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Abstract—The current trend of shifting computing from the
cloud to the edge of the Internet of Things is influencing deep
learning applications. Moving intelligence closer to the point
of need entails advantages in terms of performance, power
consumption, security, and privacy. The problem arises with
data sources that generate a massive amount of information,
making data processing challenging for edge devices. This
is the case of point clouds generated by LIDAR sensors.
Implementations at the edge become even more challenging
when heavy processing algorithms such as deep neural
networks are selected. However, deep neural networks are
the state-of-the-art solution to carry out object classification
tasks as they provide the best results in terms of accuracy
when working with high data volumes. This work demonstrates that the processing of point cloud-based sensors
using deep neural networks at the edge is becoming feasible with the emergence of new devices with high computing
capacity combined with reduced power consumption. In this regard, a characterization of first-in-class deep learning
classification algorithms working with point cloud data as inputs and running over different state-of-the-art edge
processing architectures is provided. A broad range of devices, including CPUs, GPU-based, SoC FPGA-based, and
deep learning neural accelerators, have been evaluated in terms of inference time, classification accuracy, and power
consumption. As a result, it demonstrates that neural accelerators with integrated host CPUs represent the best trade-off
between power consumption and performance, making them a perfect solution for IoT applications at the edge level.

Index Terms— Deep neural networks, edge computing, LIDAR, neural accelerators, object classification, point cloud.

I. INTRODUCTION

A GROWING number of cyber-physical systems require
perceiving the physical environment where they operate.

To this end, visible imaging sensors have been traditionally
used, enabling high-quality object detection and classification.
However, there are specific applications, such as robotics,
autonomous vehicles, or surveillance systems, in which it
is also essential to locate objects in space. Determining the
position of the detected objects using 2D data produced
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by visible cameras is highly challenging due to their
depth ambiguity [1]. Alternatively, 3D sensors generating
spatial information inherently, such as LIght Detection And
Ranging (LIDAR) sensors, RGB-D cameras, and 3D scanners,
can be employed. These sensors have been experiencing
significant technical progress in recent times.

Among all the sensors generating 3D information, LIDARs
stand out since they provide rich, dense, and precise spatial
data in the form of point clouds. Additionally, this technology
provides an increase in sensor robustness and scanning rate [2].
Since they are based on laser technology, LIDARs are not
affected by ambient lighting conditions, unlike 2D cameras,
whose precision decreases at night. For the same reason,
LIDAR technology is robust in most weather conditions,
including rainy environments, as was demonstrated in [3].
Despite these advantages, the main drawback of the LIDAR
technology is the cost. However, their price has decreased
in recent years, making it feasible to integrate them in
Internet of Things (IoT) scenarios. Moreover, a further
significant reduction is expected soon with novel solid-state
LIDAR technology [2]. LIDARs’ benefits make them a key
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technology in critical systems that need accurate artificial
vision.

Among the systems where LIDARs are becoming indis-
pensable are autonomous cars [4]. Autonomous systems are
highly latency-sensitive, so sensor data processing can not be
offloaded to the cloud. For these time-sensitive applications,
edge computing is preferred over cloud computing, as process-
ing times can be guaranteed by avoiding the round-trip time
to the cloud, which also benefits power consumption. There
are also advantages when computing at the network edge
in terms of scalability since the network bandwidth is not
increased when adding new devices. Besides, the amount
of data flowing through the network is reduced, resulting
in a reduction of issues related to privacy and security,
and failures associated with loss of information during
communications [5].

Deep Neural Networks (DNNs) are the algorithmic solution
primarily adopted in state-of-the-art to process the enormous
amount of data produced by LIDARs in real-time. DNNs
are part of the Artificial Intelligence (AI) field, and they
have achieved breakthroughs in a wide range of areas such
as computer vision, speech recognition, and natural language
processing, showing a high level of abstraction when working
with complex data [6]. In the computer vision field, DNN
algorithms outstand in applications such as object detec-
tion and classification, motion tracking, action recognition,
human pose estimation, and semantic segmentation [7]. The
downside of DNNs is their high computing performance
demands.

The complexity of DNNs is boosted when applied to 3D
LIDAR sensor data, much denser than 2D visible images.
Therefore, it is highly challenging to achieve real-time
requirements while maintaining low-power consumption when
implemented at the edge. In this regard, the use of specific
Deep Learning (DL) neural accelerators for the edge is
opening new opportunities [8], [9].

As far as the authors know, there is no in-depth comparative
study in the state-of-the-art focused on algorithms and edge
processing architectures for object classification on 3D point
clouds. In this work, representative DNN algorithms are
studied and combined with state-of-the-art edge processing
elements to provide a complete characterization, including
performance, accuracy, and power consumption metrics,
as is shown in the flowchart of the graphical abstract.
The processing solutions considered focus on edge devices,
including CPUs, GPU-based, SoC FPGA-based, and neural
accelerators. To carry out this analysis, some of the models
and edge devices have been adapted, resulting in the following
original contributions:

• A novel approach for transforming a 3D voxel representa-
tion into concatenated 2D images to implement 3D DNN
architectures into edge devices that only support 2D data.

• An adaptation of the original PointNet for devices that use
quantized data, avoiding the operations not supported by
the quantization operation.

• Development, manufacturing, and deployment of a
custom IoT node including a low-power processor and
a neural accelerator integrated into the same board.

• Design of Multi-View Depth Map projection Network
(MVDMNet), a novel DNN to provide object clas-
sification results over point clouds. MVDMNet takes
2D images generated using a point cloud depth map
projection from different views as input.

The rest of this paper is structured as follows. In Section II,
related works which use different edge processing platforms
to process DNN algorithms are described. State-of-the-art
DNN architectures that use point clouds as input to provide
object classification results are explained in Section III.
These DNNs are the ones implemented and evaluated in this
work. In section IV, the dataset used to train the DNN is
presented along with the frameworks used to design, train,
and make inferences with DNNs. A detailed description of
the different platforms used for the implementation, along
with the description of the point cloud transformations
performed to adapt the data for each DNN architecture,
is provided in Section V. The point clouds transformation
to the format supported by each DNN is provided in
Section VI. Experimental results are discussed in Section VII.
Finally, conclusions and future lines of work are provided in
Section VIII.

II. RELATED WORK

This section presents the most relevant works focusing on
DNN algorithms for object classification using point clouds at
the edge. Since no works address these issues together, DNN
edge implementations for object classification tasks using 2D
images as input are studied first. Afterward, the state-of-the-
art DNN algorithms that use point clouds as input to perform
object classification are described.

A characterization of DNNs that perform object detection
with 2D images by using edge processing platforms with
different architectures such as CPUs, GPU-based, SoC
FPGA-based and DL neural accelerators is presented in [10].
They analyze the impact of DNN design frameworks, their
software stack, and their implemented optimizations on
the final performance. Power consumption and temperature
behavior of the different processing elements are measured.
However, there is no information about the accuracy provided
by the processing elements along with each DNN. Accuracy
is a critical factor when dealing with these platforms because,
in some architectures, the accuracy decreases significantly,
as is explained in this work. Regarding DL neural accelerators,
in [10] authors implement two of the most used nowadays.
Differently, in this paper, five of the most used state-of-the-art
DL neural accelerators for the edge are characterized together
with CPU and GPU-based architectures. Besides, the DNNs
implemented by the authors in [10] use 2D images as input,
in contrast to the 3D point cloud data used in the DNNs
implemented in the presented work, with the advantages that
it entails. In [10] they only execute one of the nine evaluated
DNNs on the SoC FPGA-based device in contrast with the
proposed work in which all the architectures of DNNs are
implemented on an FPGA.

Multiple DNN architectures exist that use point cloud data
as an input to provide object detection and classification
results [11]. Detailed descriptions of the most used DNN
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architectures which use point clouds are provided in [12].
There are few works in the state of the art that address
the use of DNNs with 3D objects. As far as the authors
know, these works always use one of the following 3D
object representations: image-based, voxel-based, and point-
based [13], [14]. No other architectures that provide object
classification capabilities have been found by the authors in
the current state of the art. However, there are also hybrid
architectures that combine two of the three existing ones,
such as VoxMVCNN [13], which combines image-based
with voxel-based representations. However, in the presented
work, the authors aim to present a comparative study
between the base architectures to provide an analysis between
their behaviors when running using different processing
architectures such as CPUs, GPUs, FPGAs, and neural
accelerators. They also gather the most commonly used point
cloud datasets for 3D shape classification, 3D object detection
and tracking, and 3D point cloud segmentation tasks. In turn,
a comparative in terms of accuracy of the most relevant DNN
works which use point cloud data is presented by the authors
in [12]. However, all these implementations are performed
using a desktop computer, so the provided inference times and
power consumption metrics cannot be directly extrapolated to
implementations on edge IoT devices.

In summary, there are works in state of the art focused
on object classification algorithms in the edge, using
2D images [10], [15]. Some other works perform object
classification using point clouds as input [12], [16]. However,
no publications combine both approaches as proposed here.
A range of edge-specific IoT low-power devices with different
processing architectures such as CPUs, GPU-based, SoC
FPGA-based, and DL neural accelerators are used for running
DNNs in the presented work. Three DNN architectures that use
point cloud as inputs were implemented to provide alternatives
in terms of inference times and classification accuracy.

III. DEEP NEURAL NETWORK ARCHITECTURES

FOR POINT CLOUD PROCESSING

In this section, the most relevant DNN architectures that
use point clouds as inputs to perform object classification are
explained. Emphasis is put on the inference stage, which is
the part that can be performed at the edge.

A. PointNet
PointNet [17] is a DNN architecture proposed by Qi et al.

in 2017 that takes as input raw point clouds without requiring
any pre-processing transformation, which facilitates real-
time processing. The data precision offered by PointNet
is relatively high but at a higher computational cost. The
PointNet architecture consists of two main modules, one for
global point cloud classification and another dedicated to 3D
local segmentation. Only the global classification module was
put into practice to perform the comparison with the other
implemented DNNs under similar conditions. PointNet has
essential properties related to point cloud treatment, such as
permutation and transformation invariance [18]. The resulting
output obtained from the DNN is invariant to the possible

spatial transformations on the input point cloud, such as
rotation, translation, or denoising. This property allows the
DNN to be useful for real classification situations where the
point cloud representation has imperfections. All the results
provided in this work for the PointNet have been achieved by
using the same network structure hyper-parameters reported
in [17].

B. Multi-View Depth Map Projection Network
Unlike PointNet, multi-view projection networks use

concatenated one-channel 2D images as inputs. These images
are generated by converting the original point cloud, for which
two different methods have been proposed in state of the art:
statistical projection and multi-view. The statistical projection
method is based on the work presented in [19] for a road
detection application using LIDAR sensors in autonomous
vehicles. It relies on top-view 2D images that encode different
statistic metrics related to a specific region of interest, such as
the point density, mean reflectivity, and maximum elevation.
Each of these metrics is encoded as one unique image channel.
In this regard, images can be generated from the point cloud
and used to feed the DNN. The original method only uses
the top-view 2D images, which is a limitation. For this
reason, authors in [20] proposed merging the information
from multiple views trying to increase the obtained accuracy.
In this regard, the one-channel 2D image of each view are
concatenated before being provided as input to the DNN.
However, experimental results show that adding the knowledge
of different views may imply an increase or decrease in the
DNN accuracy, depending on the information extracted by
each view. A reduction in the accuracy of the network may
result if the views are similar since DNN learn better the
more varied the data is. However, if the views are significantly
different, it will increase the accuracy. Authors in [20] show
DNN accuracy results running object classification algorithms
with a different number of views.

A complete characterization of different images generated
using statistical projection along with multi-view methods is
originally explored in this work. The detailed description of
the applied transformations is presented in subsection VI-A.1.
From the statistical projection method, the best results in
terms of accuracy are obtained with the maximum elevation
projection. Then, multiple views of this projection are
generated as proposed by authors in [20]. A new architecture
that combines these two transformations is originally proposed
in this work. This DNN architecture is called MVDMNet.
The hyper-parameters of the MVDMNet architecture are
detailed in Table I. For each MVDMNet layer, information
about the layer type, the input size, and the number of
trainable parameters are presented in Table I. The selection
of the number of views and their location is detailed
in section VI-A.1.

C. VoxNet
The VoxNet architecture was presented in [21] by

Maturana et al. aiming at classifying 3D objects with low
resolution. This low resolution may affect the information
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TABLE I
MVDMNET ARCHITECTURE HYPER-PARAMETERS

that the DNN can extract from the point cloud. However,
when using VoxNet, the accuracy is almost unaffected,
as shown in the section VII-B. In VoxNet, a voxel grid type
transformation is applied to the input data as a preprocessing
step. The voxel grid representation [22] is a 3D matrix space
composed of a fixed number of voxels. A voxel consists of
a representation similar to a pixel, but instead of representing
a two-dimensional plane, it represents a volume feature on a
three-dimensional grid.

It is assumed that inference processing starts from the data
collection in a point cloud format. Afterward, the input object
is compressed as a 16 × 16 × 16 density voxel grid as
explained in [21]. This process is described in section VI-A.2.
In DNNs fed by 3D data, it is a common practice to apply 3D
convolutions for extracting feature maps from a volumetric
representation [21]. However, the problem arises from the
impossibility of implementing these operations in some DL
neural accelerators. To solve this issue, sectioning the voxel
grid in as many sections as layers of voxels along an axis
is originally proposed in this work, thus obtaining the depth
levels of the voxelized object as a batch of images, which are
admitted by these devices.

For the proposed architecture, starting from a 16 × 16 × 16
voxel grid, the neural network will interpret the input as
a 16 × 16 matrix with 16 depth channels and perform a
2D convolution filter over each depth channel, extracting the
features of each one as if it were a 2D image that instead of
having three RGB depth channels has 16 associated channels.
Fig. 1 shows an example of transformation from point cloud
to a 16 × 16 × 16 voxel grid, showing the 16 depth levels
along the z-axis, being in the XY plane where 2D convolutions
apply. The resulting DNN has the advantage of computing
a high number of volumetric data at a very low inference
time while maintaining competitive precision numbers along

Fig. 1. Voxel transformation composed of 16 images (channels) of
16 × 16 pixels depth images of an airplane object.

TABLE II
HYPER-PARAMETERS USED DURING THE TRAINING STAGE

with optimal power draw. One challenge facing volumetric
classification is the feature loss resulting from the voxel
grid transformation, preventing achieving superior precision
compared to other DNN architectures. The VoxNet network
structure implemented in this work follows the architecture
described in [21].

The hyper-parameters used for training are shown in
Table II. In this case, the same parameters have been applied
to the three DNN models.

IV. DATASET AND FRAMEWORK SELECTION

The point cloud dataset selected for the comparative analysis
performed in this work is presented in this section. Then, the
deep learning frameworks used at the training and inference
stages are shown.

A. Dataset
The object classification dataset selected for the analysis

performed in this work is the Princeton ModelNet40 [23].
This is the most widely used database in state of the art
targeting the evaluation of classification algorithms on point
clouds. ModelNet40 consists of 12311 3D CAD objects from
40 different classes divided into 9843 items for training and
2468 items for validation. Each CAD object is converted to
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a point cloud of 2048 points. The MVDMNet and VoxNet
architectures use 2048 points per object. However, in this
work, the point clouds were reduced from 2048 to 1024 points
for the PointNet architecture since this is the maximum size
supported by Movidius NCS, one of the DL neural accelerators
used in this work. A random procedure is proposed to select
the points in each training epoch. This strategy provides
greater diversity in the training dataset allowing the network to
improve its learning and obtain better accuracy results. Each
point cloud object is defined by its spatial coordinates on the
X, Y, and Z axes. Luminosity data is not available in the
ModelNet40 database, unlike the LIDAR sensors data.

B. Deep Learning Framework
DL frameworks are libraries that facilitate DL algorithms

design, training, and validation through a high-level pro-
gramming interface. They allow implementing neural models
without getting into the details of the underlying algorithms.
Therefore, it is essential to use a framework to obtain the
fastest processing times and the shortest development time
when targeting edge devices. Each edge device is compatible
with a different set of frameworks. Since the framework
may also affect the accuracy, it has been decided to use
TensorFlow [24], which is compatible with all the devices used
in this work. This way results only depend on the selected
topology or the device, not the framework.

TensorFlow supports Python, C++, and Java programming
languages. However, its Python API is much richer than
the others. For this reason, in this work, both training and
inference are performed using Python. Besides, as part of the
TensorFlow ecosystem, a Lite version of the library is provided
for mobile and IoT devices. This light version includes support
for integer data types, not included in the full version.

V. IMPLEMENTATION IN IOT EDGE DEVICES

This section describes the platforms selected for the
comparisons provided in this work. All of them are
specifically designed for the edge as they have very low
power consumption, including CPUs, GPUs, FPGAs, and
edge-specific neural accelerators. Besides, a desktop PC has
been included in the analysis for the sake of completeness.
The section also describes how the DNN algorithms have
been adapted to each platform in this work. The frameworks
admitted in each case are specified along with the requirements
for the implementation, as each processing device has specific
particularities that must be taken into account.

A. Desktop PC
A desktop PC has been included in the comparison to offer

a performance reference of a high-performance CPU, although
it is clear that this solution is not compatible with the edge
requirements. Personal computers are compatible with all the
DL frameworks available at the moment, but TensorFlow has
been chosen to provide a fair comparison with the rest of the
solutions. The desktop PC used for this work is equipped with
an Intel i7-8700 CPU with six cores operating at 3.2 GHz,
32 GB DDR4 RAM, and running an Ubuntu 18.04 operating
system. GPU support has not been used in this implementation.

B. CPU-Based Devices for the Edge
CPUs are ubiquitous due to their flexibility. However,

featured by a single or a low number of cores, CPU-based
platforms are expected to be less suitable for executing DNN
algorithms that are highly parallelizable. Nevertheless, they
have been included in this work since CPU-based platforms
are prevalent for edge applications. In particular, two different
CPU-based families are tackled. First, a very low-power
custom edge device working as an IoT node, then a Raspberry
Pi 3 (RPi3) together with a Raspberry Pi 4 (RPi4) acting
as Single-Board Computes (SBCs) solution. These devices
provide a traditional edge solution that serves as a benchmark
to compare with the other presented architectures.

1) Custom IoT Edge Node: The Cookie platform [25], [26]
has been selected as a representative example of an IoT node.
It was designed at Centro de Electrónica Industrial (CEI)
of Universidad Politécnica de Madrid and it is composed
of four modular layers compatible among them. Each layer
accomplishes a specific purpose: processing, communication,
power supply, and sensing/actuation. This structure allows
including different exchangeable layers according to the
specifications of each application. Only the processing and
power supply layers have been used in this work. The
processing layer was designed to perform edge computing with
low power consumption and includes an Atmel SAMA5D3
processor with an external RAM of 256 MB and an SD
card reader. The SAMA5D3 processor is a 32-bit medium-
performance, low-power ARM Cortex-A5 core working at a
clock speed of 536 MHz and consuming less than 150 mW.
The approximate cost of this board for a 1000-unit production
run is about 30 $.

An embedded Debian 9 Stretch Linux operating system
installed in a flash SD card runs in the processing layer
to ensure compatibility with the TensorFlow Lite library.
TensorFlow Lite is the TensorFlow framework adaptation for
IoT devices as it allows DNNs to be optimized for devices
with reduced computational resources. The data type of the
DNNs trained with TensorFlow framework is Floating-Point
32-bits (FP32), and it was trained on the desktop PC. Then,
it was converted to Unsigned 8-bit INTeger (UINT8) data
type which is the TensorFlow Lite admitted format, and then,
the DNN was deployed into the Cookie node. However, the
TensorFlow Lite library is not directly compatible with the
Cookie CPU as these libraries require the microprocessor
to have an integrated NEON vector instruction set [27] and
the ARMv7 version of the SAMA5D3 processor does not
incorporate this instruction set. To solve this, it was necessary
to recompile the TensorFlow Lite libraries. The library was
cross-compiled for ARMv7 architectures from the desktop PC,
and the neon optimization flags were removed.

2) RPi3 and RPi4: Raspberry Pi is a family of SBCs
developed by the Raspberry Pi Foundation. In this work,
an RPi3 (RPi3B+ model) and the 4 GB RAM version of
the RPi4 (RPi4 model) were selected for comparison. These
devices handle single-precision floating-point formats (FP32),
so DNNs were trained using this format. As for the rest of
the implementation, the training stage has been carried out on
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a desktop PC. Both in training and inference, the TensorFlow
framework was used.

C. GPU-Based Devices for the Edge
GPUs have traditionally been used to perform graphics

rendering. However, their usage has been extended in the last
years to general-purpose computation, exploiting the inherent
parallelism offered by the vast amount of cores their include.
Consequently, GPUs are widely used in practice to process
DNNs [28]. Apart from inference, their benefits are also
exploited for training, being the most popular option nowadays
and leveraging their compatibility with the most popular DL
frameworks.

For edge inference, specific low-power consumption GPU-
based devices are available in the market, integrating a GPU
and a CPU in the same system-on-chip. The best known are
the Jetson family boards commercialized by NVIDIA. In this
work, two models of the Jetson family were selected: the
Jetson Xavier NX, a high-performance, high-cost platform,
and the Jetson Nano, the version with the lowest cost, power
consumption, and performance of the family. Both devices
were used in the maximum performance mode in the presented
work, considering that GPU-based architectures are expected
to offer lower performance than neural accelerators. This way,
the comparative shows how far the GPU-based architectures
are from the neural accelerator architectures. Experimental
results validate this assumption.

The data type selected for the edge GPU DNN trainings was
FP32, and the TensorFlow framework was utilized. Then, the
DNN model was converted to TensorRT with FP16 data type.
TensorRT is a set of NVIDIA libraries optimized for adapting
and running DNNs using GPUs. These libraries are also used
to deploy the DNN in the GPU-based edge devices.

D. SoC FPGA-Based Device for the Edge
Field Programmable Gate Arrays (FPGAs) are well-known

configurable digital circuits widely deployed in the industry.
Their programmable logic resources can be customized to
each application, allowing further optimization compared to
GPUs and CPUs and higher power efficiency. The main
FPGAs disadvantage is that the implementation of the designs
is highly time-consuming. However, there are solutions for
directly porting DNN models to an SoC FPGA-based circuit.
Among them is the Apache TVM [29] used in this work.

The Xilinx PYNQ-Z1 is a 165 $ development board that
comes with a Zynq-7000 All Programmable System on Chip
(APSoC). It integrates an FPGA and a multi-core processor
into a single chip. For this reason, this approach it is refer
as SoC FPGA-based devices. The board works on the PYNQ
platform by running an image based on the Ubuntu distribution
for Linux.

In this work, a state-of-the-art neural network compiler
[30] was used for running all three DNN architectures
on the reconfigurable hardware. The compiler used in
this work is Apache TVM, which receives as input the
DNN model from a DL framework and transforms it into
an Intermediate Representation (IR) that takes the form

of a computational graph. This low-level optimized graph
can target different hardware back-ends, including custom
hardware accelerators on FPGAs such as the Versatile Tensor
Accelerator (VTA) [31], a programmable DNN accelerator
fully integrated into the TVM compiler stack. Its architecture
consists of fetch, load, store, and compute modules that
communicate via FIFO queues and SRAM blocks. Among the
main advantages offered by VTA are its fully customizable
GEneral Matrix Multiply (GEMM) tensor unit, task-level
pipeline parallelism, and a just-in-time runtime that enables
heterogeneous execution between the PL and PS subsystems.

The inference pipeline was performed in the provided
implementation by first converting the DNN from the
TensorFlow framework into the IR, followed by an 8-bit
integer quantization for GEMM operations support. Afterward,
the quantized compute graph undergoes a packing transforma-
tion process so that the GEMM core performs tensorization
on matrix-multiplication operations such as 2D convolutions.
Once the computing graph is packed, the next step is to
generate customized executable libraries for optimizing DNN
operation kernels for a specific hardware target. This DNN
hardware optimization is made by using AutoTVM [32],
an automated tuning optimizer that uses an ML-based cost
model to search for the best possible configuration for
achieving maximum performance on the selected hardware
device. It is necessary to consider that some DNN operations
used in TensorFlow are not supported by the TVM compiler.
When this occurs, the conflicting operations are sent to the
CPU to be processed. Thus, the DNN is split by executing one
part in the FPGA and the conflictive part in the CPU, which
causes a considerable increase in the processing time. Note
that it is also possible to implement the DNN architectures
manually in the PL without using the VTA compilation
tools. Additionally, it is also possible to fully implement in
the PL the preprocessing of the point cloud to the formats
supported by VoxNet and MVDMNet, which will provide
higher acceleration. However, these PL-based solutions have
not been implemented, since the development time would
increase considerably and it is out of the scope of this work.

E. Deep Learning Neural Accelerators for the Edge
Neural accelerators are hardware architectures specialized

for deep learning applications. In particular, for performing
matrix multiplications, the ubiquitous operation in DNN
algorithms. From this perspective, it can be said that GPUs,
or FPGAs, are more flexible as they can be adapted to
different types of algorithms. However, the high specialization
of the neural accelerators makes them potentially much more
energy-efficient, a critical parameter in embedded systems.
These processors can be found under different names such as
Tensor Processing Unit (TPU) [33], Neural Processing Unit
(NPU) [34], or Vision Processing Unit (VPU) [35].

1) Coral EdgeTPU-Based Devices: EdgeTPU is a com-
mercial neural accelerator designed by Google to execute
DNN inferences with a performance of up to 4 TOPS
and 2 W of power consumption. In this work, three different
EdgeTPU-based devices have been used. The first one is the
Cookie Coral, which is a custom board for the Cookie IoT
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Fig. 2. Cookie IoT node with an EdgeTPU accelerator chip integrated.

platform (explained in Section V-B.1), in which an EdgeTPU
chip has been integrated into the same board, as it is shown
in Fig. 2. The approximate cost of this board for a 1000-unit
production run is about 50 $. It must be highlighted that this
new node has been specially created for this work. In this
regard, it is possible to take advantage of the reduced power
consumption provided by the Cookie IoT node combined
with the high performance offered by the Coral EdgeTPU
accelerator. The second EdgeTPU-based device is the Coral
Dev Board Mini, an SBC with an EdgeTPU chip integrated
into the board, wireless connectivity, and running a variation
of Debian Linux. Finally, the third EdgeTPU-based device is
the Coral USB accelerator, a USB device that provides an
EdgeTPU as a co-processor for any device that can handle
Debian Linux, macOS, and Windows 10.

The EdgeTPU architecture handles UINT8. For this
reason, it is necessary to quantize the DNN weights. There
are two different approaches for quantization: post-training
quantization and quantization aware training. Post-training
quantization trains the DNN using float data type, and after the
training stage, the quantization is performed. This is the most
straightforward alternative. However, there is almost always a
loss of accuracy that, in some cases, can be critical. Differently,
quantization-aware training quantizes all the DNN operations
before the training stage. This alternative is the most complex
one since not all the operations inside the DNN are supported
for 8-bit integers in the DL frameworks. However, with this
solution, the accuracy decreases slightly or, in some cases,
is maintained as shown in section VII-B.

Quantization-aware training has been performed in this
work using TensorFlow Lite. Nevertheless, it must be
considered that the PointNet architecture is not compatible
with this technique due to some operations not supported by
the quantization, such as batch normalization, one-dimensional
convolutions, and one-dimensional max pool. For this reason,
an adaptation of the original PointNet is proposed in this
work for devices that use quantized data. This custom
PointNet uses two-dimensional convolutions and max pool
stages. The convolutional step is the one that requires the
most computational resources to be processed, and adding
one dimension implies an increase in size. In this regard,
the processing time is considerably affected, as shown in

subsection VII-C. Custom PointNet also removes the batch
normalization layers, resulting in slightly lower accuracy as
illustrated in subsection X.

2) Movidius Neural Compute Stick 1 and 2: Intel Movidius
Neural Compute Stick (NCS) is designed to run DNN
at the edge with high performance. Two versions are
available: the Movidius NCS1, powered by the Intel Movidius
Myriad 2 VPU, and the NCS2, featured by a Myriad X VPU.
These processors are used to accelerate DNNs by running parts
of the DNNs in parallel. They act as a co-processor and must
be connected to a host machine using the USB 3.0 interface.
The NCS1 is now discontinued, and NCS2 costs 114 $.

The Movidius NCS architecture handles FP16 data types.
In this regard, it is necessary to convert the weights of
the DNN since they are trained in FP32. The conversion is
achieved starting with the TensorFlow trained files using a
desktop PC and performing post-training quantization with
OpenVINO toolkit libraries [36] which are specific for Intel
devices. These libraries convert the data of the DNN to
FP16 data type and adapt the DNN operations to the NCS
architecture. The precision is almost not affected during the
conversion, as shown in section VII-B.

In the ModelNet40 database, each object is composed of
2048 points. NCS2 has a memory of 320 MB to store the entire
DNN. The model trained with objects of 2048 points exceeds
this size, so it was necessary to reduce the number of points of
each object to 1024. There are two ways to select the points:
the first is random, and the second is to take specific fixed
points. The first approach was implemented since 1024 points
were randomly selected for each object at each training epoch.
This strategy allows a greater diversity in the training dataset,
which provides better results in terms of accuracy.

3) Rockchip AI Stick: The Rockchip AI Stick is a
USB device that integrates Rockchip’s RK1808 chip as a
co-processor for any host that can handle Windows, Linux,
or macOS. The chip has a Neural Processing Unit (NPU)
integrated. The stick connects to a host machine via USB3.0.
It requires a host processor with an x86 architecture.

The Rockchip AI stick NPU architecture handles UINT8 as
EdgeTPU architectures. For this reason, the TensorFlow Lite
framework is used to quantize the DNN algorithm weights.
Then, the RocKchip Neural Net (RKNN) libraries are used
to adapt the TensorFlow Lite quantized weights to a format
compatible with the AI stick architecture. RKNN is a DNN
tool developed for the use of NPU on embedded platforms
that allow the deployment of DNNs.

The most relevant specifications to compare each of the
devices detailed in this section are summarized in Table III.
These metrics are the ones provided by the manufacturers.
Regarding performance metrics, two measures are provided
depending on the data type used by each architecture,
Tera FLoating Points Operations per Second (TFLOPS) for
floating point-based architectures and TOPS for integer-based
architectures. The power consumption metrics are provided
for maximum performance modes. In Table III the cookie
specifications are not included since it is a custom board.
The TFLOPS parameter provided by the Pynq is hardware-
dependent, so it is not included either.
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TABLE III
DEVICES SPECIFICATIONS PROVIDED BY EACH MANUFACTURER

TABLE IV
ACCURACY FOR DIFFERNET IMAGE SIZES

VI. POINT CLOUD PREPROCESSING

A. Point Cloud Transformation
The explanation of how to convert the point cloud to one-

channel 2D depth map images and voxel formats that are
used as inputs to the MVDMNet and VoxNet architectures
is detailed in this section.

1) Point Cloud to One-Channel 2D Depth Map Images: As
mentioned before, the database used in this work is in the form
of a point cloud to simulate what would be produced with a
LIDAR sensor. However, MVDMNet uses 2D images as input.
The point cloud must be converted using statistical projection
and multi-view methods to obtain these images. In this regard,
one-channel 2D depth map images from different views are
used as the input for the MVDMNet, as was explained in
section III-B. First, it is necessary to select the image size that
provides the best results in terms of accuracy. Different images
sizes generated using the maximum elevation projection with
a top-view of the 3D point cloud were evaluated and presented
in Table IV. These generated images of an airplane object class
are shown in Fig. 3. As it is a depth map, the pixels colored
in yellow represent the closest points, and those colored
in green represent the farthest points. The image size of
64 × 64 provides the best results in terms of accuracy. For
this reason, this is the size used in the rest of the experiments
presented in this section.

Authors in [19] proposed six statistical projection methods
to convert the 3D point cloud into 2D images. These
projections are used to calculate the value of each pixel of
the 2D image. The six statistics computed for generating each
projection are the following: points density, mean reflectivity,

Fig. 3. Different images sizes of depth map projection.

TABLE V
ACCURACY FOR DIFFERNET STATISTICAL

PROJECTION IMAGES

mean STandard Deviation (STD), minimum, maximum, and
mean depth. The statistical projection that provides the best
results in terms of accuracy was selected for MVDMNet.
As the ModelNet40 dataset does not provide reflectivity value,
mean reflectivity statistical projection can not be implemented.
The implementation presented in this section was performed
with a top-view of the 3D point cloud as proposed by authors
in [19]. Accuracy results when using each statistical projection
on the ModelNet40 dataset are presented in Table V. The
generated images for each statistical projection of an airplane
object class are shown in Fig. 4. Note that the pixels colored
in yellow represent the low-value points, and those colored in
green represent high-value points. Maximum depth statistical
projection provides the best results in terms of accuracy. For
this reason, this is the projection method used in the rest of
the experiments presented in this section.

With the image size and the projection that provides the
best results in terms of accuracy selected, an exploration was
carried out to define the optimal views of the 3D objects
before the projecting stage. These views were evaluated by
setting up viewpoints (as virtual cameras that show a specific
view of the 3D object) which are necessary to create a
multi-view shape representation. Each viewpoint generates
a one-channel image. It is assumed that the objects are
upright oriented along the vertical axis. The selection of the
views which maximize the accuracy was carried out searching
among 96 options. The selection procedure is as follows.
First, each of the 96 images was used to train the DNN,
providing different accuracy results. The 10 views with the
best results in terms of accuracy are presented in Table VI.
Then, these views were concatenated and used to train a
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Fig. 4. Statistical projection images evaluated.

TABLE VI
ACCURACY FOR DIFFERNET VIEWS

TABLE VII
ACCURACY FOR DIFFERNET CONCATENATED VIEWS

DNN. It is necessary to consider that the higher the number
of concatenated images, the longer the inference time of the
DNN to process this information. Experiments to select the
number of images that maximize the accuracy were carried
out using up to 10 concatenated images of different views
as it is presented in Table VI. The option with the highest
accuracy was obtained with three concatenated images. Using
more than three images provides lower accuracy results due
to the overfitting problem [37].

The angles selected for the three views correspond to the
best views in terms of accuracy are 230◦, 150◦, and 60◦
rotating around the vertical axis and 20◦ elevated from the
ground plane when pointing towards the centroid of the object.

Fig. 5. Final input image of an airplane object class composed by three
one-dimensional depth map projection images with the three best views
showing the rotation of each view.

These values are shown in Table VI. An example of these three
views for an object in the airplane class of the ModelNet40
database is shown in Fig. 5. Also, this figure represents an
example of the final input image, which is composed of three
concatenated one-channel 2D depth map images of the three
best views. For this reason, the input image size is (64, 64, 3).
The experiments for the presented exploration to select the best
image sizes, statistical projections, and views were carried out
by training and validating the results using the ModelNet40
dataset. Only this three views option is considered for the
experimental results in the next section since it has been
proved to provide the best results in terms of accuracy.

2) Point Cloud to Voxels: Before using VoxNet, the
point cloud must be transformed into a voxel-based grid
representation, as it is explained in [21]. This transformation
reduces the point cloud resolution without significantly
altering the global features.

Voxel-based surfaces can be formed by varying-size voxels,
which requires more processing power or equal-size voxels.
Concerning equal-size voxels, the voxel grid will be a 3D
matrix with dimensions [X, Y, Z] where X, Y, and Z are
the number of voxels dividing the length of each coordinate
axis. Authors in [21] convert the point cloud into a binary
voxel grid, in which the voxels take the value depending
on whether or not a point of the cloud occupies the voxel.
However, the frameworks used in this work do not support
DNN architectures with binary data. Thus, in the VoxNet
implemented in this work, each voxel will have a specific
value, consisting of the number of inside points. Each voxel
value is calculated with a density or concentration ratio of
points.

This transformation was used to convert the point cloud
objects before being processed by VoxNet. The point cloud
was compressed as a specific voxel grid size, where each
voxel was measured by a point cloud density ratio so that
the resulting representation was independent of the number
of points fed to the DNN. Different voxel grid dimensions
were considered and evaluated as shown in Table VIII. On the
one side, a high precision loss was obtained using the size of
[4 × 4 × 4]. On the other side, the [32 × 32 × 32]
size produced a considerable increase in processing time
without providing an increment in the accuracy. Note that
these inference times are calculated using the desktop PC
described in Section V-A. Therefore, the [16 × 16 × 16] size
option was the most efficient in terms of inference time and
accuracy since the accuracy obtained was the highest with a
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TABLE VIII
ACCURACY AND INFERENCE TIMES FOR DIFFERNET VOXEL GRID

SIZES FOR MODELNET40 DATABASE

Fig. 6. Voxel representation with different voxel grid sizes.

considerable reduction in the processing time regarding the
[32 × 32 × 32] voxel grid size alternative. Fig. 6 shows
the resulting transformation of an airplane class point cloud
object from ModelNet40 to the voxel grid sizes compared in
Table VIII.

VII. RESULTS

The experimental results provided by the implementations
of the three DNN architectures running on the different edge
technologies are presented in this section. They include results
related with the training stage. Also, information about the
accuracy of the validation dataset and the inference times is
presented. Besides, the average power consumption of the
different platforms executing each of the DNNs is shown.
Finally, the preprocessing times of converting the data from
the point cloud format to the formats supported by VoxNet
and MVDMNet are provided.

A. Training Stage
This section shows the results obtained during the training

stage of each architecture when performing the training using
the desktop PC. Table IX shows information about the size of
each DNN model implemented. Note that each DNN provides
different results depending on the data type used during the
training stage. The size of the model is an important parameter
for evaluating the computational effort needed to process the
DNN. This factor is essential in edge devices as they have
computational constraints. Table IX also provides information
about the time needed to train each epoch. Note that this
parameter is related to the DNN size.

TABLE IX
DNN MODEL SIZES AND TIME TO TRAIN ONE EPOCH

Fig. 7. Validation accuracy obtained on each epoch during the training
stage.

Fig. 8. Loss obtained on each epoch during the training stage.

The evolution of the validation accuracy and the loss
parameters obtained on each epoch during the training stage
is presented in Fig. 7 and Fig. 8.

B. Validation Accuracy
Table X shows the validation accuracy results obtained

during the training stage provided by different devices when
using ModelNet40 database. The training and validation data
were split randomly, representing 75% and 25% of the total
dataset, respectively. The splitting was performed randomly
only the first time, and then it was conserved for the rest of
the experiments. The comparison of the different devices is
fairer this way since there are slight variations in the accuracy
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TABLE X
VALIDATION ACCURACY

when splitting the data randomly for each experiment. These
variations may lead to incorrect conclusions in devices with
similar accuracy.

As mentioned in section V-E.1, the DNNs that rely
on quantized weights use the custom PointNet adaptation
proposed in this work, which is marked with a * symbol
in Table X, to highlight that it is different from the original
version. Note that the validation accuracy results of this
custom PointNet are slightly lower than the original version.

It is necessary to consider some cases that could not be
implemented, such as the processing of PointNet and PointNet
custom over Cookie and Cookie Coral platforms due to a
memory error provided by the vast size of the DNN. PointNet
architectures requires more RAM than the 256 MB available
in these devices. Besides, the validation accuracy of the
Rockchip AI stick in PointNet custom architecture obtained
an inadmissible value of 37.12%. This loss of precision is
produced in the conversion stage of the DNN TensorFlow Lite
model to a Rockchip AI stick compatible model using RKNN
API. This is caused by existing limitations in the API.

C. Inference Times
This section reports the inference times for each architecture

without including the preprocessing time. The inference time
was measured staring in the precise moment when the data
of the object in each of the 3 formats analyzed in this
work is provided to the DNN as input until the moment
when the output of the DNN is obtained. This output contains
the information of the last layer of the DNN, in which
the information regarding the prediction of the input objects
class is contained. Table XI shows the average inference time
when running 1000 inferences using random objects. The
average value is calculated as there are slight differences in
the measurements when processing each object individually
due to the the experiments are running on a Linux OS which
performs other processes at the same time.

The Cookie and Cookie Coral inference times using
PointNet were not obtained due to the issue mentioned
in subsection VII-B. Regarding the PYNQ device, some
PointNet operations are not supported by the GEMM core.

TABLE XI
INFERENCE TIMES

TABLE XII
INFERENCE THROUGHPUT IN FPS

As a result, these conflictive operations were executed in the
embedded ARM processor, causing a significant increase in
the processing time.

It is necessary to take into account that the inference
time between PointNet and custom PointNet is significantly
different, as explained in subsection V-E.1. For reference,
custom PointNet average inference time running on the
Desktop PC is 15.75 ms compared to 10.75 ms for the original
PointNet. Both networks were tested using FP32 data type.
As it is shown in tables XI and XII, custom PointNet inference
times are marked with a * symbol. Inference time results are
provided using ms and Frames Per Second (FPS) metrics in
Table XI and Table XII respectively.

D. Preprocessing Time
This section shows the results of the preprocessing time

required to transform the point cloud into voxel and image
formats. The preprocessing has been implemented using
sequential software in the host processors of each platform.
No specific hardware optimizations have been addressed at
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TABLE XIII
PREPROCESING TIMES

TABLE XIV
PREPROCESSING TIMES COMBINED WITH INFERENCE TIMES

this point. This could be a time-consuming step to be carried
out manually, which would imply, for instance, custom CUDA
developments for GPUs or VHDL descriptions for FPGAs.
This is out of the scope of the paper. For this reason, this
work has focused on obtaining the CPU preprocessing times to
compare each architecture. In the case of Jetson NX and Nano,
the preprocessing time is calculated using only the CPU. These
times are presented in Table XIII. Besides, the preprocessing
times combined with the inference times, which constitute the
real total time to process an object, are shown in Table XIV.
Note that neural accelerators can not perform preprocessing
since they only operate as co-processors dedicated exclusively
for running DNN.

E. Power Consumption
This section presents power consumption data for the

different processing devices. As all the devices analyzed in
this work are connected via USB (except the desktop PC and
the Jetson NX), a USB power consumption meter has been
used for the experiments, which performs both real-time and
average power consumption measurements. For the desktop
PC and the Jetson NX, the power consumption reported by
their manufacturers is provided. Results correspond to the
average power consumption when running 10000 inferences
of random objects are presented in tables XV, XVI, and XVII.
Information about the power consumption of each architecture
on Idle mode is also presented. The processing of PointNet
over the Cookie and Cookie Coral platforms could not be
carried out as mentioned in Subsection VII-B.

TABLE XV
POWER CONSUMPTION

TABLE XVI
NUMBER OF FPS CONSUMING 1 W

By relating the classification throughput in FPS with the
power consumption, the FPS/W metric is obtained. These
results are shown in Table XVI. This metric better represents
the energetic cost when performing inference using different
architectures, resulting in a critical parameter when dealing
with edge systems.

Table XVII presents the Energy spent per inference,
parameter that may become a interesting metric of comparison
for certain tasks. As it is explained in [38], this metric
measures the Energy needed to perform one inference. The
Energy per inference parameter is calculated multiplying
the average total power per inference, parameter presented
in Table XV, by the inference time, which is provided in
Table XI.

F. Analysis of the Results
Focusing on the classification accuracy, it mainly depends

on the data type handled by the implemented DNN. In this
regard, the use of quantized data may produce slight
accuracy reductions, as shown in Table X. Moreover, some
DL frameworks such as TensorFlow are optimized for using
float data types during training. Therefore, quantization
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TABLE XVII
ENERGY PER INFERENCE

complicates DNN designs, making them unfeasible in some
cases, as happens with the PointNet architecture.

The accuracy is also reduced when the device requires
an adaptation step from the trained models to a device-
specific format, as happens with the neural accelerators and
SoC FPGA-based devices. This adaptation is carried out by
applying a device-specific API. In these cases, it must be
considered if the API supports various data types and is well
documented. In addition, APIs must be up-to-date as the DNN
landscape is in constant evolution. RKNN is the Rockchip AI
stick API, and does not release updates, is under-documented,
and produces an accuracy loss on certain types of architectures
such as PointNet, as shown in table X. OpenVINO, the
API provided by Intel, is one of the best regarding these
issues, is constantly updated, and has rich documentation. The
EdgeTPU-based device implementation has the advantage of
working directly with TensorFlow Lite, so it does not require
an API for the adaptation. In turn, Jetson devices benefit from
running DNNs in their native format. They also rely on the
NVIDIA TensorRT API to increase performance. This API is
constantly updated and offers a low development time.

In terms of inference times, it is shown in Tables XI and XII
that the neural accelerators architectures provide the best
results. In particular, the highest performance is provided by
Coral EdgeTPU USB, being more than four times faster than
the desktop PC running VoxNet and MVDMNet. The cause is
that Coral is working with an 8-bit integer data type. Movidius
NCS2 also stands out in inference time using an FP16 data
type.

When comparing the three platforms that integrate Coral
EdgeTPU, it can be seen in Tables XI and XII that the
performance obtained by EdgeTPU USB device is much
higher compared with Cookie Coral or Coral DevBoard. The
reason is that some computations, such as data adaptation
to EdgeTPU format, must be performed in the CPU. Thus,
apart from the deep learning throughput, the computational
capacity of the integrated CPUs is highly relevant for the
overall performance of the application. In the case of Coral
USB, a desktop PC with a powerful CPU is used as a host,

surpassing significantly the capacity of the CPUs that can be
found in the Cookie Coral or the Coral DevBoard. Moreover,
it can also be seen that the performance provided by the Coral
DevBoard is higher than the one obtained by the Cookie Coral.
This is also related to the difference in computing resources
of both CPUs. The Cookie Coral has an ultra-low power CPU,
resulting in a limited computational capacity.

Regarding the Pynq device, DNN operations optimized for
the PL reached an ×40 improvement compared to the ones
running on the ARM processor. However, because of the
complexity of the PointNet architecture, some operations are
not supported by the TVM compiler, which implies that they
cannot be implemented in the FPGA. For this reason, the
only manner to implement PointNet into the Pynq device
when using the TVM compiler is to process these conflicting
operations by using the ARM processor, leveraging the
heterogeneous features offered by the JIT compiler. However,
the inference performance was significantly affected because
of the bottleneck generated by the workloads executed on the
CPU.

Regarding the preprocessing time, PointNet benefits from
using point clouds directly, not requiring preprocessing.
However, it has the drawback of providing the highest
inference times along with the largest model sizes. On the
other hand, MVDMNet architecture requires extremely high
preprocessing times, making the inference and preprocessing
times the most elevated. However, the VoxNet architecture
provides low preprocessing times and, together with the
reduced inference times, makes it the fastest alternative.

In terms of power consumption, as shown in Table XV,
neural accelerators offer a low power consumption, and this
makes these devices suitable for IoT edge applications. From
Table XVI it can also be seen that the devices with the
best results are those based on neural accelerators since
their architectures are optimized to minimize the power
consumption. However, most of the solutions with neural
accelerators integrated are co-processors and need a host to
work. The extra power consumption required by the host, and
the increase of the cost, must be considered in the overall
system budget. The Cookie Coral platform and the Coral
DevBoard devices integrate a CPU with a neural accelerator on
the same board, and therefore they do not require a host. This
makes them the most suitable solutions for IoT edge scenarios.

VIII. CONCLUSION AND FUTURE LINES OF WORK

In this work, three different DNN architectures implemented
on edge devices are characterized when processing point
clouds to perform object classification tasks. Results in terms
of accuracy, inference time, and power consumption are
presented. In this regard, it facilitates developers to select the
alternative that best suits the required specifications.

It can be concluded that among all the edge processing
devices studied in this work, the ones that provide the best
results in terms of performance and power consumption when
performing object classification tasks with point clouds as
input are the neural accelerators. However, most of them need
a host to work, making these devices inappropriate for edge
implementations. For this reason, edge devices that incorporate
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a neural accelerator in the same board as Cookie Coral and
Coral DevBoard are the most suitable for edge applications.
In this regard, there is an optimal trade-off between power
consumption and performance. The Cookie Coral is designed
for IoT application prototyping since its modular architecture
offers greater flexibility compared with Coral DevBoard. This
modularity allows the implementation of different processing,
communication, power, and sensing layers according to the
requirements of each specific application. Besides, the cost is
reduced by half compared to the Coral DevBoard as it is a
custom platform.

Among the architectures studied, the best accuracy-
inference time ratio when processing point clouds is achieved
by VoxNet since it has the lowest inference time by far, and the
accuracy is slightly lower than that of PointNet. Besides, it is
also the fastest alternative when considering the processing
time and the preprocessing time. However, it should be noted
that some DNN architectures that are not image-based do
not provide accurate results when running into some neural
accelerator edge devices. Therefore, for some edge devices the
most suitable alternative is to use an image-based architecture
such as MVDMNet.

As future work, an edge system that detects and classifies
each object that enters a critical region will be developed and
deployed into a real scenario. A LIDAR will be used as an
input sensor to provide an accurate point cloud map of the
area of interest. Then, this point cloud will feed a VoxNet
DNN architecture and perform this processing using a Cookie
Coral.
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