuing marginalizations are not available.
Numerical integration techniques based on covariance matrix
sampling from inverse Wishart distributions [12, Part III] are
likely able to help clarify related questions.

As described in Section II-C, Bayesian calibration at a sin-
gle temperature is ideally performed at the optimal X(VTmin)
identified for the selected optimality criterion. In principle,
this can be achieved using a control loop by adjusting the
calibration conditions. However, the corresponding expense in
terms of time and experimental resources is in conflict with
the goal of overall efficiency. Since fG and fI, as evaluated in
Section IV-C, are continuous functions of VTcal (cf. Fig. 8),
a calibration carried out under less strictly controlled con-
ditions with VTcal near VTmin can be expected to produce a
near-optimal result. From the approximate X̃cal, a specimen’s
individual maximum and rms σ1 can then be computed. Both
can be expected to be close to the values putatively achieved
under optimal calibration conditions. Analogous conclusions
apply to calibration scenarios relying on more than one cali-
bration temperature.

Let us note that the present analysis is strictly speaking
a case of inverse calibration [20, Ch. 3]. Indeed, the output
signals X produced by a specimen’s calibration are in fact
subject to random errors, while y is applied in a well-controlled
fashion minimizing its uncertainty. From the viewpoint of
signal generation, X is a result of y and the applied thermal
conditions. Yet, in the spirit of inverse calibration, X and y are
in the present regression analysis taken as the independent and
dependent variables, respectively, since the goal is to predict
y from x. In an analogous context with linear base functions,
inverse calibration has been found to be superior to standard
calibration followed by inversion [21]. This conclusion was
proven to hold within clearly specified bounds of x [21].
In the present calibration case, the errors in the variables
x = (VH, VT) were not explicitly considered and the error
σ was phenomenologically implemented in B instead. Never-
theless, the measurement accuracy of the calibrated specimens
documented in Fig. 7(a4) and (b4) and in columns 4 and 6 of
Table I corroborates the practical reliability of the present
Bayesian calibration. Further studies need to scrutinize this
issue, possibly supported by findings from the theory of total
least squares and errors in variable [28].

Sensors where we perceive a potential benefit from the
presented Bayesian approach include the following.

1) Sensors responding linearly to a single measurand, such
as diode-based temperature sensors with output propor-
tional to absolute temperature [4], [73], [74].

2) Sensors with linear response experiencing temperature
cross-sensitivity, such as diffused piezoresistive stress
sensors [75], force/moment sensors based on piezore-
sistive field-effect transistors [76], [77], and pressure
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sensors [78], [79]. A pressure sensor case was already
successfully analyzed in this spirit [8]. The uncertainty
estimates obtained in [23] by a different method can
likely be put on a sound statistical basis.

3) Sensors whose response is modulated by several, pos-
sibly nonlinear, parasitic influences such as temperature
and stress [24], [71], [80]. In these cases as well, statis-
tically well-founded accuracy predictions can plausibly
be obtained.

4) Inertial sensors cross-sensitive to parasitic inertial
effects, and inertial measurement units [2], [7], [81].

These are a few examples. Sensor systems whose response
depends nonlinearly on model parameters do not lie within the
scope of the present approach and therefore cannot be handled
by it. Arrays of chemical sensors [5], [82], [83] such as
electronic noses and tongues, whose responses derive from the
laws of thermodynamics and critically depend on exponential
activation-energy-modulated mechanisms, are strongly nonlin-
ear. They may still be tractable by the Bayesian inference,
but hardly so using the analytical mathematical formalism
employed here. Further instances where the use of alterna-
tive calibration methodologies is beneficial are addressed in
Section V-B.

B. Comparison With Other ML Methods
Sensor calibration and cross-sensitivity compensation are

receiving growing attention in the wider field of ML [33],
[34], [35], [38], [39], [42], [43], [44], [45]. In this section,
we position our work based on Bayesian learning, regression,
and design of experiment within the context of these studies,
which have relied on support vector machines (SVMs) [34],
random forests (RFs) [34], [38], [39], Gaussian process
regression (GPR) [39], [42], [43], and artificial neural net-
works (ANNs) taking most often the form of multilayered
perceptrons (MLPs) [33], [34], [44], [45] and fuzzy neural
networks (FNNs) [35], among other methodologies [34].

Among these methods, ANNs have become particularly
well known and broadly used due to their stunning power in
solving classification and decision problems [11], [14], [84].
MLPs consist of layered networks of nodes, the so-called
neurons, in which an output is computed as a weighted sum
of values originating from neurons of the preceding layer.
Before contributing to such a sum, those values are activated
by a selected nonlinear function, such as the sigmoid, tanh,
and logistic functions [84]. The parameters of the ANNs,
and analogously those implemented in the other learning
algorithms, are tuned in the so-called training phase, which
relies, usually, on abundant available training data. In the
second phase, one obtains a measure of the trustworthiness of
the various learning algorithms by feeding the tuned algorithm
with test inputs and comparing its output with the known
outputs corresponding to the test inputs.

In view of their inherent nonlinearity, ML methods, and
especially those based on ANNs, have also proven their
worth in modeling nonlinear regression problems posed by
sensor calibration and compensation [33], [34], [37], [44].
The studied algorithms were designed to compensate for
temperature and relative humidity in the measurement of

methane concentrations [37], to model the influence of two
heat sources on a single-photon interferometer [44], and to
identify methanol–water [33], [34] as well as acetone–water
mixtures [34], both cleared of temperature cross-sensitivity
while, in one case, simultaneously extracting the solution
temperature as well [34]. The ANN in [33], the range of
methods in [34], and the FNN in [35] addressed the objective
of discriminating materials under test (MUTs) within a discrete
set of MUTs, a typical classification task.

As an alternative, RFs have successfully been applied to
the calibration of multipollutant sensors [38] and of NO2 and
particulate matter (PM10) sensors [39]. Third, GPR has been
applied to the calibration of thermal and differential-pressure
anemometers [42], NO2 and particulate matter (PM10) sen-
sors [39], and capacitive artificial skin sensors [43].

Several studies have compared ML and more traditional
regression methods. In the case of multipollutant sensors
responding to CO, NO2, CO2, and O3, with strong mutual
interactions [38], the RF approach was found to outperform
univariate linear regression and multiple linear regression.
Similarly, in the case of the NO2 and PM10 sensors [39],
ML methods, including RF and GPR, prevailed over multiple
linear regression. A thorough comparison has rated 11 ML
methodologies applied to the case of microwave-based liquid
sensors [34]. The four top-performing methods, in this case,
were MLP, SVP, K-nearest neighbors, and linear discriminant
analysis, whereas RF followed on rank 6 after the decision tree
method. In the study of radiowave attenuation by vegetation,
ANNs were also found to deliver superior performance over
multivariate polynomial regression needing between 1140 and
7770 coefficients [85].

Noteworthily, two major differences can be identified
between the chemical sensors and sensor systems in the
abovementioned studies and the thermal-magnetic sensors
of the present work. The first difference, found in some
cases, is the stronger nonlinearity of the chemical sensor
response [39], [45] and the strong interactions in the cases
of concurrent multiple chemical influences [38]. The second
difference, encountered in other cases, is the large dimension
of the input space. This is especially true with the split-ring
resonators, where resonance spectra have consisted of 500 [33]
or 5001 [34] signal values. This is the dimension of the input
vector, i.e., of the space of the independent variables in the
language of regression.

By comparison, the space of independent variables in the
present Bayesian approach, VH and VT, is of modest dimen-
sion and the polynomial regression has to tackle only weak
nonlinearities up to polynomial degree five (VHV 4

T ). This
may explain why the Bayesian regression works so well,
as summarized in Table I and in Section V-A. A second, sub-
stantial distinction lies in the fact that the training phase (the
determination of the prior, as described in Section II-D) yields
statistically qualified uncertainty estimates for the predictions
based on future measurements. These measures of trust are
based solely on the training data. Then, independent data
can serve to validate the known uncertainties (cf. the 14-fold
cross-validation results in Table I), rather than establishing
them.
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Furthermore, the Bayesian approach allows to make pre-
dictions, again in conjunction with a corresponding qualified
uncertainty, beyond the range of the calibration data. In con-
trast, RFs do not lend themselves to such extrapolation [38];
it remains to be seen to what extent ML approaches oriented
toward classification do. Let us also point out that training
in the Bayesian approach, i.e., prior calculation, is straightfor-
ward and unambiguous. Questions concerned with the order of
the training data or their ideal subdivision into batches do not
pose themselves. In addition, the computational cost incurred
by polynomial model functions of low degree for prediction
and uncertainty evaluation is modest. On-chip integration of
the outcome of the present Bayesian algorithm on the sensor
chip is therefore a realistic option in the case of CMOS-based
microsensor systems.

Last but not least, the Bayesian sensor calibration frame-
work described here shows a way how to most economically
calibrate sensor specimens about which nothing is known
except that they are representatives of an ensemble of sensors
with known statistically scattered properties. Translated into
the case of the abovementioned chemical sensors, this would
amount to taking a pristine chemical sensor specimen and
turning it into a sensor of known, narrow uncertainty over the
entire measurement range by first performing a single or just
a handful of calibration measurements and then combining
this knowledge with the ANNs or RFs trained with other
specimens of the same ensemble.

In summary, the analytical Bayesian approach of this article
is tailored for cases with comparably simple models linear in
the model parameters. It can therefore be seen as comple-
mentary to numerical ML approaches handling more complex
input–output relations. Nevertheless, its formalism lends itself
to the obtention of analytical results on questions including the
dependence of the achievable accuracy on model complexity,
due either to larger input dimensions or stronger nonlinearity.
Separate studies concerned with this challenge should follow.
How the dimension of the parameter vector varies with a
number of sensor signals and polynomial degree is described
in [24].

Finally, let us refer to the topic of Bayesian neural net-
works aiming at enhancing nonlinear learning algorithms with
statistical methods [11, Sec. 5.7]. In the area of sensing,
for example, the calibration of low-cost gas sensors using
Bayesian neural networks has been shown to benefit of a
noninformative prior compared with standard linear regression
and neural networks [40]. Bayesian neural networks are com-
putationally expensive. Even with a noninformative prior, the
involved integrals are intractable [40]. Variational inference
[11, Ch. 10], [84, Sec. 19.4] and Markov chain Monte Carlo
methods based on efficient sampling techniques [12] have been
shown to bring down the numerical effort to an affordable
level [40]. No doubt, such approaches offer rich opportunities
for further exploration.

VI. CONCLUSION

In this article, a Bayesian approach to sensor calibration
was formulated in detail and applied to a temperature-cross-
sensitive Hall sensor system. Instead of at least seven mea-

surements to calibrate each specimen, the method needs sig-
nificantly fewer calibration conditions to achieve satisfactory
accuracy. The prerequisite of the method is the availability of
a prior whose acquisition was also described. The method is
broadly applicable to multisensor systems whose responses are
well described by parameterized models linear in the model
parameters, subject to the assumption that all relevant variabil-
ities are satisfactorily described by univariate or multivariate
normal statistics. The findings rely on Bayesian inference and
Bayesian experimental design. In view of the reduced number
of required calibration measurements, Bayesian calibration has
the potential for significant cost savings in the context of
industrial sensor calibration, recalibration, and autocalibration.

Future work may address the tradeoff between the effort
invested in generating the prior and the accuracy achievable
after optimal Bayesian calibration. Likely, Bayesian model
selection allowing to identify models with fewer model para-
meters is a natural extension of the present work. Finally, the
method may prove its worth in cases of multisensor systems
involving measurands cross-sensitive to more than a single
disturbance.

APPENDIX I
Following the nomenclature of [11], the multivariate normal

probability distribution of an M-dimensional random variable
z with mean μ and covariance matrix � is denoted as
N (z|μ,�). It is the short notation for

N (z|μ,�)

= 1

(2π)M/2|�|1/2 exp

�
−1

2
(z − μ)��−1(z − μ)

�
(A1)

where � has dimension M × M and is positive semidefinite.
Its determinant is denoted |�| and its inverse, �−1, is termed
precision matrix and is alternatively denoted �. Both z and
μ are column vectors, i.e., matrices with dimension M × 1.
The distribution has its maximum at z = μ, from which it
decreases in all directions like a Gaussian. In the univariate
case, (A1) reduces to the 1-D Gaussian distribution

N (z|μ, σ 2) = 1

(2πσ 2)1/2 exp

�
− 1

2σ 2 (z − μ)2
�

(A2)

where the role of the covariance matrix is taken over by the
scalar variance σ 2, i.e., the square of the standard deviation σ .

The derivations of (8)–(10) and (13)–(15) involve joint
probability densities p(za, zb) of two random variables za
and zb with respective dimensions Ma and Mb, and their
marginalization [12, Sec. 1.3] over one of their variables,
say zb. Explicitly, this means the integral

p(za) =


p(za, zb)dzb (A3)

yielding the marginal probability density p(za). Using
the product rule [12, Sec. 1.3], p(za, zb) is written as
p(za|zb)p(zb), with the conditional probability distribution
p(za|zb) and the marginal probability distribution p(zb).
Equation (A3) can then be understood as the weighted average
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TABLE II
PROBABILITY DENSITY DISTRIBUTIONS p(za|zb) AND p(zb),

INCLUDING THEIR DEFINING PARAMETERS, WHICH SERVE AS

INPUTS FOR THE TWO MAJOR MARGINALIZATIONS PERFORMED

IN SECTION II, FOLLOWED BY THE RESULTING MARGINAL

DISTRIBUTIONS p(za) WITH THEIR RESPECTIVE

MEANS AND COVARIANCES

of p(za|zb) over zb, with weight function p(zb). In both
marginalization cases in Section II-B, p(za|zb) has the form

p(za|zb) = N (za|μa|b(zb),�a|b) (A4)

with μa|b(zb) = Azb + b, while p(zb) has the form

p(zb) = N (zb|μb,�b). (A5)

The dimensions of the involved matrices and vectors are as
follows: A: Ma × Mb; b: Ma × 1; μb: Mb × 1; �a|b: Ma ×
Ma; and �b: Mb × Mb. Under these circumstances, p(za) is
given by [11]

p(za) = N (za|μa,�a) (A6)

with

μa = Aμb + b (A7)

and

�a = �a|b + A�bA�. (A8)

Table II shows how these marginalization rules are applied
in the two cases of Section II-B. The upper part of the
table identifies the constituents of p(za|zb) and p(zb). From
these, the resulting p(za) and its parameters are deduced by
straightforward substitution of the terms of the right-hand side
of (A6)–(A8). The results are listed in the last three rows.

APPENDIX II
An approach to model the distribution of the observed

parameter vectors w1, . . . , wQ of Q prior-generation spec-
imens is to look for the joint probability distribution
p(μ,�|w1, . . . , wQ) of the unknown mean μ and covariance
� of a multivariate normal distribution conditional to the
observations. The method of Bayesian multivariate linear
regression allows to address this question [12, Sec. 3.6].
It is concluded that p(μ,�|w1, . . . , wQ) takes the form of
a normal-inverse-Wishart distribution, namely

p(μ,�|w1, . . . , wQ)

= N �
μ

��μQ, κ−1
Q �

�W−1����νQ ,�−1
Q

�
. (A9)

The first term on the right-hand side of the equal sign is
a multivariate normal distribution of μ with mean μQ and
covariance κ−1

Q �, while the second term is an inverse Wishart
distribution of � with νQ degrees of freedom and scale
matrix �Q . The Bayesian multivariate linear regression analy-
sis enables one to obtain these parameters as [12, Sec. 3.6]

κQ = κ0 + Q (A10)

μQ = (κ0μ0 + Qw)/κQ (A11)

νQ = ν0 + Q (A12)

and

�Q = �0 + �W��W + κ0 Q

κQ
(μ0 − w)(μ0 − w)� (A13)

based on suitably chosen prior parameter values κ0,μ0, ν0,
and �0. The posterior predictive distribution of w values
implied by p(μ,�|w1, . . . , wQ) is then obtained by mar-
ginalizing p(w|μ,�)p(μ,�|w1, . . . , wQ) over μ and �, with
p(w|μ,�) = N (w|μ,�). As a result, one concludes that
w subject to the observed parameter vectors w1, . . . , wQ

is distributed as a multivariate t-distribution [12, Sec. 3.6],
namely

p(w|w1, . . . , wQ)

= tνQ−M+1

�
w

����μQ,
κQ + 1

κQ(νQ − M + 1)
�Q

�
. (A14)

If no information is available before the acquisition of
w1, . . . , wQ , an appropriate and widely used noninformative
prior is the Jeffreys prior |�|−(M+1)/2 [12, Sec. 3.6] corre-
sponding to the limit κ0 → 0, ν0 → −1, and |�0| → 0,
and implying κQ = Q,μQ = w, νQ = Q − 1, and �Q =
�W��W . This yields (18).

Since a general multivariate t-distribution tν(m, S) has
mean m and covariance νS/(ν − 2) [12, Appendix A], after
inspecting (18) and substituting Q − M for ν, w for m, and
{(Q + 1)/Q(Q − M)}�W��W for S, one straightforwardly
finds the multivariate normal approximation of (18) with
identical mean and covariance as stated in (19)–(21). Note
that (19)–(21) constitute a posterior probability density of w
derived from the Jeffreys prior on the basis of the experimental
evidence w1, . . . , wQ . At the same time, in the best tradition
of Bayesian statistics [86], it serves as the prior for the
subsequent Bayesian calibration of sensor specimens described
in Sections II-A–II-C.
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