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Abstract—The demand for safety-boosting systems is
always increasing, especially to limit the rapid spread of
COVID-19. Real-time social distance preservation is an essen-
tial application toward containing the pandemic outbreak. Few
systems have been proposed which require infrastructure
setup and high-end phones. Therefore, they have limited
ubiquitous adoption. Cellular technology enjoys widespread
availabilityand their support by commodity cellphones,which
suggest leveraging it for social distance tracking. However,
users sharing the same environment may be connected to dif-
ferent telecom providers of different network configurations.
Traditional cellular-based localization systems usually build a separate model for each provider, leading to a drop in
social distance performance. In this article, we propose CellTrace, a deep learning-based social distance preserving
system. Specifically,CellTrace finds a cross-providerrepresentationusing a deep learning versionof canonicalcorrelation
analysis. Different providers’ data are highly correlated in this representation and used to train a localization model for
estimating the social distances. In addition, CellTrace incorporates different modules that improve the deep model’s
generalizationagainstovertrainingand noise. We have implementedand evaluatedCellTrace in two differentenvironments
with a side-by-side comparison with the state-of-the-art cellular localization and contact tracing techniques. The results
show that CellTrace can accurately localize users and estimate the contact occurrence, regardless of the connected
providers, with a submeter median error and 97% accuracy, respectively. In addition, we show that CellTrace has robust
performance in various challenging scenarios.

22 Index Terms— Cellular localization, contact tracing, indoor localization, social distance tracking.

I. INTRODUCTION23

THE world is facing a massive threat in the form of a dev-24

astating pandemic (COVID-19), which took millions of25

innocent lives and tremendously affected the world economy26

and education. On the other hand, experts said it is like any27

novel disease, but the critical threat lies in its rapid progression28

infecting millions in a single month. The disease affects the29
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body because a pathogenic infection of COVID-19 mainly 30

comes from direct physical contact with confirmed cases. 31

Therefore, contact tracing approaches have received significant 32

attention as it is the most effective approach for breaking 33

chains of viral transmission [1]. It involves identifying who 34

may have had contact with an infected person with a recursive 35

tracing of their contacts. Despite the presence of vaccines in 36

some countries, we are moving to a post-COVID-19 world 37

where social distancing is the new normality [2]. This confirms 38

the need for an automatic social distance preserving system to 39

ensure such social distancing leading to safe environments, 40

especially indoors, e.g., schools and universities. 41

Toward realizing contact tracing, Wi-Fi-based systems [3] 42

are proposed due to the prominence of Wi-Fi-based localiza- 43

tion systems [4]. These systems leverage the signals received 44

from the installed Wi-Fi access point (AP) infrastructure to 45

estimate the users’ locations sharing the same environment. 46

The performance of these systems is obtained only if the area 47

of interest is covered with dense Wi-Fi APs. Nevertheless, 48

neither all environments are well covered with Wi-Fi networks 49

nor do all cell phones enable Wi-Fi by default, limiting the 50

ubiquitous adoption of such systems. A number of systems 51
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are proposed for fusing Wi-Fi signals with the onboard inertial52

sensors (e.g., accelerometers, gyroscopes, and compasses) [5],53

[6]. However, these systems usually have a location error54

accumulating over time, which does not hold true for contact55

tracing applications. Bluetooth Low Energy (BLE) technology56

has been widely adopted for automatic contact tracing due to57

its low power consumption and its relatively short communi-58

cating distance [7]. These systems utilize the detectable BLE59

signals to identify encountered users and build contact profiles.60

However, it has been shown to have higher false negatives61

due to the relatively low scanning rate compared to the other62

schemes [7]–[9]. Furthermore, Bluetooth-based contact tracing63

works only if Bluetooth is enabled on the users’ phones, which64

cannot be ensured. This raises the need for a ubiquitous and65

more accurate technology for contact tracing and real-time66

social distance preservation.67

On the other hand, cellular technology has several advan-68

tages, making it excel its Wi-Fi and Bluetooth counterparts.69

First, cellular technology is enabled on all cell phones,70

by definition, including low-end ones. Second, a cellular-71

based localization system will still work even with a failure72

in buildings’ electrical infrastructure as cellular base stations73

are better equipped to tolerate power failures. Third, network74

configuration is somehow fixed (changes rarely occur) as the75

changing process is complex and costs significant expense76

when performed frequently. Finally, current cellular-based77

localization techniques have achieved a fine-grained location78

accuracy indoors [10], [11] and outdoors [12]. These points79

suggest cellular to be the underlying ubiquitous technology for80

social distance and contact tracing.81

Current cellular localization systems achieved state-of-the-82

art performance by using the fingerprinting technique. Finger-83

printing is a twofold technique that collects fingerprints of the84

received signal strength (RSS) from the different cell towers85

detectable in the area of interest during the offline phase. These86

fingerprints are used to train a classifier that can be lever-87

aged to differentiate between different locations in the online88

phase. For this, different classifiers are proposed in the liter-89

ature, e.g., support vector machines [13], deep feed-forward90

networks [10], cascaded LSTM layers [11], and stacked91

autoencoders [14]. Despite the high accuracy achieved by92

the state-of-the-art cellular-based localization systems, direct93

application of such techniques for social distance estimation94

is not possible. Specifically, a social distance tracing system is95

designed with a view to minimizing the interlocation distance96

error between different users sharing the same environment.97

A typical scenario can be found where users of interest are98

connected to different service providers; each of them has99

its own spatial distribution of base stations and different100

power transmission ranges. The naive approach to enable the101

system for all providers is to build a localization model for102

each service provider in the country. Although this approach103

works well for traditional localization systems with a varying104

localization sensitivity per provider, it leads to performance105

degradation in social distance tracing. This can be justified as106

it assumes spatial independence (i.e., independent localization107

models) between users of different service providers, which is108

incorrect.109

In this article, we propose CellTrace: a novel cellular-based 110

social distance and contact tracing system trained with multi- 111

ple providers’ data. To achieve fine-grained accuracy, Cell- 112

Trace builds a deep neural network (DNN) to learn the 113

nonlinear relations between the RSS measured by the users’ 114

devices and the corresponding locations in the area of interest 115

and, thus, calculate the social distance between them. Since 116

different users can be connected to different providers, Cell- 117

Trace extracts cross-providers’ features enabling the training 118

of a single deep-learning-based localization model. Specifi- 119

cally, CellTrace employs a deep canonical correlation analy- 120

sis (DeepCCA) to learn the complex nonlinear transformations 121

of the RSS of different providers and then project them into a 122

space in which different providers’ data at the same location 123

are highly correlated. Then, these projected features are used to 124

train the localization model to detect the locations of different 125

users and their interdistance. 126

We test CellTrace using different Android phones in two 127

indoor environments (small and large sizes). The evaluation 128

results show that CellTrace can achieve consistent median 129

localization errors of 0.4 and 0.7 m in the small and large 130

environments, respectively. The system can also correctly 131

detect the exact social distance between two users 97% of the 132

time. This is better than the baseline cellular-based localization 133

system by more than 235% and 117% when used for contact 134

tracing purposes. Moreover, we show that our system is robust 135

when tested across different network operators, lower cell 136

tower densities, device heterogeneity, and unseen locations. 137

The rest of this article is structured as follows. We briefly 138

describe key concepts relevant to this work in Section II. 139

A literature review is carried out in Section III. In Section IV, 140

we provide an overview of the proposed system, while 141

Section V presents its details. In Section VI, we describe the 142

data collection process and how CellTrace is tested. We discuss 143

the system limitations in Section VII. Finally, we conclude this 144

article in Section VIII. 145

II. BACKGROUND 146

147

In this section, we provide a brief background on the 148

traditional canonical correlation analysis (CCA) on which the 149

DeepCCA is built. The details of our DeepCCA algorithm are 150

given in Section V. 151

CCA [15], [16] is a standard highly versatile statistical 152

method for finding a common correlation between two multi- 153

variate sets of variables (vectors) having the same situations. 154

In particular, CCA linearly projects the input sets on another 155

space in which these sets are maximally correlated. This 156

helps in studying the strength of the relationship between two 157

quantitative variables and how they are related. An appealing 158

property of CCA for prediction tasks is that, if there is noise 159

in either set, the learned representations should not contain 160

that noise in the new space. 161

More formally, assume that X = [x1, x2, . . . , xN ] ∈ 162

R
dx×N and Y = [y1, y2, . . . , yN ] ∈ R

dy×N are two dif- 163

ferent multivariate variable sets of N samples and feature 164

space of dimensions dx and dy, respectively. The goal of 165

CCA is to find K pairs of linear projections (canonical 166
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vectors) Wx = [wx,1, wx,2, . . . , wx,K ] ∈ R
dx ×K and Wy =167

[wy,1, wy,2, . . . , wy,K ] ∈ R
dy×K so that the correlations168

between W T
x X and W T

y Y are maximized. Specifically, CCA169

aims at finding the projection matrix that maximizes the170

correlation coefficient α between W T
x X and W T

y Y as171

α
(

W T
x X, Y T Wy

)
= W T

x XY T Wy

W T
x X X T Wx W T

y Y Y T Wy
. (1)172

That is, we want to find173

(
W∗

1 , W∗
2

) = argmax
Wx ,Wy

W T
x XY T Wy

W T
x X X T Wx W T

y Y Y T Wy
. (2)174

Since α is scaling-invariant, we can rewrite the correlation175

as176 (
W∗

1 , W∗
2

) = argmax
Wx ,Wy

W T
x XY T Wy177

s.t. W T
x X X T Wx = 1, W T

y Y Y T Wy = 1.178

(3)179

To find the optimum solution for (3), one has to solve the180

general eigenvalue problem of the form [17]181 [
0 �xy

�yx 0

] [
Wx
Wy

]
= λ

[
�̂x x 0

0 �̂yy

] [
Wx
Wy

]
(4)182

where �̂x x , �̂yy are the covariance matrices. �xy and �yx are183

defined as follows: �xy = (1/N)XY T and �yx = (1/N)Y X T .184

By solving (4), we get K eigenvectors {[Wx,k; Wy,k]}K
k=1185

and the corresponding K th eigenvalue that is equal to the186

correlation coefficient (1). Therefore, the aimed projection187

matrix W is the set of obtained eigenvectors.188

In this article, we adopt a deep learning-based version of189

CCA, denoted DeepCCA [18], which can be viewed as a190

nonlinear extension of the traditional CCA.191

III. RELATED WORK192

In this section, we focus on two groups of related work193

classified into localization and contact tracing systems.194

A. Localization Systems195

1) Sensor-Based Systems: Over the last decade, many196

indoor localization systems have been proposed relying on197

the available sensors of modern smartphones [19], [20]. The198

systems [5], [6], [19], [21] utilize the smartphones’ inertial199

sensor (e.g., magnetometer, accelerometer, and gyroscope) to200

track users based on the dead-reckoning technique. However,201

these measurements include noise components that accumulate202

quickly over time, leading to a severe deterioration in the203

localization performance. Over the years, several systems have204

been proposed to handle this issue, e.g., Zee [19] employs map205

matching to lessen the localization error, while Unloc [21]206

and SemanticSLAM [22] opportunistically reset the error207

on encounters of the detected building landmarks. On the208

other hand, Headio [20] proposes a computer vision-based209

solution leveraging the smartphone’s front camera to correct210

the location drift. Sensor-based systems run only on high-end211

phones equipped with inertial sensors.212

CellTrace, on the other hand, utilizes only the ubiquitous 213

cellular technology, which is supported by all mobile phones 214

by definition. In addition, contact tracing can realize at the 215

provider side without either incurring extra processing or 216

fooling the localization system at the edge. 217

2) Wi-Fi-Based Systems: Wi-Fi is widely available indoors 218

and has been widely adopted for indoor localization due to its 219

relatively short transmission range. To achieve high accuracy 220

for localization, Wi-Fi-based techniques usually depend on 221

building a Wi-Fi radio map of the overheard Wi-Fi APs, 222

which can be leveraged to identify the user location based 223

on matching the received signals. This matching can be either 224

deterministic [23] or probabilistic [24]. Many systems have 225

been proposed to address several Wi-Fi-based challenges over 226

the years, introducing deep learning for the localization task as 227

in [25] and [26]. Despite the fact that Wi-Fi-based techniques 228

have high localization accuracy due to the limited propagation 229

range of Wi-Fi APs [27], they cannot compete favorably with 230

other technologies, e.g., cellular, due to the requirements for 231

high coverage and frequent maintenance. 232

On the other hand, CellTrace leverages the widespread cel- 233

lular technology, whose network configurations rarely change 234

due to the consequent high expense and complexity of 235

this process when performed frequently. In addition, unlike 236

Wi-Fi networks, cellular signals have a longer propaga- 237

tion range and are less affected by variations in indoor 238

environments [28]–[31]. This leads to a stable infrastructure 239

for localization-based safety systems. 240

3) Cellular-Based Systems: Due to its high advantages, such 241

as the fact that cellular technology has the most widespread 242

infrastructure and is supported by the vast majority of mobile 243

devices, cellular-based localization has recently gained a lot 244

of attention. Therefore, cellular-based localization systems 245

have been adopted for both outdoor and indoor use cases. 246

The methodology of this technique is that a model is built 247

and trained to learn the relations between the collected 248

RSS measurements and the user locations during the offline 249

phase. Then during the online phase, this model must be 250

able to discriminate between different locations in the area 251

of interest. There have been proposals for both outdoor 252

and indoor cellular-based localization systems. Outdoor 253

cellular-based systems [12], [32], [33], have been proposed 254

as energy-efficient and ubiquitous alternatives for GPS. 255

Furthermore, cellular-based localization has recently been well 256

realized in indoor settings leveraging the computational power 257

of deep learning [10], [11], [14], [34]. For instance, to learn the 258

nonlinear relation between the received signals and the user 259

locations, a deep fully connected neural network is utilized 260

in CellinDeep [10], a deep LSTM network is adopted in 261

MonoDCell [11], and an autoencoders’ network is considered 262

in [14] and [34]. However, such typical techniques assume 263

that localization models between users of various service 264

providers are independent, resulting in poor performance when 265

used to track the social distance of users sharing the same 266

environment. 267

Unlike state-of-the-art cellular-based systems, CellTrace 268

extracts latent features, ensuring that different providers 269

are maximally correlated in the shared space. In addition, 270
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the localization model is ensured to generalize and avoid271

overfitting by using different regularization methods. As a272

result, both the location estimation accuracy and the contact273

tracing performance have significantly improved.274

B. Contact Tracing Systems275

The global outbreak of the Coronavirus has highlighted276

the importance of contact tracing even after the presence277

of vaccinations [35], [36]. BLE-based contact tracing is278

the most prevalent technology. Several systems based on279

Bluetooth or BLE have been rolled out, supported by the280

governments of various countries, such as Singapore [37] and281

Australia [38]. The basic idea of using BLE-based systems282

is to detect the enabled Bluetooth of the users in the vicinity283

and their identifier. Initial attempts of this technology face284

privacy concerns due to its requirement for clients to share285

contact logs to a central reporting server [36], [39]. Thereby,286

the authorities can detect people who may have had close287

contact with the infected one and notify them promptly to288

break the infection chain of diseases. However, to handle289

the privacy issues, the Decentralized Privacy-Preserving290

Proximity Tracing (DP-3T) protocol [40] is developed to291

facilitate privacy-preserving digital contact tracing of infected292

cases. This protocol ensures that the central server does not293

access contact records. However, this comes at the cost of294

requiring intensive computation on the client side to process295

infection reports. The Apple/Google Exposure Notification296

project adopts similar principles on the operating system297

level [41], [42], which has been widely adopted [43].298

Few approaches [44], [45] were recently proposed to track299

passengers on public transportation depending on the smart-300

phones’ inertial sensors (e.g., magnetometer, accelerometer,301

and gyroscope) using dead reckoning. However, the inherent302

noise in sensor data leads to an error that accumulates quickly303

over time resulting in limited accuracy and robustness.304

The Wi-Fi-based solution [3], [46], which features dom-305

inantly in the indoor positioning research, has become more306

attractive for pandemic tracking, thanks to the increasing num-307

ber of indoor and outdoor public Wi-Fi APs. The research [47]308

demonstrated that, when at least ten Wi-Fi APs were nearby,309

contact detection using pure Wi-Fi RSS could closely match310

the accuracy of GPS (used as a reference) in the city cen-311

ter. However, this accuracy may be inadequate for contact312

tracing, and the expected Wi-Fi coverage cannot be realized313

indoors. Contact tracing based on GPS cannot work inside314

buildings due to the absence of line-of-sight to the reference315

satellites [35], [36].316

In contrast, cellular-based contact tracing has shown to be317

feasible due to its availability and ubiquity, which encouraged318

some governments to use in emergency time [35], [36],319

[48]. Moreover, it can be deployed on both the client side320

and the provider side enabling governments to control the321

spread of the virus. Motivated by these advantages, CellTrace322

enables cellular-based contact tracing for heterogeneous net-323

work providers.324

IV. SYSTEM OVERVIEW325

Fig. 1 shows the CellTrace system architecture. CellTrace326

works in two phases: an offline training phase and an online327

Fig. 1. CellTrace system architecture.

interdistance location estimation phase. The offline phase starts 328

with the data collection process using a client-side application 329

running on the user’s cell phone. The application is designed 330

carefully to record the time-stamped cellular information from 331

the overhead towers at sparse predefined points called refer- 332

ence points in the considered area.1 These collected measure- 333

ments are uploaded to our online running service for further 334

processing. The preprocessor module is used to handle the 335

noise in the input data and prepare the low-level RSS feature 336

vector of each considered provider.2 As a result, a fixed-size 337

RSS vector across all the recorded samples has been obtained 338

that fits as input to the localization model. The RSS vectors 339

from different providers are then further processed by the 340

deep feature extractor module to learn complex nonlinear 341

transformations and project the original low-level features to 342

a cross-provider feature space. The module is based on a 343

combination of a DNN and a CCA process, ensuring that data 344

from different providers are highly correlated in the common 345

space, as described in Section V-B. Thereafter, the projected 346

RSS features are fed to localization model; hence, we can 347

calculate the social distancing between each pair of users based 348

on an accurate estimate of their locations. The output of this 349

offline phase is two trained models (i.e., the deep correlation 350

model and the localization model), which are saved for later 351

use in the online phase. 352

During the online phase, users are tracked in real-time 353

by carrying their phones to unknown locations scan for the 354

covering towers. The scans are forwarded to the CellTrace 355

server. These data are first handled by the preprocessor 356

module to extract the RSS feature vectors. Thereafter, the 357

online predictor module feeds the data to the trained deep 358

correlated model to extract the desired features. Finally, the 359

location estimation model feeds the data to the localization 360

model trained in the offline phase to estimate the likelihood 361

of the user being at the different reference points trained 362

during the offline phase. Based on this likelihood, the system 363

obtains the user’s location in the continuous spatial space. The 364

1During the data collection process, the received signal measure-
ments can be captured by either manual fingerprinting [10], [25] or
crowdsourcing [12], [26].

2This RSS vector is called a low-level vector due to its tightly coupled to
each provider considered in the data collection.



17954 IEEE SENSORS JOURNAL, VOL. 22, NO. 18, 15 SEPTEMBER 2022

predicted locations of people in the area of interest are used365

to gauge and warn users who violate the social distance rule.366

V. THE CellTrace SYSTEM367

Fig. 1 shows the different modules of the CellTrace system.368

In the balance of this section, we describe the details of each369

module.370

A. Preprocessor Module371

This module runs during both the offline and online tracking372

phases. Each cell provider has a number of towers covering373

the area of interest. However, the number of detected cell374

towers per scan is limited to seven or less, by default [10],375

[33]. From the whole covering towers, the selected group376

of towers may vary across different scans; even, the user377

is stationary at the same location. Therefore, this module378

unifies the number of detected towers and produces a q-length379

(i.e., the length of all covering towers) RSS feature vector380

s = (s1, s2, . . . , sq ) across different scans. The benefit of381

this is to obtain a consistent set of cell towers that fit the382

input of the deep model as described in Section V-B. Each383

entry of the vector represents the RSS from a certain tower,384

while nondetected towers in an arbitrary scan are set to 0385

ASU.3 It is worth noting that some scans include false network386

information, e.g., tower IDs of 65636, which is not a valid387

tower for any location area code (LAC) [50]. This anomalous388

event usually takes place in a short period of time during radio389

access technology (RAT) change [51] and can be practically390

detected by the absence of an LAC ID, which must be included391

in any scan. Thus, the spurious cell towers are deleted. Toward392

having a fast convergence time [52], the RSS values received393

from the covering towers are normalized to the range of [0,394

1].395

Finally, this module mitigates the burden in collecting a396

large amount of training data, as required by deep models,397

by employing our data augmentation framework proposed398

in [53]. The framework generates a massive amount of syn-399

thetic data from samples collected over a short time frame400

that reflects the typical RSS variations. In addition, CellTrace401

employs spatial augmentation introduced in [11] in order to402

generate synthetic RSS measurements for nonsurveyed data403

points to reduce the calibration effort further. These techniques404

have the advantage of ensuring model generalization and405

overfitting avoidance.406

Note that the deployment of CellTrace does not require407

information about the physical locations of the covering cell408

towers.409

B. Feature Extraction Module410

This module aims to transform the preprocessed RSS feature411

vectors of different providers into a latent space in which they412

are highly correlated. This has the benefit of consolidating413

the input to the localization model and considering the spa-414

tial dependence of users of heterogeneous providers. Toward415

3The RSS is usually measured by the user’s phone in the arbitrary strength
unit (ASU). It represents an integer range of values of [0–31], which is linearly
proportional to the decibel-milliwatts (dBm) unit [10], [49].

Fig. 2. Network structure of the feature extraction module. It consists
of two deep networks learned so that the output layers (topmost layer of
each network) are maximally correlated. A CCA layer is stacked on top
of a fully connected layer to calculate the correlation between the views.

achieving this, we adopt DeepCCA [18] to discover that 416

latent space. Compared to the classical CCA, which linearly 417

transforms the input views into highly correlated projections, 418

DeepCCA solves the same objective function by realizing 419

more powerful nonlinear projections in a new latent space 420

using DNNs. These projections are learned via the gradient 421

descent technique. The intuition behind leveraging the deep 422

version of CCA is the ability of the DNN to learn complex 423

relations from the noisy cellular data automatically. 424

Fig. 2 shows the schematic of the proposed DeepCCA 425

feature extraction model. As shown in the figure, DeepCCA 426

consists of two independent DNNs, one for each cellu- 427

lar provider. Each DNN consists of cascaded fully con- 428

nected layers. The input layers of DNN A and DNN B 429

are RSS vectors as detected simultaneously from the cor- 430

responding covering towers of each provider. In general, 431

the size of the input vectors varies based on the number 432

of towers of each provider. These DNNs are then trained 433

to encode these inputs to a fixed-size subspace where the 434

corresponding output vectors (z A and z B ) are maximally 435

correlated. 436

Specifically, let X A be a set of RSS input vectors of provider 437

A and X B be the corresponding set of RSS vectors of provider 438

B , which are collected simultaneously at the same set of 439

reference points. These provider-dependent matrices are fed 440

to the DeepCCA subnetworks to obtain the aimed cross- 441

provider representations. For the instance, the output of the 442

first layer of network A is h A
1 = σ(W A

1 X + bA
1 ), where 443

σ is a nonlinear activation function (e.g., logistic Sigmoid) 444

applied componentwise, W A
1 is a matrix of weights, and bA

1 445

is a vector of biases. The output of each layer is used to 446

calculate the output of the next layer and so on until the 447

final layer d whose output is fA(X A) = σ(W A
d hd−1 + bA

d ), 448

which is the intended latent representation (z), i.e., the spa- 449

tially correlated feature vector. Similarly, the representation 450

obtained by the second DNN is fB(X B) = σ(W B
g hg−1 + bB

g ) 451

with different parameters: W B
g , bB

g , and g. The objective of 452

DeepCCA is to jointly learn the parameters θA and θB for 453

both neural networks such that the correlation between z A
454

and z B is maximum. Therefore, the objective function of 455
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Fig. 3. Deep network structure.

DeepCCA is defined as follows:456

(
θ∗

A, θ∗
B

) = argmax
(θA,θB)

Corr ( fA (X A; θA) , fB (X B; θB)) . (5)457

Toward achieving this, we compute the correlation and its458

gradient with respect to the output layers, and then, the back-459

propagation is used to update the parameters of both networks.460

This process is repeated until convergence is obtained.461

Given that, in general, optimization of deep models may462

not achieve the best performance if the model parameters are463

initialized randomly, therefore, the feature extraction module464

utilized denoising autoencoders [54] to better initialize the465

parameters of each layer.466

Unlike traditional deep learning methods [10], [14], [25]467

that are trained to maximize the likelihood of target class (loca-468

tion) for radio scans from individual providers, CellTrace469

leverages DeepCCA with the correlation-based objective func-470

tion. This empowers the robustness of interdistance (social471

distance) calculations of the system as it ensures the spatial472

dependence of the signals received from different providers473

covering the same area of interest.474

C. Location Estimation Model475

This module is responsible for utilizing the correlation476

features (z) extracted from the DeepCCA network to train a477

localization model and find its optimal parameters. The trained478

model is used in the online phase by the online location479

predictor module. DNNs have been considered to be one of480

the staple techniques in machine learning in use today. Based481

on the universal approximation theorem [55], DNNs could be482

considered capable of approximating any arbitrary function,483

provided that they were suitably complex. Therefore, a neural484

network is adopted in this module.485

Architecture: Fig. 3 shows the structure of the considered486

DNN for localization. Specifically, CellTrace adopts a fully487

connected feedforward neural network. The hierarchical rep-488

resentation of CellTrace is obtained by four hidden layers of489

nonlinear processing units. The rectified linear unit (ReLU)490

(the state of the art of nonlinearity) is used as the activa-491

tion/transfer function for the hidden layers due to its sparsity492

and immunity to vanishing gradient problems [56].493

The input layer of the network is a vector z of length494

v, which is obtained from the feature extraction module (as495

described in Section V-B). The output layer consists of a496

number of neurons corresponding to the number of surveyed 497

reference points in the area of interest considered in this 498

phase. The network is trained to operate as a classifier such 499

that each reference point represents a class. Unlike equivalent 500

regression models, classification models usually have a simpler 501

data collection process (i.e., permits collection at low-density 502

reference points). Therefore, a softmax activation function 503

is leveraged at the output layer. This leads to a probability 504

distribution over the different predefined reference points given 505

an input. In particular, the network outputs the probability 506

that the input sample (the latent representation) comes from a 507

specific reference point. More formally, given a total number 508

of training samples m, where zi ∈ R
v is the projected 509

latent representation of each cell scan si ∈ R
q , which is 510

fed to the model, the sample zi has a corresponding discrete 511

outputs (i.e., logits), and ci is ai = (ai1, ai2, . . . , ain), which 512

captures the score for each reference points from the possible 513

n reference points to be the estimated point. The logit scores 514

ai j (for sample i to be at reference point j ) are converted into 515

probabilities using the softmax function as 516

p
(
ai j

) = eai j∑ j=q
j=1 eai j

. (6) 517

For training purposes in the offline phase, we encode the 518

ground-truth label of each sample using one-hot-encoding. The 519

encoding of the output vector has a probability of one for 520

the correct reference point and zeros for others. We used the 521

Adam optimizer [57] and categorical cross-entropy as our loss 522

function. 523

To avoid overtraining (i.e., overfitting), CellTrace employs 524

the early stopping regularization technique, which automati- 525

cally selects the optimal number of training epochs. Specif- 526

ically, early stopping monitors the model’s performance for 527

every epoch on a held-out validation set during the training. 528

It terminates the training as soon as the performance stops 529

improving [58]. 530

D. Online Phase 531

The goal of this phase is to pinpoint the users sharing the 532

same environment and, thus, detect the contact occurrence. 533

Initially, each user’s device identifies the provider, measures 534

the received cell signals from the hearable towers in the 535

area of interest, and forwards the scan to our running ser- 536

vice to process and extract the corresponding feature vector. 537

Specifically, the RSS vector is submitted to a single view 538

of the trained DeepCCA, which corresponds to the user’s 539

network provider to extract a cross-provider feature vector, 540

as described in Section V-B. This vector is then fed to the 541

trained localization model (regardless of the provider) to get 542

a location estimate as one of the already defined reference 543

points at the calibration phase. Then, the user’s location l∗ is 544

estimated as the one that has the maximum probability given 545

the input vector (z). That is, we want to find 546

l∗ = argmax
l

[P (l|z)] . (7) 547

One advantage of designing the localization model to oper- 548

ate as a classifier rather than a regressor is reducing the amount 549
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of the required reference points and, thus, the data collection550

burden. However, the classification model can only predict551

the user locations at the predefined few discrete reference552

points. As a result, this will lead to a poor user experience553

as the estimated locations will be spaced out even with a very554

accurate model. To ensure the required fine-grained tracking of555

the users in the continuous spatial space,4 CellTrace estimates556

l∗ as the spatial-weighted average of all reference points at557

the output layer, where the weight of each point is chosen558

as its corresponding softmax likelihood. More formally, the559

probabilistic output (obtained by softmax) of the network is560

denoted as P = [P1, P2, . . . , Pn ], where n is the number of561

reference points in the area of interest and Pi (1 ≤ i ≤ n)562

represents the possibility that the input vector is coming from563

the i th reference point li . Pi is formulated as follows:564

Pi = P (li |z) . (8)565

Thus, the fine-grained location coordinates are defined as566

l∗x =
∑n

i=1 Pilix∑n
i=1 Pi

(9)567

l∗y =
∑n

i=1 Pilix∑n
i=1 Pi

(10)568

where lix and liy are the coordinates of reference point i .569

The objective of CellTrace is to detect in real time if two570

users (carrying their cell phones) are in contact. This can571

be achieved by calculating interdistance (social distance, d)572

between users sharing the same environment over the course573

of a predefined time interval τ time steps, e.g., 16 time steps5
574

d =
∑τ

1

√(
l1
x − l2

x

)2 +
(

l1
y − l2

y

)2

τ
(11)575

where (l1
x , l1

y) and (l2
x , l2

y) are the location coordinates of user576

1 and user 2 at an arbitrary time step, respectively.577

Users whose interdistance is less than one meter (social578

distance violation) are alerted by vibrating their phone or579

sending a text message.580

E. Design Issues581

The proposed system has two modes of operation (i.e.,582

deployment): client- and provider-side modes. First, the583

client-side mode involves installing the CellTrace app on584

the user devices. This app is connected to the localization585

server to provide positioning and contact-tracing services in586

an emergency. In addition, based on the response from the587

server, the app notifies encountered users when a contact is588

detected. In this case, the users install the app and approve589

the transmission of their signals to the localization server.590

Despite the simplicity of this approach, it cannot guarantee591

efficient contact tracking and safety in practice as it requires592

all users to install the app. On the other hand, the system593

can be deployed on the provider side. This mode has better594

4CellTrace can locate the user anywhere even in locations different from
reference points.

5An interval of 16 time steps can be translated to seconds by dividing the
number of time steps by the scanning rate.

Fig. 4. Social distance and contact tracing.

Fig. 5. Layout of testbed 1.

contact tracing efficacy, encouraging some governments to 595

adopt it at least for short periods [48]. Each provider is 596

connected to the shared contact tracing server, which processes 597

anonymized client cellular measurements, and thus, contacts 598

can be identified, as shown in Fig. 4. Then, notification 599

messages are sent from the provider to users upon contact 600

occurrence of infected cases. However, this approach may face 601

some challenges in adoption. For instance, privacy concerns 602

may hinder the adoption in some countries as end-users have 603

not provided their consent to use their data by their providers 604

for contact tracings [48], [59]. Additionally, obtaining consent 605

from different providers to deploy a common contact tracing 606

system is rather difficult, even in an emergency. However, 607

there are tradeoffs in the effectiveness of contact tracing and 608

exposure notification apps with increased privacy [48], [59]. 609

In particular, the effectiveness of the privacy-first apps might 610

be impossible to evaluate due to the lack of recorded data [59]. 611

Nevertheless, CellTrace can be extended for further privacy 612

protection by anonymizing users’ data, employing differential 613

privacy [60] or inheriting the decentralization concept from 614

other techniques, e.g., inheriting the concept of DP-3T [40] or 615

exposure notification [41], [42]. 616

VI. EVALUATION 617

In this section, the data collection setup and tools used are 618

described first. Then, we show how the system performs by 619

varying the different system parameters. Finally, we compare 620

the performance of CellTrace to the state-of-the-art techniques. 621

A. Data Collection 622

We deployed our system in two indoor environments with 623

different sizes and characteristics (as described in Table I). 624
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Fig. 6. Layout of testbed 2.

TABLE I
SUMMARY OF THE TEST BEDS CONSIDERED IN EVALUATING CellTrace

The first is a lab on our university campus building (denoted625

test bed 1) with an area of 132 m2 containing offices, a meeting626

room, and corridors (see Fig. 5). The second environment627

(denoted as test bed 2), as shown in Fig. 6, is a full floor in our628

university campus having a total area of 629 m2 containing629

several offices, labs, and corridors with more furniture. The630

training data were collected from 55 and 310 reference points631

located throughout test bed 1 and test bed 2, respectively. The632

reference points were uniformly distributed over the area of633

interest with 1- and 1.5-m spacings. The system parameters634

are listed in Table I.635

Data have been collected using an Android app that con-636

tinuously scans for the network information from the over-637

heard cell towers in the area of interest. The app records638

cell information, including cell tower identifier (CID), LAC,639

and the corresponding time-stamped signal strength with a640

scanning rate set to 3.33 scan/s. To collect different provider’s641

data concurrently, the same application runs synchronously on642

all mobile devices. Each device is connected to a different643

provider with one device dedicated to controlling ground-truth644

profiling and starting/stopping the data collection process on645

all devices. The application visual interface is designed to646

depict the test bed floorplan in the foreground of the master647

device. The user tags her current location on the displayed648

test bed as a ground truth triggered by a long tap on the map649

interface. Five participants are engaged in the data collection650

process using different Android phones (e.g., HTC One X9,651

Google Pixel XL, Tecno Phantom 6, HTC One E9, Motorola652

Moto G5, and ZTE Blade 7). To consider the time-variability653

effect on cellular signals, the data were captured and recorded654

across different days. To scan cell towers in the area of interest, 655

we developed a scanning application using the Android SDK. 656

To evaluate the learned model and confirm its generalization 657

ability, we adopted K -fold cross-validation (typically k = 5). 658

The training set is partitioned into k subsets where each subset 659

includes the data collected from two providers.6 Each time, 660

k − 1 subsets are used to form a two-view training set, and 661

the remaining one is used as the validation set. Hence, every 662

subset appears in the validation set exactly once and appears 663

in a training set k −1 times. Then, the average error across all 664

k folds is reported and is used to select the model parameters. 665

This significantly reduces the impact of the bias-variance 666

problem due to the interchange of the training and validation 667

sets. 668

We implemented our deep learning-based training using 669

the Keras learning library on top of the Google TensorFlow 670

framework [61]; the training was carried out on the Google 671

collaboratory cloud platform.7 672

B. Effect of Changing CellTrace Parameters 673

In this section, we study the effect of the deep models’ 674

different hyperparameters, CellTrace parameters, and the dif- 675

ferent techniques used to learn nonlinear transformations for 676

achieving the maximum correlation between the data views on 677

the overall system performance. These parameters include the 678

number of layers, the effect of the feature extraction method, 679

and the size of the feature vector. The default parameters’ 680

values used throughout the evaluation section are reported in 681

Table II. 682

1) Number of Layers in the Network: Fig. 7 shows the effect 683

of changing the number of layers on CellTrace accuracy. 684

The figure shows how increasing the number of layers of 685

the location estimation network increases its accuracy until it 686

reaches an optimal value at four layers. This can be justified as 687

increasing the number of layers increases the model computing 688

6Without loss of generality, we got permission to use provider-side data for
two providers only to ensure the system’s validity on both sides, i.e., the client
side and the provider side. However, CellTrace can work with any number of
available providers by creating a view for each provider.

7https://colab.research.google.com
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TABLE II
DEFAULT PARAMETERS’ VALUES USED IN THE EVALUATION

Fig. 7. Effect of changing the number of layers on CellTrace accuracy.

Fig. 8. Effect of feature extraction module on CellTrace performance.

power to avoid underfitting and, thus, better fits the function.689

However, the deeper the model, the more likely it is to overfit690

the training data, reducing its flexibility and accuracy when691

handling users from different providers. Four layers are set as692

the default number of layers in CellTrace model to achieve the693

balance between underfitting and overfitting, It is worth noting694

that applying DeepCCA radically simplifies the classification695

problem in the projected space. As a result, a four-layer696

network is sufficient for the classification of features in the697

projected space.698

2) Feature Extraction Method: In this section, we study the699

influence of the different feature extraction techniques on the700

overall system performance. Fig. 8 compares the effect of701

using DeepCCA for extracting provide-invariant features to702

either using individual provider models or feature projected703

using traditional CCA [16] on CellTrace’s estimation accuracy704

of social distance. The figure depicts that, in comparison with705

Fig. 9. Effect of changing the feature vector length on CellTrace accuracy.

Fig. 10. Effect of using data from different service providers.

the raw features and classic CCA, the proposed DeepCCA 706

method gives an improvement of 235% and 185% in the esti- 707

mation accuracy of social distance. These results confirm the 708

efficacy of DeepCCA in capturing the correlated signatures of 709

different providers better than other methods, which facilitates 710

locating users sharing the same environment. 711

3) Feature Vector Length: Fig. 9 shows the location estima- 712

tion accuracy of CellTrace as a function of the latent space 713

dimension size obtained by the DeepCCA network. It is clear 714

from the figure that increasing the size of the latent feature 715

vector z improves the CellTrace performance. The figure 716

also shows that a feature vector z of ten dimensions yields 717

the best performance. Beyond that, new dimensions (i.e., 718

features) will be included leading to no further performance 719

enhancement. This can be justified for two opposing reasons: 720

1) the additional features reduce the correlation between 721

different providers’ data and 2) on the other hand, the location 722

discriminative power of the localization model is boosted by 723

increasing the number of features in the latent space. 724

C. Robustness Experiments 725

In this section, we evaluate the robustness of CellTrace 726

under varying environmental conditions. 727

1) Resilience to Provider Heterogeneity: In this section, 728

we evaluate the performance of the CellTrace system when 729

tested with two different providers individually compared 730

to the heterogeneous providers’ scenario. Fig. 10 shows the 731

performance of CellTrace when all users are connected to 732

either only A or only B compared to A and B together 733

(heterogeneous providers). It is worth noting that different 734

operators cover the area of interest with different densities of 735

serving towers of 16 and 9 for operators A and B, respectively. 736
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Fig. 11. Effect of testing with unseen locations on the CellTrace system
performance.

Fig. 12. Performance of the system when tested with heterogeneous
phones.

The figure shows that CellTrace achieves a consistent accu-737

racy across different providers with a low as 0.5-m median738

interlocation error (social distance error). This highlights the739

system’s resilience to heterogeneous providers of varying740

densities of cell towers with different signal distributions. This741

can be explained as a result of leveraging the feature extraction742

module that can learn the correlation between two views of743

data to get a robust and fixed-size feature vector for training744

a localization model on different providers’ data.745

2) Unseen Locations: Fig. 11 shows the performance Cell-746

Trace when testing with unseen locations (i.e., never con-747

sidered in training). This is done by reducing the number748

of surveyed locations during the calibration phase (offline)749

by a particular percentage; the same percentage reduces the750

fingerprinting overhead. CellTrace is robust to unseen loca-751

tions. As shown in the figure, even with a 50% reduction in752

the number of training locations (i.e., only 27 locations are753

considered out of 55), CellTrace can obtain a location error754

of less than 1.3 m. This advantage is due to the employment755

of data augmentation techniques that compensate for reference756

points’ loss. This result enables CellTrace to be deployed at757

scale.758

3) Device Heterogeneity: In this section, we evaluate the759

resilience of the model to cope with device heterogeneity.760

To do that, we employed leave-one-out cross-validation [62],761

which iterates over all devices, and each time holds data762

captured by one device out for testing while training with763

data recorded by the remaining devices. Fig. 12 shows the764

performance corresponding to each testing device. The figure765

shows that CellTrace provides consistent performance even766

with the device variability. This can be justified due to the767

ability of the feature extraction network to map the input768

Fig. 13. CDF of the localization error in test bed 1.

cell measurements into the latent space where correlation 769

is maximized. Specifically, as verified in [14], the effect of 770

device heterogeneity can be modeled as random noise added 771

to the measurements. Transformation into the new space using 772

DeepCCA has the effect of reducing the localization model 773

dependence on the absolute input values by considering rela- 774

tive representation that maximizes the correlation. This result 775

highlights the system robustness to the device heterogeneity 776

problem. 777

D. Comparative Evaluation 778

In this section, we evaluate the end-to-end performance of 779

CellTrace in terms of localization performance and contact 780

tracing accuracy, and compare it to the state-of-the-art cellular 781

location estimation and contact tracing systems. 782

1) Social Distancing: In this section, we evaluate the perfor- 783

mance of CellTrace compared to baseline cellular localization 784

techniques [10], which builds an individual model for each 785

provider. Figs. 13 and 14 show the CDF of social distance 786

error for the two techniques in test bed 1 and test bed 2, respec- 787

tively. Fig. 13 illustrates that CellTrace outperforms the base- 788

line, enhancing the median error by 280%. Similarly, for the 789

second test bed, CellTrace achieves an improvement in median 790

localization error of 117% compared to the baseline [10]. This 791

can be explained by noting that, unlike CellTrace, the baseline 792

technique, which relies on the original signal features, does not 793

consider the interoperability between different operators when 794

their connected clients share the same spatial environment. It is 795

worth noting that a slight drop in the accuracy is observed in 796

test bed 2, which can be justified due to the increase in the 797

spatial uncertainty in a larger space compared to test bed 1. 798

This can be easily handled by space partitioning. Nevertheless, 799

the results in the two test beds confirm the superiority of 800

CellTrace due to its ability to capture the correlated features 801

across different providers compared to the baseline. 802

2) Contact Tracing: In this section, we evaluate the overall 803

accuracy of CellTrace in contact detection. Table III summa- 804

rizes the performance metrics in contact tracing. It is worth 805

noting that positive means that contact is detected by the 806

system, which can be either correct (true) or incorrect (false) 807

detection and similarly for the negative detection. However, 808

a false positive case occurs when users are more than 1 m apart 809

(no physical contact). At the same time, the system reports a 810

contact leading to a false alarm and, thus, a bad user expe- 811

rience. In addition, the false-negative case occurs when the 812
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Fig. 14. CDF of the localization error in test bed 2.

Fig. 15. Performance of the system compared to contact tracing
methods.

TABLE III
CONTACT TRACING METRICS CONSIDERED IN EVALUATING CellTrace

system missed a real contact reducing the system’s feasibility.813

The results in the table indicate that the CellTrace achieves814

TPR, TNR, FPR, and FNR of 0.95, 1.0, 0.0, and 0.06, and815

0.88, 0.99, 0.11, and 0.01 with social distance thresholds of816

1.5 and 1 m, respectively. These results confirm the superiority817

of CellTrace compared to the baseline technique in both cases.818

Fig. 15 shows the performance of CellTrace compared to819

the state-of-the-art contact tracing systems. The system in [63]820

(denoted sensors) proposed a contact tracing approach-based821

pedestrian dead reckoning (PDR) fusing Wi-Fi measurements822

and smartphone sensors. WiFiTrace [3], on the other hand,823

collects Wi-Fi network logs, specifically association and disso-824

ciation log entries for each device, at various APs in the area of825

interest and then uses them to reconstruct the locations visited826

by the user for contact tracing. Furthermore, CellTrace was827

compared against the Bluetooth-based system called SCT [7],8828

which used a decision tree classifier to categorize user contacts829

as low or high risk based on BLE signals.830

The figure illustrates that CellTrace outperforms the other831

techniques with a significant increase in social distancing832

accuracy over sensor [63], WiFiTrace [3], and SCT [7].833

CellTrace achieves a 0.45-m median social distancing error,834

while the baseline has a median error of 1.5 m. This confirms835

the efficacy of CellTrace as a contact tracing technology.836

8In particular, the effectiveness of the available privacy-first BLE apps might
not be easy to evaluate due to the lack of ground-truth data [59].

VII. LIMITATIONS AND DISCUSSION 837

Although the feasibility of cellular networks as a base 838

technology for reliable contact tracing, using them involves 839

privacy concerns in some countries [48] (as discussed in 840

Section V-E). 841

1) Cellular technology may have some privacy concerns 842

in some countries [48], despite their feasibility, as dis- 843

cussed in Section V-E. This can be handled by 844

anonymizing users’ data, employing differential pri- 845

vacy [60], or inheriting the decentralization concept from 846

other techniques (DP-3T) [40]. 847

2) Fingerprinting approach is challenging in 3G and 4G 848

networks due to the reduction of the available cell 849

information, which only includes the associated serving 850

cell and sometimes the strongest neighboring cells [64], 851

[65]. However, this problem exists only at the client side 852

mode [66], and some solutions have been proposed to 853

mitigate its effect, e.g., [11]. 854

3) Fingerprinting-based localization is expensive in terms 855

of data collection and maintenance. However, some 856

solutions have been proposed to mitigate this issue in 857

cellular [11], [53], [67] and for Wi-Fi [26], which can 858

be reused for cellular as well. It is worth mentioning that 859

collecting site data is usually done by each provider to 860

ensure the quality of service of their clients [67]. 861

VIII. CONCLUSION 862

In this article, we aimed to realize a flexible solution for 863

contact tracing that can be operated by the provider, client, 864

or even at a third party by handling data from different 865

sources, i.e., different providers. We presented the design, 866

implementation, and evaluation of the CellTrace system as a 867

ubiquitous contact and social distance tracing system using 868

cellular signals. As part of the CellTrace design, we intro- 869

duced a novel feature extraction module based on DeepCCA, 870

which yields cross-provider features. These features are fur- 871

ther utilized for training a deep localization model tracking 872

users and calculating their social distance regardless of their 873

connected providers. Furthermore, we showed how CellTrace 874

includes provisions in the model to avoid overfitting and 875

boost the model generalization ability. CellTrace achieved a 876

promising localization and contact tracing performance of sub- 877

meter median distance error and 97% accuracy, respectively. 878

Nevertheless, CellTrace still has to handle privacy-associated 879

issues to ensure effective contact tracing while maintaining 880

privacy. In addition, we plan to study the system performance 881

at scale, i.e., increasing the number of phones, users, providers, 882

and so on. 883
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