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Abstract—The demand for safety-boosting systems is
always increasing, especially to limit the rapid spread of
COVID-19. Real-time social distance preservationis an essen- . o
tial application toward containing the pandemic outbreak. Few
systems have been proposed which require infrastructure
setup and high-end phones. Therefore, they have limited
ubiquitous adoption. Cellular technology enjoys widespread
availability and their support by commodity cellphones, which
suggest leveraging it for social distance tracking. However,
users sharing the same environment may be connected to dif-
ferent telecom providers of different network configurations.
Traditional cellular-based localization systems usually build a separate model for each provider, leading to a drop in
social distance performance. In this article, we propose CellTrace, a deep learning-based social distance preserving
system. Specifically, CellTrace finds a cross-providerrepresentation using a deep learning version of canonical correlation
analysis. Different providers’ data are highly correlated in this representation and used to train a localization model for
estimating the social distances. In addition, CellTrace incorporates different modules that improve the deep model’s
generalization against overtraining and noise. We have implemented and evaluated CellTrace in two differentenvironments
with a side-by-side comparison with the state-of-the-art cellular localization and contact tracing techniques. The results
show that CellTrace can accurately localize users and estimate the contact occurrence, regardless of the connected
providers, with a submeter median error and 97% accuracy, respectively. In addition, we show that CellTrace has robust
performance in various challenging scenarios.

CellTrace projects cellular
data in a space where
different providers’ data
are maximally correlated.
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|. INTRODUCTION body because a pathogenic infection of COVID-19 mainly

HE world is facing a massive threat in the form of a dev-
astating pandemic (COVID-19), which took millions of
innocent lives and tremendously affected the world economy
and education. On the other hand, experts said it is like any
novel disease, but the critical threat lies in its rapid progression
infecting millions in a single month. The disease affects the
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comes from direct physical contact with confirmed cases.
Therefore, contact tracing approaches have received significant
attention as it is the most effective approach for breaking
chains of viral transmission [1]. It involves identifying who
may have had contact with an infected person with a recursive
tracing of their contacts. Despite the presence of vaccines in
some countries, we are moving to a post-COVID-19 world
where social distancing is the new normality [2]. This confirms
the need for an automatic social distance preserving system to
ensure such social distancing leading to safe environments,
especially indoors, e.g., schools and universities.

Toward realizing contact tracing, Wi-Fi-based systems [3]
are proposed due to the prominence of Wi-Fi-based localiza-
tion systems [4]. These systems leverage the signals received
from the installed Wi-Fi access point (AP) infrastructure to
estimate the users’ locations sharing the same environment.
The performance of these systems is obtained only if the area
of interest is covered with dense Wi-Fi APs. Nevertheless,
neither all environments are well covered with Wi-Fi networks
nor do all cell phones enable Wi-Fi by default, limiting the
ubiquitous adoption of such systems. A number of systems

For more information, see https://creativecommons.org/licenses/by/4.0/
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are proposed for fusing Wi-Fi signals with the onboard inertial
sensors (e.g., accelerometers, gyroscopes, and compasses) [5],
[6]. However, these systems usually have a location error
accumulating over time, which does not hold true for contact
tracing applications. Bluetooth Low Energy (BLE) technology
has been widely adopted for automatic contact tracing due to
its low power consumption and its relatively short communi-
cating distance [7]. These systems utilize the detectable BLE
signals to identify encountered users and build contact profiles.
However, it has been shown to have higher false negatives
due to the relatively low scanning rate compared to the other
schemes [7]-[9]. Furthermore, Bluetooth-based contact tracing
works only if Bluetooth is enabled on the users’ phones, which
cannot be ensured. This raises the need for a ubiquitous and
more accurate technology for contact tracing and real-time
social distance preservation.

On the other hand, cellular technology has several advan-
tages, making it excel its Wi-Fi and Bluetooth counterparts.
First, cellular technology is enabled on all cell phones,
by definition, including low-end ones. Second, a cellular-
based localization system will still work even with a failure
in buildings’ electrical infrastructure as cellular base stations
are better equipped to tolerate power failures. Third, network
configuration is somehow fixed (changes rarely occur) as the
changing process is complex and costs significant expense
when performed frequently. Finally, current cellular-based
localization techniques have achieved a fine-grained location
accuracy indoors [10], [11] and outdoors [12]. These points
suggest cellular to be the underlying ubiquitous technology for
social distance and contact tracing.

Current cellular localization systems achieved state-of-the-
art performance by using the fingerprinting technique. Finger-
printing is a twofold technique that collects fingerprints of the
received signal strength (RSS) from the different cell towers
detectable in the area of interest during the offline phase. These
fingerprints are used to train a classifier that can be lever-
aged to differentiate between different locations in the online
phase. For this, different classifiers are proposed in the liter-
ature, e.g., support vector machines [13], deep feed-forward
networks [10], cascaded LSTM layers [11], and stacked
autoencoders [14]. Despite the high accuracy achieved by
the state-of-the-art cellular-based localization systems, direct
application of such techniques for social distance estimation
is not possible. Specifically, a social distance tracing system is
designed with a view to minimizing the interlocation distance
error between different users sharing the same environment.
A typical scenario can be found where users of interest are
connected to different service providers; each of them has
its own spatial distribution of base stations and different
power transmission ranges. The naive approach to enable the
system for all providers is to build a localization model for
each service provider in the country. Although this approach
works well for traditional localization systems with a varying
localization sensitivity per provider, it leads to performance
degradation in social distance tracing. This can be justified as
it assumes spatial independence (i.e., independent localization
models) between users of different service providers, which is
incorrect.

In this article, we propose CellTrace: a novel cellular-based
social distance and contact tracing system trained with multi-
ple providers’ data. To achieve fine-grained accuracy, Cell-
Trace builds a deep neural network (DNN) to learn the
nonlinear relations between the RSS measured by the users’
devices and the corresponding locations in the area of interest
and, thus, calculate the social distance between them. Since
different users can be connected to different providers, Cell-
Trace extracts cross-providers’ features enabling the training
of a single deep-learning-based localization model. Specifi-
cally, CellTrace employs a deep canonical correlation analy-
sis (DeepCCA) to learn the complex nonlinear transformations
of the RSS of different providers and then project them into a
space in which different providers’ data at the same location
are highly correlated. Then, these projected features are used to
train the localization model to detect the locations of different
users and their interdistance.

We test CellTrace using different Android phones in two
indoor environments (small and large sizes). The evaluation
results show that CellTrace can achieve consistent median
localization errors of 0.4 and 0.7 m in the small and large
environments, respectively. The system can also correctly
detect the exact social distance between two users 97% of the
time. This is better than the baseline cellular-based localization
system by more than 235% and 117% when used for contact
tracing purposes. Moreover, we show that our system is robust
when tested across different network operators, lower cell
tower densities, device heterogeneity, and unseen locations.

The rest of this article is structured as follows. We briefly
describe key concepts relevant to this work in Section II.
A literature review is carried out in Section III. In Section IV,
we provide an overview of the proposed system, while
Section V presents its details. In Section VI, we describe the
data collection process and how CellTrace is tested. We discuss
the system limitations in Section VII. Finally, we conclude this
article in Section VIIIL.

Il. BACKGROUND

In this section, we provide a brief background on the
traditional canonical correlation analysis (CCA) on which the
DeepCCA is built. The details of our DeepCCA algorithm are
given in Section V.

CCA [15], [16] is a standard highly versatile statistical
method for finding a common correlation between two multi-
variate sets of variables (vectors) having the same situations.
In particular, CCA linearly projects the input sets on another
space in which these sets are maximally correlated. This
helps in studying the strength of the relationship between two
quantitative variables and how they are related. An appealing
property of CCA for prediction tasks is that, if there is noise
in either set, the learned representations should not contain
that noise in the new space.

More formally, assume that X = [x1,x2,...,xN] €
REN and Y = [y1,y2,...,yn] € RY*N are two dif-
ferent multivariate variable sets of N samples and feature
space of dimensions d, and dy, respectively. The goal of
CCA is to find K pairs of linear projections (canonical
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vectors) Wy = [wy1, Wy 2, ..., wy k] € R&*K and W, =
[wy,1, Wy 2, ..., wy k] € RY*K 5o that the correlations
between WXT X and WyT Y are maximized. Specifically, CCA
aims at finding the projection matrix that maximizes the
correlation coefficient o between W! X and WyT Y as

Ty yT wIxyTw,
“(WxX’Y Wy)= YyrwwTrvvTas D
WEXXTW WIYY!Twy
That is, we want to find
wIxyTw,
(Wi, W3) = argmax ——— . )
wow, WIXXTW WIYYTW,

Since a is scaling-invariant, we can rewrite the correlation
as

(Wi, W3) = argmax W) XYTw,
W, Wy

st. WIxx"we=1, wlyy'w, =1
3)

To find the optimum solution for (3), one has to solve the
general eigenvalue problem of the form [17]

e | R B A [ B
X 0 Wy 0 X, || Wy
where ixx, iyy are the covariance matrices. Xy, and Xy, are
defined as follows: X, = (1/N)XYT and Zyx = (1/NYxT.
By solving (4), we get K eigenvectors {[Wy x; Wy,k]},f:1
and the corresponding Kth eigenvalue that is equal to the
correlation coefficient (1). Therefore, the aimed projection
matrix W is the set of obtained eigenvectors.
In this article, we adopt a deep learning-based version of
CCA, denoted DeepCCA [18], which can be viewed as a
nonlinear extension of the traditional CCA.

I1l. RELATED WORK

In this section, we focus on two groups of related work
classified into localization and contact tracing systems.

A. Localization Systems

1) Sensor-Based Systems: Over the last decade, many
indoor localization systems have been proposed relying on
the available sensors of modern smartphones [19], [20]. The
systems [5], [6], [19], [21] utilize the smartphones’ inertial
sensor (e.g., magnetometer, accelerometer, and gyroscope) to
track users based on the dead-reckoning technique. However,
these measurements include noise components that accumulate
quickly over time, leading to a severe deterioration in the
localization performance. Over the years, several systems have
been proposed to handle this issue, e.g., Zee [19] employs map
matching to lessen the localization error, while Unloc [21]
and SemanticSLAM [22] opportunistically reset the error
on encounters of the detected building landmarks. On the
other hand, Headio [20] proposes a computer vision-based
solution leveraging the smartphone’s front camera to correct
the location drift. Sensor-based systems run only on high-end
phones equipped with inertial sensors.

CellTrace, on the other hand, utilizes only the ubiquitous
cellular technology, which is supported by all mobile phones
by definition. In addition, contact tracing can realize at the
provider side without either incurring extra processing or
fooling the localization system at the edge.

2) Wi-Fi-Based Systems: Wi-Fi is widely available indoors
and has been widely adopted for indoor localization due to its
relatively short transmission range. To achieve high accuracy
for localization, Wi-Fi-based techniques usually depend on
building a Wi-Fi radio map of the overheard Wi-Fi APs,
which can be leveraged to identify the user location based
on matching the received signals. This matching can be either
deterministic [23] or probabilistic [24]. Many systems have
been proposed to address several Wi-Fi-based challenges over
the years, introducing deep learning for the localization task as
in [25] and [26]. Despite the fact that Wi-Fi-based techniques
have high localization accuracy due to the limited propagation
range of Wi-Fi APs [27], they cannot compete favorably with
other technologies, e.g., cellular, due to the requirements for
high coverage and frequent maintenance.

On the other hand, CellTrace leverages the widespread cel-
lular technology, whose network configurations rarely change
due to the consequent high expense and complexity of
this process when performed frequently. In addition, unlike
Wi-Fi networks, cellular signals have a longer propaga-
tion range and are less affected by variations in indoor
environments [28]-[31]. This leads to a stable infrastructure
for localization-based safety systems.

3) Cellular-Based Systems: Due to its high advantages, such
as the fact that cellular technology has the most widespread
infrastructure and is supported by the vast majority of mobile
devices, cellular-based localization has recently gained a lot
of attention. Therefore, cellular-based localization systems
have been adopted for both outdoor and indoor use cases.
The methodology of this technique is that a model is built
and trained to learn the relations between the collected
RSS measurements and the user locations during the offline
phase. Then during the online phase, this model must be
able to discriminate between different locations in the area
of interest. There have been proposals for both outdoor
and indoor cellular-based localization systems. Outdoor
cellular-based systems [12], [32], [33], have been proposed
as energy-efficient and ubiquitous alternatives for GPS.
Furthermore, cellular-based localization has recently been well
realized in indoor settings leveraging the computational power
of deep learning [10], [11], [14], [34]. For instance, to learn the
nonlinear relation between the received signals and the user
locations, a deep fully connected neural network is utilized
in CellinDeep [10], a deep LSTM network is adopted in
MonoDCell [11], and an autoencoders’ network is considered
in [14] and [34]. However, such typical techniques assume
that localization models between users of various service
providers are independent, resulting in poor performance when
used to track the social distance of users sharing the same
environment.

Unlike state-of-the-art cellular-based systems, CellTrace
extracts latent features, ensuring that different providers
are maximally correlated in the shared space. In addition,
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the localization model is ensured to generalize and avoid
overfitting by using different regularization methods. As a
result, both the location estimation accuracy and the contact
tracing performance have significantly improved.

B. Contact Tracing Systems

The global outbreak of the Coronavirus has highlighted
the importance of contact tracing even after the presence
of vaccinations [35], [36]. BLE-based contact tracing is
the most prevalent technology. Several systems based on
Bluetooth or BLE have been rolled out, supported by the
governments of various countries, such as Singapore [37] and
Australia [38]. The basic idea of using BLE-based systems
is to detect the enabled Bluetooth of the users in the vicinity
and their identifier. Initial attempts of this technology face
privacy concerns due to its requirement for clients to share
contact logs to a central reporting server [36], [39]. Thereby,
the authorities can detect people who may have had close
contact with the infected one and notify them promptly to
break the infection chain of diseases. However, to handle
the privacy issues, the Decentralized Privacy-Preserving
Proximity Tracing (DP-3T) protocol [40] is developed to
facilitate privacy-preserving digital contact tracing of infected
cases. This protocol ensures that the central server does not
access contact records. However, this comes at the cost of
requiring intensive computation on the client side to process
infection reports. The Apple/Google Exposure Notification
project adopts similar principles on the operating system
level [41], [42], which has been widely adopted [43].

Few approaches [44], [45] were recently proposed to track
passengers on public transportation depending on the smart-
phones’ inertial sensors (e.g., magnetometer, accelerometer,
and gyroscope) using dead reckoning. However, the inherent
noise in sensor data leads to an error that accumulates quickly
over time resulting in limited accuracy and robustness.

The Wi-Fi-based solution [3], [46], which features dom-
inantly in the indoor positioning research, has become more
attractive for pandemic tracking, thanks to the increasing num-
ber of indoor and outdoor public Wi-Fi APs. The research [47]
demonstrated that, when at least ten Wi-Fi APs were nearby,
contact detection using pure Wi-Fi RSS could closely match
the accuracy of GPS (used as a reference) in the city cen-
ter. However, this accuracy may be inadequate for contact
tracing, and the expected Wi-Fi coverage cannot be realized
indoors. Contact tracing based on GPS cannot work inside
buildings due to the absence of line-of-sight to the reference
satellites [35], [36].

In contrast, cellular-based contact tracing has shown to be
feasible due to its availability and ubiquity, which encouraged
some governments to use in emergency time [35], [36],
[48]. Moreover, it can be deployed on both the client side
and the provider side enabling governments to control the
spread of the virus. Motivated by these advantages, CellTrace
enables cellular-based contact tracing for heterogeneous net-
work providers.

IV. SYSTEM OVERVIEW

Fig. 1 shows the CellTrace system architecture. CellTrace
works in two phases: an offline training phase and an online

ture Extractor

Trained Mods!

m

U6 —
¥ —) Scancouecmr]—>[pre processor — o /'I ';?ec;.;gr
1

| Online Deepcu \

Fig. 1. CellTrace system architecture.

interdistance location estimation phase. The offline phase starts
with the data collection process using a client-side application
running on the user’s cell phone. The application is designed
carefully to record the time-stamped cellular information from
the overhead towers at sparse predefined points called refer-
ence points in the considered area.! These collected measure-
ments are uploaded to our online running service for further
processing. The preprocessor module is used to handle the
noise in the input data and prepare the low-level RSS feature
vector of each considered provider.2 As a result, a fixed-size
RSS vector across all the recorded samples has been obtained
that fits as input to the localization model. The RSS vectors
from different providers are then further processed by the
deep feature extractor module to learn complex nonlinear
transformations and project the original low-level features to
a cross-provider feature space. The module is based on a
combination of a DNN and a CCA process, ensuring that data
from different providers are highly correlated in the common
space, as described in Section V-B. Thereafter, the projected
RSS features are fed to localization model; hence, we can
calculate the social distancing between each pair of users based
on an accurate estimate of their locations. The output of this
offline phase is two trained models (i.e., the deep correlation
model and the localization model), which are saved for later
use in the online phase.

During the online phase, users are tracked in real-time
by carrying their phones to unknown locations scan for the
covering towers. The scans are forwarded to the CellTrace
server. These data are first handled by the preprocessor
module to extract the RSS feature vectors. Thereafter, the
online predictor module feeds the data to the trained deep
correlated model to extract the desired features. Finally, the
location estimation model feeds the data to the localization
model trained in the offline phase to estimate the likelihood
of the user being at the different reference points trained
during the offline phase. Based on this likelihood, the system
obtains the user’s location in the continuous spatial space. The

lDuring the data collection process, the received
ments can be captured by either manual fingerprinting [10],
crowdsourcing [12], [26].

2This RSS vector is called a low-level vector due to its tightly coupled to
each provider considered in the data collection.

signal measure-
[25] or
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predicted locations of people in the area of interest are used
to gauge and warn users who violate the social distance rule.

V. THE CellTrace SYSTEM

Fig. 1 shows the different modules of the CellTrace system.
In the balance of this section, we describe the details of each
module.

A. Preprocessor Module

This module runs during both the offline and online tracking
phases. Each cell provider has a number of towers covering
the area of interest. However, the number of detected cell
towers per scan is limited to seven or less, by default [10],
[33]. From the whole covering towers, the selected group
of towers may vary across different scans; even, the user
is stationary at the same location. Therefore, this module
unifies the number of detected towers and produces a g-length
(i.e., the length of all covering towers) RSS feature vector
s = (s1,82,...,54) across different scans. The benefit of
this is to obtain a consistent set of cell towers that fit the
input of the deep model as described in Section V-B. Each
entry of the vector represents the RSS from a certain tower,
while nondetected towers in an arbitrary scan are set to 0
ASU.3 It is worth noting that some scans include false network
information, e.g., tower IDs of 65636, which is not a valid
tower for any location area code (LAC) [50]. This anomalous
event usually takes place in a short period of time during radio
access technology (RAT) change [51] and can be practically
detected by the absence of an LAC ID, which must be included
in any scan. Thus, the spurious cell towers are deleted. Toward
having a fast convergence time [52], the RSS values received
from the covering towers are normalized to the range of [0,
1].

Finally, this module mitigates the burden in collecting a
large amount of training data, as required by deep models,
by employing our data augmentation framework proposed
in [53]. The framework generates a massive amount of syn-
thetic data from samples collected over a short time frame
that reflects the typical RSS variations. In addition, CellTrace
employs spatial augmentation introduced in [11] in order to
generate synthetic RSS measurements for nonsurveyed data
points to reduce the calibration effort further. These techniques
have the advantage of ensuring model generalization and
overfitting avoidance.

Note that the deployment of CellTrace does not require
information about the physical locations of the covering cell
towers.

B. Feature Extraction Module

This module aims to transform the preprocessed RSS feature
vectors of different providers into a latent space in which they
are highly correlated. This has the benefit of consolidating
the input to the localization model and considering the spa-
tial dependence of users of heterogeneous providers. Toward

3The RSS is usually measured by the user’s phone in the arbitrary strength
unit (ASU). It represents an integer range of values of [0-31], which is linearly
proportional to the decibel-milliwatts (dBm) unit [10], [49].
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Fig. 2.  Network structure of the feature extraction module. It consists

of two deep networks learned so that the output layers (topmost layer of
each network) are maximally correlated. A CCA layer is stacked on top
of a fully connected layer to calculate the correlation between the views.

achieving this, we adopt DeepCCA [18] to discover that
latent space. Compared to the classical CCA, which linearly
transforms the input views into highly correlated projections,
DeepCCA solves the same objective function by realizing
more powerful nonlinear projections in a new latent space
using DNNs. These projections are learned via the gradient
descent technique. The intuition behind leveraging the deep
version of CCA is the ability of the DNN to learn complex
relations from the noisy cellular data automatically.

Fig. 2 shows the schematic of the proposed DeepCCA
feature extraction model. As shown in the figure, DeepCCA
consists of two independent DNNs, one for each cellu-
lar provider. Each DNN consists of cascaded fully con-
nected layers. The input layers of DNN A and DNN B
are RSS vectors as detected simultaneously from the cor-
responding covering towers of each provider. In general,
the size of the input vectors varies based on the number
of towers of each provider. These DNNs are then trained
to encode these inputs to a fixed-size subspace where the
corresponding output vectors (z* and z?) are maximally
correlated.

Specifically, let X 4 be a set of RSS input vectors of provider
A and X p be the corresponding set of RSS vectors of provider
B, which are collected simultaneously at the same set of
reference points. These provider-dependent matrices are fed
to the DeepCCA subnetworks to obtain the aimed cross-
provider representations. For the instance, the output of the
first layer of network A is hf = a(WlAX + bﬁ), where
o is a nonlinear activation function (e.g., logistic Sigmoid)
applied componentwise, WIA is a matrix of weights, and bf‘
is a vector of biases. The output of each layer is used to
calculate the output of the next layer and so on until the
final layer d whose output is fA(X4) = o (Wiha—1 + b7),
which is the intended latent representation (z), i.e., the spa-
tially correlated feature vector. Similarly, the representation
obtained by the second DNN is f5(Xp) = a(WgBhg_1 + bg)
with different parameters: W25, bg , and g. The objective of
DeepCCA is to jointly learn the parameters 84 and 0p for
both neural networks such that the correlation between z4
and zB is maximum. Therefore, the objective function of
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DeepCCA is defined as follows:

(64, 65) = argmax Corr (fa (Xa: 604) . f5 (X5:60p)). (5)
(04.,08)

Toward achieving this, we compute the correlation and its
gradient with respect to the output layers, and then, the back-
propagation is used to update the parameters of both networks.
This process is repeated until convergence is obtained.

Given that, in general, optimization of deep models may
not achieve the best performance if the model parameters are
initialized randomly, therefore, the feature extraction module
utilized denoising autoencoders [54] to better initialize the
parameters of each layer.

Unlike traditional deep learning methods [10], [14], [25]
that are trained to maximize the likelihood of target class (loca-
tion) for radio scans from individual providers, CellTrace
leverages DeepCCA with the correlation-based objective func-
tion. This empowers the robustness of interdistance (social
distance) calculations of the system as it ensures the spatial
dependence of the signals received from different providers
covering the same area of interest.

C. Location Estimation Model

This module is responsible for utilizing the correlation
features (z) extracted from the DeepCCA network to train a
localization model and find its optimal parameters. The trained
model is used in the online phase by the online location
predictor module. DNNs have been considered to be one of
the staple techniques in machine learning in use today. Based
on the universal approximation theorem [55], DNNs could be
considered capable of approximating any arbitrary function,
provided that they were suitably complex. Therefore, a neural
network is adopted in this module.

Architecture: Fig. 3 shows the structure of the considered
DNN for localization. Specifically, CellTrace adopts a fully
connected feedforward neural network. The hierarchical rep-
resentation of CellTrace is obtained by four hidden layers of
nonlinear processing units. The rectified linear unit (ReLU)
(the state of the art of nonlinearity) is used as the activa-
tion/transfer function for the hidden layers due to its sparsity
and immunity to vanishing gradient problems [56].

The input layer of the network is a vector z of length
v, which is obtained from the feature extraction module (as
described in Section V-B). The output layer consists of a

number of neurons corresponding to the number of surveyed
reference points in the area of interest considered in this
phase. The network is trained to operate as a classifier such
that each reference point represents a class. Unlike equivalent
regression models, classification models usually have a simpler
data collection process (i.e., permits collection at low-density
reference points). Therefore, a softmax activation function
is leveraged at the output layer. This leads to a probability
distribution over the different predefined reference points given
an input. In particular, the network outputs the probability
that the input sample (the latent representation) comes from a
specific reference point. More formally, given a total number
of training samples m, where z; € R” is the projected
latent representation of each cell scan s; € R?, which is
fed to the model, the sample z; has a corresponding discrete
outputs (i.e., logits), and ¢; is a; = (a;1, ai2, - . ., ain), Which
captures the score for each reference points from the possible
n reference points to be the estimated point. The logit scores
a;j (for sample i to be at reference point j) are converted into
probabilities using the softmax function as
e’
p(aj) = =P ©)
j=1

For training purposes in the offline phase, we encode the
ground-truth label of each sample using one-hot-encoding. The
encoding of the output vector has a probability of one for
the correct reference point and zeros for others. We used the
Adam optimizer [57] and categorical cross-entropy as our loss
function.

To avoid overtraining (i.e., overfitting), CellTrace employs
the early stopping regularization technique, which automati-
cally selects the optimal number of training epochs. Specif-
ically, early stopping monitors the model’s performance for
every epoch on a held-out validation set during the training.
It terminates the training as soon as the performance stops
improving [58].

D. Online Phase

The goal of this phase is to pinpoint the users sharing the
same environment and, thus, detect the contact occurrence.
Initially, each user’s device identifies the provider, measures
the received cell signals from the hearable towers in the
area of interest, and forwards the scan to our running ser-
vice to process and extract the corresponding feature vector.
Specifically, the RSS vector is submitted to a single view
of the trained DeepCCA, which corresponds to the user’s
network provider to extract a cross-provider feature vector,
as described in Section V-B. This vector is then fed to the
trained localization model (regardless of the provider) to get
a location estimate as one of the already defined reference
points at the calibration phase. Then, the user’s location [* is
estimated as the one that has the maximum probability given
the input vector (z). That is, we want to find

I* = argmax [P (I|7)]. 7
!

One advantage of designing the localization model to oper-
ate as a classifier rather than a regressor is reducing the amount
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of the required reference points and, thus, the data collection
burden. However, the classification model can only predict
the user locations at the predefined few discrete reference
points. As a result, this will lead to a poor user experience
as the estimated locations will be spaced out even with a very
accurate model. To ensure the required fine-grained tracking of
the users in the continuous spatial space,* CellTrace estimates
[* as the spatial-weighted average of all reference points at
the output layer, where the weight of each point is chosen
as its corresponding softmax likelihood. More formally, the
probabilistic output (obtained by softmax) of the network is
denoted as P = [Py, P>, ..., P,], where n is the number of
reference points in the area of interest and P; (1 < i < n)
represents the possibility that the input vector is coming from
the ith reference point /;. P; is formulated as follows:

P =P (lilz). (8)
Thus, the fine-grained location coordinates are defined as
2i—1 Pilix

I = 9

* Z?:l Pi ®
" Pl

I = 217117;1”‘ (10)
=111

where /;; and /;, are the coordinates of reference point i.
The objective of CellTrace is to detect in real time if two
users (carrying their cell phones) are in contact. This can
be achieved by calculating interdistance (social distance, d)
between users sharing the same environment over the course
of a predefined time interval 7 time steps, e.g., 16 time steps’

i -0+ (i -n)’

T

d

Y
where (1!, l)l,) and (12, lg) are the location coordinates of user
1 and user 2 at an arbitrary time step, respectively.

Users whose interdistance is less than one meter (social
distance violation) are alerted by vibrating their phone or
sending a text message.

E. Design Issues

The proposed system has two modes of operation (i.e.,
deployment): client- and provider-side modes. First, the
client-side mode involves installing the CellTrace app on
the user devices. This app is connected to the localization
server to provide positioning and contact-tracing services in
an emergency. In addition, based on the response from the
server, the app notifies encountered users when a contact is
detected. In this case, the users install the app and approve
the transmission of their signals to the localization server.
Despite the simplicity of this approach, it cannot guarantee
efficient contact tracking and safety in practice as it requires
all users to install the app. On the other hand, the system
can be deployed on the provider side. This mode has better

4CellTrace can locate the user anywhere even in locations different from
reference points.

5An interval of 16 time steps can be translated to seconds by dividing the
number of time steps by the scanning rate.
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Fig. 5. Layout of testbed 1.

contact tracing efficacy, encouraging some governments to
adopt it at least for short periods [48]. Each provider is
connected to the shared contact tracing server, which processes
anonymized client cellular measurements, and thus, contacts
can be identified, as shown in Fig. 4. Then, notification
messages are sent from the provider to users upon contact
occurrence of infected cases. However, this approach may face
some challenges in adoption. For instance, privacy concerns
may hinder the adoption in some countries as end-users have
not provided their consent to use their data by their providers
for contact tracings [48], [59]. Additionally, obtaining consent
from different providers to deploy a common contact tracing
system is rather difficult, even in an emergency. However,
there are tradeoffs in the effectiveness of contact tracing and
exposure notification apps with increased privacy [48], [59].
In particular, the effectiveness of the privacy-first apps might
be impossible to evaluate due to the lack of recorded data [59].

Nevertheless, CellTrace can be extended for further privacy
protection by anonymizing users’ data, employing differential
privacy [60] or inheriting the decentralization concept from
other techniques, e.g., inheriting the concept of DP-3T [40] or
exposure notification [41], [42].

VI. EVALUATION
In this section, the data collection setup and tools used are
described first. Then, we show how the system performs by
varying the different system parameters. Finally, we compare
the performance of CellTrace to the state-of-the-art techniques.

A. Data Collection

We deployed our system in two indoor environments with
different sizes and characteristics (as described in Table I).
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TABLE | across different days. To scan cell towers in the area of interest,
SUMMARY OF THE TEST BEDS CONSIDERED IN EVALUATING CellTrace e developed a scanning application using the Android SDK.
Criteria testbed 1 testbed 2 To evaluate the learned model and confirm its generalization
Area (m?) . 11x12 17x37 ability, we adopted K-fold cross-validation (typically k = 5).
ff; ‘)wmg of reference points | 1 LS The training set is partitioned into k subsets where each subset
Number of fingerprint points | 55 310 includes the data collected from two pr.ovidersl.ﬁ. Each time,
Sampling rate (scan/sec) 3.33 3.33 k — 1 subsets are used to form a two-view training set, and
Building Material Brick Brick the remaining one is used as the validation set. Hence, every
Total number of covering | 16/A, 9/B 37/A, 20/B subset appears in the validation set exactly once and appears
cell towers/ provider

The first is a lab on our university campus building (denoted
test bed 1) with an area of 132 m? containing offices, a meeting
room, and corridors (see Fig. 5). The second environment
(denoted as test bed 2), as shown in Fig. 6, is a full floor in our
university campus having a total area of 629 m? containing
several offices, labs, and corridors with more furniture. The
training data were collected from 55 and 310 reference points
located throughout test bed 1 and test bed 2, respectively. The
reference points were uniformly distributed over the area of
interest with 1- and 1.5-m spacings. The system parameters
are listed in Table I.

Data have been collected using an Android app that con-
tinuously scans for the network information from the over-
heard cell towers in the area of interest. The app records
cell information, including cell tower identifier (CID), LAC,
and the corresponding time-stamped signal strength with a
scanning rate set to 3.33 scan/s. To collect different provider’s
data concurrently, the same application runs synchronously on
all mobile devices. Each device is connected to a different
provider with one device dedicated to controlling ground-truth
profiling and starting/stopping the data collection process on
all devices. The application visual interface is designed to
depict the test bed floorplan in the foreground of the master
device. The user tags her current location on the displayed
test bed as a ground truth triggered by a long tap on the map
interface. Five participants are engaged in the data collection
process using different Android phones (e.g., HTC One X9,
Google Pixel XL, Tecno Phantom 6, HTC One E9, Motorola
Moto G5, and ZTE Blade 7). To consider the time-variability
effect on cellular signals, the data were captured and recorded

in a training set k — 1 times. Then, the average error across all
k folds is reported and is used to select the model parameters.
This significantly reduces the impact of the bias-variance
problem due to the interchange of the training and validation
sets.

We implemented our deep learning-based training using
the Keras learning library on top of the Google TensorFlow
framework [61]; the training was carried out on the Google
collaboratory cloud platform.”

B. Effect of Changing CellTrace Parameters

In this section, we study the effect of the deep models’
different hyperparameters, CellTrace parameters, and the dif-
ferent techniques used to learn nonlinear transformations for
achieving the maximum correlation between the data views on
the overall system performance. These parameters include the
number of layers, the effect of the feature extraction method,
and the size of the feature vector. The default parameters’
values used throughout the evaluation section are reported in
Table II.

1) Number of Layers in the Network: Fig. 7 shows the effect
of changing the number of layers on CellTrace accuracy.
The figure shows how increasing the number of layers of
the location estimation network increases its accuracy until it
reaches an optimal value at four layers. This can be justified as
increasing the number of layers increases the model computing

SWithout loss of generality, we got permission to use provider-side data for
two providers only to ensure the system’s validity on both sides, i.e., the client
side and the provider side. However, CellTrace can work with any number of
available providers by creating a view for each provider.

7https://colab.research.google.com
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TABLE Il

DEFAULT PARAMETERS’ VALUES USED IN THE EVALUATION
Parameter Range Default
Provider A, B, C A, B, C
Learning rate 0.0001 - 0.2 0.001
Number of hidden neurons 20 - 1000 300
Batch size 1-Dataset size | 256
Number of layers 1-30 4
Early  Stopping  Patience | 1-10 10
(epochs)
Number of samples per refer- | 20 - 3000 3000
ence point

Number of epochs

Automatic by Early stopping

Number of classes

1-55 [55

Used devices

HTC One X9, Tecno Phantom 6,

Google Pixel XL, ZTE Blade 7,
Motorola Moto G5 and Samsung
Note 3

Number of users 5

1

©c o o 9
S N b~ O ®

Median location error (m)

2 3 4 5
Number of Layers

Fig. 7. Effect of changing the number of layers on CellTrace accuracy.
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power to avoid underfitting and, thus, better fits the function.
However, the deeper the model, the more likely it is to overfit
the training data, reducing its flexibility and accuracy when
handling users from different providers. Four layers are set as
the default number of layers in CellTrace model to achieve the
balance between underfitting and overfitting, It is worth noting
that applying DeepCCA radically simplifies the classification
problem in the projected space. As a result, a four-layer
network is sufficient for the classification of features in the
projected space.

2) Feature Extraction Method: In this section, we study the
influence of the different feature extraction techniques on the
overall system performance. Fig. 8 compares the effect of
using DeepCCA for extracting provide-invariant features to
either using individual provider models or feature projected
using traditional CCA [16] on CellTrace’s estimation accuracy
of social distance. The figure depicts that, in comparison with
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Fig.9. Effect of changing the feature vector length on CellTrace accuracy.
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Fig. 10. Effect of using data from different service providers.

the raw features and classic CCA, the proposed DeepCCA
method gives an improvement of 235% and 185% in the esti-
mation accuracy of social distance. These results confirm the
efficacy of DeepCCA in capturing the correlated signatures of
different providers better than other methods, which facilitates
locating users sharing the same environment.

3) Feature Vector Length: Fig. 9 shows the location estima-
tion accuracy of CellTrace as a function of the latent space
dimension size obtained by the DeepCCA network. It is clear
from the figure that increasing the size of the latent feature
vector z improves the CellTrace performance. The figure
also shows that a feature vector z of ten dimensions yields
the best performance. Beyond that, new dimensions (i.e.,
features) will be included leading to no further performance
enhancement. This can be justified for two opposing reasons:
1) the additional features reduce the correlation between
different providers’ data and 2) on the other hand, the location
discriminative power of the localization model is boosted by
increasing the number of features in the latent space.

C. Robustness Experiments

In this section, we evaluate the robustness of CellTrace
under varying environmental conditions.

1) Resilience to Provider Heterogeneity: In this section,
we evaluate the performance of the CellTrace system when
tested with two different providers individually compared
to the heterogeneous providers’ scenario. Fig. 10 shows the
performance of CellTrace when all users are connected to
either only A or only B compared to A and B together
(heterogeneous providers). It is worth noting that different
operators cover the area of interest with different densities of
serving towers of 16 and 9 for operators A and B, respectively.
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The figure shows that CellTrace achieves a consistent accu-
racy across different providers with a low as 0.5-m median
interlocation error (social distance error). This highlights the
system’s resilience to heterogeneous providers of varying
densities of cell towers with different signal distributions. This
can be explained as a result of leveraging the feature extraction
module that can learn the correlation between two views of
data to get a robust and fixed-size feature vector for training
a localization model on different providers’ data.

2) Unseen Locations: Fig. 11 shows the performance Cell-
Trace when testing with unseen locations (i.e., never con-
sidered in training). This is done by reducing the number
of surveyed locations during the calibration phase (offline)
by a particular percentage; the same percentage reduces the
fingerprinting overhead. CellTrace is robust to unseen loca-
tions. As shown in the figure, even with a 50% reduction in
the number of training locations (i.e., only 27 locations are
considered out of 55), CellTrace can obtain a location error
of less than 1.3 m. This advantage is due to the employment
of data augmentation techniques that compensate for reference
points’ loss. This result enables CellTrace to be deployed at
scale.

3) Device Heterogeneity: In this section, we evaluate the
resilience of the model to cope with device heterogeneity.
To do that, we employed leave-one-out cross-validation [62],
which iterates over all devices, and each time holds data
captured by one device out for testing while training with
data recorded by the remaining devices. Fig. 12 shows the
performance corresponding to each testing device. The figure
shows that CellTrace provides consistent performance even
with the device variability. This can be justified due to the
ability of the feature extraction network to map the input

1 7 .
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Social distance error (m)

Fig. 13. CDF of the localization error in test bed 1.

cell measurements into the latent space where correlation
is maximized. Specifically, as verified in [14], the effect of
device heterogeneity can be modeled as random noise added
to the measurements. Transformation into the new space using
DeepCCA has the effect of reducing the localization model
dependence on the absolute input values by considering rela-
tive representation that maximizes the correlation. This result
highlights the system robustness to the device heterogeneity
problem.

D. Comparative Evaluation

In this section, we evaluate the end-to-end performance of
CellTrace in terms of localization performance and contact
tracing accuracy, and compare it to the state-of-the-art cellular
location estimation and contact tracing systems.

1) Social Distancing: In this section, we evaluate the perfor-
mance of CellTrace compared to baseline cellular localization
techniques [10], which builds an individual model for each
provider. Figs. 13 and 14 show the CDF of social distance
error for the two techniques in test bed 1 and test bed 2, respec-
tively. Fig. 13 illustrates that CellTrace outperforms the base-
line, enhancing the median error by 280%. Similarly, for the
second test bed, CellTrace achieves an improvement in median
localization error of 117% compared to the baseline [10]. This
can be explained by noting that, unlike CellTrace, the baseline
technique, which relies on the original signal features, does not
consider the interoperability between different operators when
their connected clients share the same spatial environment. It is
worth noting that a slight drop in the accuracy is observed in
test bed 2, which can be justified due to the increase in the
spatial uncertainty in a larger space compared to test bed 1.
This can be easily handled by space partitioning. Nevertheless,
the results in the two test beds confirm the superiority of
CellTrace due to its ability to capture the correlated features
across different providers compared to the baseline.

2) Contact Tracing: In this section, we evaluate the overall
accuracy of CellTrace in contact detection. Table III summa-
rizes the performance metrics in contact tracing. It is worth
noting that positive means that contact is detected by the
system, which can be either correct (true) or incorrect (false)
detection and similarly for the negative detection. However,
a false positive case occurs when users are more than 1 m apart
(no physical contact). At the same time, the system reports a
contact leading to a false alarm and, thus, a bad user expe-
rience. In addition, the false-negative case occurs when the
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TABLE Il
CONTACT TRACING METRICS CONSIDERED IN EVALUATING CellTrace
Social distance threshold Im 1.5m
metric CellTrace | Baseline | CellTrace | Baseline
True positive rate (TPR) 0.88 0.43 0.95 0.74
False positive rate (FPR) 0.01 0.3 0.0 0.08
True negative rate (TNR) 0.99 0.7 1.0 0.92
False negative rate (FNR) 0.11 0.57 0.06 0.25
Overall accuracy 94% 55% 97% 59%

system missed a real contact reducing the system’s feasibility.
The results in the table indicate that the CellTrace achieves
TPR, TNR, FPR, and FNR of 0.95, 1.0, 0.0, and 0.06, and
0.88, 0.99, 0.11, and 0.01 with social distance thresholds of
1.5 and 1 m, respectively. These results confirm the superiority
of CellTrace compared to the baseline technique in both cases.

Fig. 15 shows the performance of CellTrace compared to
the state-of-the-art contact tracing systems. The system in [63]
(denoted sensors) proposed a contact tracing approach-based
pedestrian dead reckoning (PDR) fusing Wi-Fi measurements
and smartphone sensors. WiFiTrace [3], on the other hand,
collects Wi-Fi network logs, specifically association and disso-
ciation log entries for each device, at various APs in the area of
interest and then uses them to reconstruct the locations visited
by the user for contact tracing. Furthermore, CellTrace was
compared against the Bluetooth-based system called SCT [7],8
which used a decision tree classifier to categorize user contacts
as low or high risk based on BLE signals.

The figure illustrates that CellTrace outperforms the other
techniques with a significant increase in social distancing
accuracy over sensor [63], WiFiTrace [3], and SCT [7].
CellTrace achieves a 0.45-m median social distancing error,
while the baseline has a median error of 1.5 m. This confirms
the efficacy of CellTrace as a contact tracing technology.

8In particular, the effectiveness of the available privacy-first BLE apps might
not be easy to evaluate due to the lack of ground-truth data [59].

VII. LIMITATIONS AND DISCUSSION

Although the feasibility of cellular networks as a base
technology for reliable contact tracing, using them involves
privacy concerns in some countries [48] (as discussed in
Section V-E).

1) Cellular technology may have some privacy concerns
in some countries [48], despite their feasibility, as dis-
cussed in Section V-E. This can be handled by
anonymizing users’ data, employing differential pri-
vacy [60], or inheriting the decentralization concept from
other techniques (DP-3T) [40].

2) Fingerprinting approach is challenging in 3G and 4G
networks due to the reduction of the available cell
information, which only includes the associated serving
cell and sometimes the strongest neighboring cells [64],
[65]. However, this problem exists only at the client side
mode [66], and some solutions have been proposed to
mitigate its effect, e.g., [11].

3) Fingerprinting-based localization is expensive in terms
of data collection and maintenance. However, some
solutions have been proposed to mitigate this issue in
cellular [11], [53], [67] and for Wi-Fi [26], which can
be reused for cellular as well. It is worth mentioning that
collecting site data is usually done by each provider to
ensure the quality of service of their clients [67].

VIIl. CONCLUSION

In this article, we aimed to realize a flexible solution for
contact tracing that can be operated by the provider, client,
or even at a third party by handling data from different
sources, i.e., different providers. We presented the design,
implementation, and evaluation of the CellTrace system as a
ubiquitous contact and social distance tracing system using
cellular signals. As part of the CellTrace design, we intro-
duced a novel feature extraction module based on DeepCCA,
which yields cross-provider features. These features are fur-
ther utilized for training a deep localization model tracking
users and calculating their social distance regardless of their
connected providers. Furthermore, we showed how CellTrace
includes provisions in the model to avoid overfitting and
boost the model generalization ability. CellTrace achieved a
promising localization and contact tracing performance of sub-
meter median distance error and 97% accuracy, respectively.
Nevertheless, CellTrace still has to handle privacy-associated
issues to ensure effective contact tracing while maintaining
privacy. In addition, we plan to study the system performance
at scale, i.e., increasing the number of phones, users, providers,
and so on.
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