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Deep Transfer Learning With Self-Attention
for Industry Sensor Fusion Tasks
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Abstract—Monitoring of complex industrial processes can
be achieved by obtaining process data by utilising various
sensing modalities. The recent emergence of deep learning
provides a new routine for processing multi-sensor informa-
tion. However, the learning ability of shallow neural networks
is insufficient,and the data amount required by deep networks
is often too large for industrial scenarios. This paper provides
a novel deep transfer learning method as a possible solution
that offers an advantage of better learning ability of the deep
network without the requirement for a large amount of training
data. This paper presents how Transformer with self-attention
trained from natural language can be transferred to the sensor
fusion task. Our proposed method is tested on 3 datasets: condition monitoring of a hydraulic system, bearing, and
gearbox dataset. The results show that the Transformer trained from natural language can effectively reduce the required
data amount for using deep learning in industrial sensor fusion with high prediction accuracy. The difficult and uncertain
artificial feature engineering which requires a large workload can also be eliminated, as the deep networks are able to
extract features automatically. In addition, the self-attention mechanism of Transformer aids in the identification of critical
sensors, hence the interpretability of deep learning in industrial sensor fusion can be improved.

Index Terms— Transfer learning, deep learning, natural language processing, sensor fusion, sensor data processing,
smart manufacturing.

I. INTRODUCTION

INDUSTRY4.0 or smart manufacturing introduced a clear
trend of industrial technology development, which is pow-

ered by advanced communication technology and advanced
data analytical methods. In such a scenario, the variety
and amount of sensor data coming from the production
process, products and production machinery may grow expo-
nentially [1]. This often includes state, process, vision, vibra-
tion and pressure data etc. Hence, there is a challenge on how
to harness sensor data collected from different modalities to
extract beneficial information, and that can be used to improve
the analysis performance such as useful remaining life (RUL)
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estimation [1], faults inspection, and diagnosis. Therefore,
sensor fusion methods, also referred to as data fusion, can
play an important role in solving this challenge. However, in an
industrial environment, the nature of data from various sensors
is very complex involving different modalities and measuring
physical quantities with significantly different sampling rates.
This complexity in incoming sensor data introduces difficulties
in its utilisation.

Roughly, there are three typical technical routines to employ
multi-sensor data to extract useful information. The first type is
the model-based method [2]. To use this method, deep domain
knowledge is essential, which enable researchers to model
the targeting system’s behaviour precisely by mathematical
and physical formulas [3]. However, building an accurate
model for a complex manufacturing process or machine is
not an easy task because of the lack of availability of
sufficient physical details and the uncertainties involved in
some of the processes. The second one is the statistics-
based method [4]. This technique makes an inference from
sensor data by observing previous system states and analysing
the associated sensor measurements, which requires a large
amount of good quality observed sensor data and properly
estimated noise distribution [5]. Artificial feature extraction is
usually needed in these methods to reduce the dimension of
input space [6] [7], such as Eigen Decomposition and Principal
Component Analysis [8]. The performance could be influenced
by the representativeness of the extracted features and how
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Fig. 1. Comparison between shallow neural network plus artificial
feature engineering and deep neural network which can extract features
automatically.

good the estimation of noise distribution is. The third method
involves the emerging area of Artificial Intelligence, especially
Deep Learning [9] [10]. A detailed domain knowledge is
not required in this method as it is the case in model-based
approaches. The amount of effort on feature engineering which
may restrict the performance of statistics-based method can
also be reduced [11], as Deep Learning is able to discover
inherent features automatically [12]. Hence, Deep Learning
may enable more data scientists without sufficient domain
knowledge to contribute to manufacturing domains.

However, when dealing with a large and complex input
space, such as a large number of sensors with different
sampling rates, more complex and deeper networks are often
necessary, as deeper networks have stronger feature extraction
capabilities [13]. This leads to a significant increase in the
depth and width of the model, resulting in high demands on
the amount of training data. For industrial scenarios, collecting
a large amount of training data means a significant increase
in time and expense, which is sometimes not even possible.
Alternatively, artificial feature extraction, such as time-domain
statistical feature extraction [14], frequency-domain feature
extraction [15], plus a shallow neural network [16] [17] can
be used to reduce the need for training data. For such a
method, the performance is heavily dependent on the quality
of manually extracted features, and feature engineering often
requires extensive experimentation and an understanding of
industrial processes, which can be time-consuming and dif-
ficult. Therefore, a method that requires a relatively small
amount of data and does not rely on feature engineering is
preferred. The hard choices mentioned above can be described
by Fig. 1.

In addition, lack of interpretability is another disadvantage
of Deep Learning in industrial applications. The mechanism by
which input data is mapped to model output of Deep Learning
is difficult to obtain. Hence, while using Deep Learning, it is
difficult to know which sensor has the decisive influence in a
multi-sensor system.

In this paper, we propose a novel transfer learning method-
ology for sensor fusion that transfers a deep model from the
natural language processing (NLP) domain, coined ’Trans-
former’ [18] to industrial applications. NLP is a data-rich
domain, deep models in this domain are relatively easy to be
adequately trained. Lu et al. found that, the feature extraction
ability of such a complex deep model have the potential to
be transferred to other modalities, since natural language is a
modality with a huge amount of data and features [19]. They
found that pretrained Tranformer with fine-tuning offers great

performance on numerical operations, image classification and
protein folding prediction tasks. Therefore, transfer of feature
representations identified from NLP to sensor fusion problems,
could enable the application scenarios, with high input dimen-
sion but insufficient data, to train very deep neural networks
from raw to use deep networks. Thus, the proposed method
is expected to make use of the strong learning ability of the
deep neural network and the advantage of the training ease
of the shallow neural network to improve the sensor fusion
task for manufacturing. This can be achieved by freezing all
the attention and feed forward layers and training the input
embedding, layer norm, and final full-connected output layers
only. It means that the computation of feature extraction which
are inherent in natural language will be transferred to sensor
fusion tasks.

In addition, the self-attention mechanism used by Trans-
former can provide insights into the final decision made by
the deep network and obtain the weight information, namely
the attention map, of sensor data. This can be used for the
identification of critical sensors and hence make up for the
lack of interpretability when using the deep learning model in
industrial sensor fusion tasks.

The main contributions of this paper include:
• A novel deep transfer learning solution that generalises

the feature representation from a data-rich modality,
in this case, NLP, to address challenges in sensor fusion.
This work demonstrates that when using transfer learning
in industrial scenarios, collecting data from similar indus-
trial processes for pre-training may not be necessary. The
proposed transfer learning method can effectively reduce
the required amount of data when using deep learning
for industrial sensor fusion tasks, thus benefiting from
the learning ability of deep models and to some extent,
eliminating the trade-off between deep and shallow mod-
els mentioned above. To the best of my knowledge,
it is the first work that uses the model trained from
language to solve the industrial sensor data processing
problem.

• The problem of poor interpretability when using Deep
Learning in sensor fusion tasks is alleviated. Based on
the attention mechanism, the decision basis of the deep
learning model can be inspected, thus the key sensors that
are highly related to the final decisions can be identified.
Instead of analysing data from all sensors, it allows for a
narrower analysis during diagnostics.

• A novel deep learning solution to automatically establish
a unified feature representation and association relation-
ship for the sensor data at significantly different sampling
rates from different modalities. For conventional sensor
fusion methods, decision-level fusion is a better option if
the types of sensors are significantly different [8]. How-
ever, the challenge for using decision-level fusion is that,
a large amount of features which can be highly correlated
have to be created. This could bias the final decision,
and these features have to be processed properly [8].
In our proposed method, instead of utilising the raw data
directly, the sensor data with different sampling rates will
be combined and mapped to an embedding space, and the
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Fig. 2. Queries, keys, and values calculation.

features among different sensors can be extracted from
the embedding space by a deep neural network automat-
ically. Hence, the challenge of decision-level fusion can
be avoided, the need for artificial feature engineering can
be eliminated, and the sensors with different sampling
rates can also be combined easily.

The remainder of this paper is organised as follows.
In section II, the related research, namely Transformer and
its self-attention mechanism will be introduced. In section III,
the theoretical basis and detailed steps of the proposed method
are explained. In section IV, the proposed method is evaluated
by three public datasets from the industrial scenario. The
discussion of the results of the experiments is in section V
and the conclusion of this paper is in section VI.

II. RELATED RESEARCH - SELF-ATTENTION

MECHANISM AND TRANSFORMER

Inspired by the fact that humans tend to focus only on
the key information in the field of vision, the Attention
Mechanism (AM) first appeared in the field of computer vision
and gradually became a hot topic [20] [21]. Then, Bahdanau
et al applied the AM to Recurrent Neural Network (RNN)
to process natural languages. They found that the AM not
only visualized deep learning models to some extent but also
addressed the fatal flaw of RNN: the forgetting problem when
processing long sequences [22]. Later on, researchers found
that a deep model built entirely on the principles of the
AM improved the performance in machine translation tasks
considerably [18]. Here the RNN architecture was abandoned
as it was believed that the forgetting problem was rooted in
the large number of iterations of RNN, this model was named
a Transformer [18].

There are 3 types of AM: self-attention [18], global/soft
attention [23], and local/hard attention [24]. This work focused
on the self-attention mechanism for industrial sensor fusion
tasks. The self-attention could be analogous to retrieval sys-
tems: a query vector is used to search information and then the
search engine will try to look for the keys in its database and
pair the query vector, finally the value vector corresponding to
the keys will be the output. In the self-attention mechanism,

Fig. 3. Multi-heads attention [18].

the input sequences are mapped to the query vector, key vector
and value vector by a linear layer as shown in Fig. 2 and try to
find the optimized mapping matrix (the weights of these linear
layers) in the backpropagation process. Then, the attention
weight is calculated by:

sof tmax

�
QK T

√
dk

�
(1)

where Q and K are the query and key vectors respectively,
dk is the dimension of key vector and 1/

√
dk is the scalar

which is used to avoid the dominant term when calcu-
lating the softmax function, which may make the gradi-
ent difficult to calculate [18]. If Q and K are independent
and conform Gaussian distribution: N (0, 1), the variance
of their dot product, q · k = �dk

i=1 qi ki , will be dk . This
effect is not preferable when addressing high dimension
data. This AM is called Scaled Dot-Product Attention [18].
Finally, the attention weight is multiplied by the value vector
and the final weighted mapping is obtained as shown in
equation 2,

Attention (Q, K , V ) = so f tmax

�
QK T

√
dk

�
V (2)

where V is the value vector. It is obvious that the atten-
tion weights control the information flow within the net-
work. When the weight of a certain area of input data
becomes zero, no information can flow to the next layer
of the network. In addition, each element in the attention
output sequence is the attention evaluation result of the
entire input sequence. Hence, we can know how important
each element in the input sequence is against each element
in output. As a result, by visualizing the attention weight,
to some extent, the basis of network decision-making could be
known.

The Transformer method uses multiple isolated attention
heads to chunk input data and concatenates the output of
each attention head to constitute the attention layers as shown
in Fig. 3. After that, multiple attention layers are stacked
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to form the Transformer. It consists of an encoder and a
decoder. As Transformer are designed to deal with translation
tasks, namely the Seq2Seq task, its decoder must be prevented
from seeing future information. For example, when outputting
the target language translation text verbatim, if the complete
input text is obtained when the first few words are output,
the translation task will become a memory task [18]. Hence,
a masking mechanism is applied to prevent this. For example,
if the calculated attention weight matrix WAtt and the created
mask are:

WAtt =
⎡
⎢⎣

x11 · · · x1n
...

. . .
...

xn1 · · · xnn

⎤
⎥⎦, Mask =

⎡
⎢⎣

1 · · · −∞
...

. . .
...

1 · · · 1

⎤
⎥⎦ (3)

Then, the masked attention can be calculated by the following
equation:

Attention_masked = Attention � Mask (4)

where � is the element-wise multiplication. Since the upper
right corner of the attention matrix has become negative
infinity, it becomes zero after the softmax is calculated.

III. RESEARCH METHODOLOGY

A. Similarities Between Natural Language Processing
and Sensor Fusion

Typically, when deep learning is used to deal with NLP
problems, we often map the words of a certain language
into an embedding space which could be regarded as the
unique identification information of each word. Transformer
can automatically learn not only the internal features of each
word with the help of multiple attention heads but also the
features of the relationships among the input word sequence
on a single head of attention as shown in Fig. 3 [18]. This
learning mechanism is preferred by sensor fusion tasks, where
we want to establish a unified feature representation that
includes both inter-sensor and intra-sensor information, where
the inter-sensor information means the information contained
in the interrelation among different sensors and the intra-sensor
information means the information contained in a single
sensor.

In NLP tasks, the model needs to recognize the meaning
of a single word, and it also needs to infer the information
contained by a sentence or a paragraph. Similarly, in a
multi-sensor system, the information of each sensor could be
compared to a single word in NLP, and the information of
all sensors can be regarded as a sentence or paragraph. If the
multiple sensor data from different modalities can be mapped
to a mapping space with a unified format, the extraction
of multi-sensor information could also be analogized to the
understanding of paragraph semantics as shown in Fig. 4. This
gives the possibility to use NLP models on sensor fusion
tasks. However, finding an optimised embedding space is not
an easy task. In this paper, we use a linear layer to learn
the mapping rules automatically instead of designing mapping
rules artificially.

Fig. 4. Sensor data mapping.

Fig. 5. Proposed model architecture.

B. Proposed Model Architecture
The architecture of the proposed model can be described as

shown in Fig. 5. Each part of this model will be explained in
the following items.

1) Data Normalisation: As the value range of different sen-
sors will vary by orders of magnitude, in order to facilitate
training, the data from each sensor will be normalized using
the following formula:

Xnorm = xi − xmin

xmax − xmin
(5)

2) Data Reorganisation: The input of the Transformer is
a two-dimensional matrix. Each row is a word embedding
vector and the two-dimensional input matrix is formed by
stacking the embedding vectors of each word. In this research,
word embedding is replaced with sensor data, hence different
rows of input are different sensor data. Since different sensors
usually have different sampling rates corresponding to the
nature of the object being measured, in order to maintain
the same embedding vector length, data with a high sampling
rate need to occupy multiple embedding vectors, as shown in
Fig. 6. To keep the length of the embedding vector the same,
the sampling rates of the sensors need to be in multiples, and
to achieve that some sensor values may be discarded or data
padding may be used. The reorganised input space can be
described by:

X ∈ R
d×L (6)

where d is the sequence length, and L is the dimension of
each element in the input sequence.
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Fig. 6. Example of data reorganisation using 1 second sensor data as a
input data point (Sampling rates: sensor 1: 24Hz, sensor 2: 12Hz, sensor
3: 6Hz).

Fig. 7. GPT-2 architecture.

3) Embedding Layer: The mapping of sensor data to the
embedding space is done by a linear layer with a dropout rate
of 0.1 and orthogonally initialised weights. The mapping rules
will be automatically learned as the parameters are updated
during the training process. At the same time, this layer
also has the functions of preliminary feature extraction and
dimension adjustment for the upcoming layers. The embedding
layer can be described by the following equation:

Embedding(X) = ReLU
�
XWembedding + bembedding

�
(7)

where Wembedding , bembedding are the weight matrix and bias
matrix. ReLU(*) is the activation function. X ∈ R

d×L ,
Wembedding ∈ R

L×Lembedding , and bembedding ∈ R
d×Lembedding .

Lembedding is the embedding dimension which is used for
matching the downstream layers.

4) Generative Pre-Trained Transformer 2 (GPT-2: ) In this
research, a Transformer is expected to be the feature extraction
engine, therefore only its decoder part is required. OpenAI
provides with a pre-trained decoder of Transformer called
GPT-2 with 1.5 billion parameters [25]. It is trained from a
40GB non task-specific training dataset which was crawled
from 8 million web pages. In sensor fusion tasks for industrial
scenarios, it is difficult to train a deep model with a large
amount of data, however, this is not very difficult to achieve
in NLP scenarios. The architecture of GPT-2 is shown in
Fig. 7 [26]. It is composed of 12 attention layers and each
attention layer consists of a 12 heads attention which is
used to generate an attention map, two shortcut connections
with layer normalisation, and a fully connected feed-forward
network. The input dimension of GPT-2 is (N, 768), where
N is sequence number, namely the number of rows of the
input matrix. For example in Fig. 4, there are 5 rows, so the
sequence number is 5. The second number 768 is the size of
each row. Similar to the embedding layer described earlier,
each row in this sequence will share the same feed-forward
network.

In this proposed method, similar to [19], 99.9% of the
GPT2 model parameters which were trained from the natural
language dataset were frozen. Only the normalisation layer,
linear input and output layer were fine-tuned with a learning
rate of 0.001 as this learning rate can balance the training
speed and stability based on practice, and Adam was used as
its optimiser.

5) Return Last Operation: Because of the mask mechanism
of GPT-2, only the output result at the last position of the
output sequence contains all the input sequence information,
which could be compared to the last hidden state in RNN.
Therefore, since our work is not a Seq2Seq task, only the last
position in the output sequence will be used as the input of
the classifier.

6) Flatten Layer (Optional): Depending on the sampling rate
of the sensor, if the data of the last sensor occupies multiple
rows in the sequence, we need to return all the rows of
this sensor, because the expected output result is the inter-
sensor information. Thus, in this case, a flatten layer is
needed.

7) Classification Layer: After the above calculations,
we have obtained a unified feature representation of the fused
sensor data. The last layer of this model is a feed-forward
neural network for classification. The last position in the
output sequence of GPT2 attention block is the input of the
classifier, and the number of output neurons is the number
of classes. This work only used a single-layer feed-forward
network, and the cross-entropy loss was used as its loss
function.

IV. EXPERIMENTS AND RESULTS

Based on the description in the last section, the proposed
model consists of an embedding layer, GPT-2, and a classifier.
As we transferred the parameters of the pre-trained GPT-2,
the GPT-2 has to be kept to its original structure. Since
the input and output dimensions of GPT-2 are (N, 768),
the output dimension of the embedding layer and the input
dimension of the classifier were set to (N, 768) to match the
dimension of GPT-2. The input dimension of the embedding
layer depends on the dimension of the specific dataset and the
output dimension of the classifier can be determined by the
target categories of specific tasks.

The hyperparameters and model configuration can be found
in Table I. The feed-forward layer and multi-head attention
layer were frozen, as these two parts contain all the features
learned from natural language. The layer normalisation was
set to trainable since the data distribution is different for
different datasets. The learning rate was set to 0.001 because
it was found in practice that smaller learning rates lead to slow
training and larger learning rates lead to increased instability.
The optimiser and initialisation remained the same as those
used in training the original GPT-2 model [25].

The proposed framework was tested on three different
datasets based on condition monitoring of a hydraulic sys-
tem, bearing condition of an electric motor, and gear and
bearing working conditions of a gearbox. The experimental
results from the three mentioned datasets are provided in this
section.
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TABLE I
MODEL PRAMETERS AND TRAINING DETAILS

Algorithm 1 Self-Attention-Based Deep Transfer Learning
Method for Sensor Fusion
Input: Multi-sensor data samples and the corresponding

labels
Step 1 (Data preprocessing):
Normalising the multi-sensor data:

Xnorm = xi − xmin

xmax − xmin

Constructing multi-sensor inputs to X ∈ R
d×L for

Embedding.
Step 2 (Sensor data embedding):
Constructing the embedding space:

Embedding(X) = ReLU
�
XWembedding + bembedding

�
Step 3 (Transfer learning and feature extraction):
Construction the feature representation by GPT-2
pretrained from language dataset as shown in Fig. 7.
Step 4 (Return Last Operation):
Return the last element of the output sequence.
if The last sensor occupies more than 1 row of
embedding space then

Do flatten operation and return this vector

else if then
Return the last row of output sequence

Step 5 (Fault classification):
Constructing the fault classifier, which is a single fully
connected layer:

Classifier(X) = XWclassi f ier + bclassi f ier

Training the model with cross-entropy loss.
Output: The target categories.

A. Experiment 1: Condition Monitoring of a Hydraulic
System

1) Task Description: This classification task requires deter-
mining the operating conditions of a complex hydraulic system

TABLE II
EXPERIMENT 1-OPERATING CONDITIONS

based on 17 sensors with different sampling rates (7 x 100Hz
sensors, 2 x 10Hz sensors, 8 x 1Hz sensors). The dataset was
created by Helwig et al. [27] on a test rig that was able to
simulate a reversible degradation of system performance. This
hydraulic system was composed of a primary working circuit
and a secondary cooling circuit. Different loads were cyclically
applied to a pre-defined work cycle. The data was recorded
in every one minute snapshot, therefore the total number of
attributes for one data snapshot will be 8(sensors) × 60(s) ×
1(H z)+2(sensors)×60(s)×10(H z)+7(sensors)×60(s)×
100(H z) = 43680. This experiment was repeated 2204 times,
hence the dataset had 2204 snapshots included.

This experiment has a total of five tasks to determine the
operating conditions of the five different parts of the system
as shown in Table II. This system may have multiple faults at
the same time.

2) Data Organisation: The sensors have three different
sampling rates, 1Hz, 10Hz, and 100Hz respectively. The
one-minute snapshot data of the 1Hz sensor is used as the
length of the embedding vector (60 columns), hence the 10 Hz
and the 100 Hz sensors occupy 10 and 100 embedding vectors
respectively. Therefore, one snapshot of input data from these
17 sensors, total 43680 attributes, will be reshaped as a matrix
with 728 rows and 60 columns.

3) Results of Prediction Accuracy: The experimental results
of model prediction accuracy and comparison with other
research are shown in the Table III. In this table, each
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TABLE III
EXPERIMENT 1-ACCURACY COMPARISON

percentage means accuracy which can be described by the
following equation:

Accuracy = Number of correct predictions

T otal number o f predictions
(8)

The reason for using accuracy to assess model performance is
that there is no order of magnitude difference in the number
of samples in each category in this dataset. The accuracy in
brackets in this table means the accuracy after sensor selection
has been applied, and this will be explained in details in the
next section. Based on Table III, it can be found that our
proposed method achieves an accuracy of 98.7%, ranking in
the top three of published work in recent years based on this
dataset.

4) Interpretability: Key Sensor Identification Based on Atten-
tion Mechanism: In a multi-sensor system, a large number of
sensors can be employed, however, not all of them will have
an impact on the final decision. When we are dealing with a
complex industrial system, it can be difficult to identify critical
sensors. Using too many redundant sensors may increase the
complexity of the system, waste communication bandwidth
and increase the computational burden. Hence, deep learning
methods that are interpretable to some extent are preferred by
the industry.

The concept of interpretability of deep learning models can
be divided into the following two aspects:

• Models are transparent to humans. The corresponding
model parameters and the model decisions can be pre-
dicted before the model is trained for a specific task [33].

• Decision interpretability. After a model makes a decision,
humans can understand the reasons for that decision [34].

This subsection shows the decision interpretability of the
proposed method.

In general, AMs are used to control the information flow
of deep networks. In the process of backpropagation, the part
of the data that has less impact on the results will be masked
gradually, and only the information that is decisive for the final
decision will be retained. The importance of input sensor data
is reflected by the attention weights [35]. Hence, compared
with the conventional black-box deep learning models that give
no information on which sensors it relies, the key sensors can
be identified by visualising the attention weights. As shown
in Table III, the classification accuracy of the fourth task is
only 91.4%. This indicates that there may still be room for

Fig. 8. Attention heat map for accumulator task of experiment 1.

improvement. Therefore, we chose this task to show the key
sensor identification capability of AM.

As the data from 17 sensors are reorganised into 728 vectors
of 60 columns, the original attention heat map is a matrix of
728 rows and 728 columns. The x-axis represents the input
sequences and the y-axis represents the output sequences,
for example, the first row is the attention scores of the first
element in the output sequence corresponding to all inputs.
The dark blue colour means these part of data is masked and
no information can flow to the next layers. As mentioned in
previous section, the input sequence has 728 vectors of size
60. Since the sensors with different sampling rates occupy
different number of input vectors, attention scores for input
vectors from the same sensor need to be added together. The
processed attention heat map is shown in Fig. 8. As mentioned
above, the last row of the processed attention heat map, in this
case, the 17th row, is the output attention scores based on all
of these 17 sensors.

The attention weights shown in the 17th row can be visu-
alised as Fig. 9. Based on this information, the sensors are
divided into two groups, highest attention weights group and
lowest attention weights group. 8 of the sensors are contained
in the highest attentions weights group, whereas the another
8 sensors are contained in the lowest attention weights group.
Then, instead of using all these 17 sensors, the model is trained
by these two groups separately. The training history is shown
in Fig. 10 and the accuracy of using the top 8 attention sensors
and the last 8 attention sensors are 96.4% and 83.0%.
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Fig. 9. 17 sensors attention weights.

Fig. 10. Training history of 2 groups of sensors vs. Using all sensors.

It can be found that using the highest attention weights
group only to train the model can obtain better results than
using all the sensors, which means faster convergence, higher
accuracy and less fluctuation. The reason for this phenomenon
may be that selecting only the more important sensors can
effectively reduce the dimension of the input space and thus
reduce the difficulty of feature learning of the model. This
result illustrates the key sensors identified by the proposed
method contain sufficient information for decision making.
As the proposed method provides access to the decision basis
of the model, it has a higher degree of interpretability than
traditional black-box models.

5) Model Performance Tests Under Different Amount of Train-
ing Data: This section compares the performance difference
under different amount of training data between the pretrained
model and scratch model to evaluate whether the parameters
trained from natural languages can help to reduce the neces-
sary amount of training data. In this experiment, the training
dataset was trimmed to 6 subsets with different size, 100%,
80%, 60%, 40%, 20%, and 5% of the original size respectively.
The testing dataset for model evaluation was kept the same
as in the Experiment 1: Condition monitoring of a hydraulic
system subsection 3) for all tests.

TABLE IV
EXPERIMENT 1-METHOD COMPARISON

The test results are shown in the box plot shown in Fig. 11.
It can be found that regarding to the prediction accuracy and
its stability, the pre-trianed model outperforms the scratch
model for all 5 tasks under all different training data amount.
In task 1 as shown in Fig. 11 (a), although there is a significant
performance drop when the size of training data is reduced
from 20% to 5% for both models, the lower accuracy and
larger fluctuation of the scratch model can be observed.
In task 2 as shown in Fig. 11 (b), when the amount of training
data is greater than or equal to 80% of its original size,
these two models perform almost the same. However, the
performance of scratch model decreases obviously when the
train data size shrinks to 60%, while the pre-trained model
keeps stable until 20% of training data. As for task 3 and 4, the
scratch model fails to capture enough information to predict
system conditions as shown in Fig. 11(c) and (d). In terms of
task 5 as shown in Fig. 11(e), compared with the fact that
the performance of the pre-trained model is still relatively
high even at 5% of training data, the scratch model degrades
remarkably after shrinking the size of training data to 80%.

In summary, the model transferred from natural language
domain can effectively reduce the necessary amount of training
data when using deep learning in industrial sensor fusion
domain. This means the workload and the time consumption
for collecting industrial data can be effectively saved. Current
transfer learning solution for industrial sensor fusion requires
similar industrial process data to pre-train the deep learning
model [36], [37]. Our proposed method proves that similar
industrial process data may not the only option to perform
transfer learning for industrial sensor fusion. Hence, the lim-
itations of using deep learning in industrial scenarios can be
reduced significantly.

6) Discussion of Results and Comparison of Performance
With the Alternative Methods: The accuracy comparison of the
works published in recent years can be found in Table III,
and the comparison of the characteristics of these different
methods can be found in Table IV. As the method proposed
by Gupta et al. was focused on detecting system degradation
earlier, and it is different from the condition monitoring
focused on in this paper, their work is not included in the
comparison. As shown in Table IV, manual feature engineer-
ing is required for all methods except the methods proposed
in [31], [16], and our proposed method. In contrast to other
methods, our approach also does not require dimension reduc-
tion. This demonstrates the end-to-end nature of our proposed
approach.
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Fig. 11. Classification accuracy under different amount of training data.

In [27], Helwig et al. extracted a large number of features
in the time and frequency domain for all sensors, and for
each extracted feature they analysed its correlation with system
faults by Pearson’s correlation coefficient and Spearman’s rank
correlation coefficient. Then, only the highly relevant features
are used as the input of their classifier called Linear Dis-
criminant Analysis (LDA). Their accuracies for different tasks
shown in Table III were achieved by different combinations of
features obtained by different correlation analyses. This means
that when working on a new task, a large number of feature
combinations have to be traversed to find the best model.
Similar feature engineering can also be found in [28] and [29].
In [32], Prakash et al. used XGBoost technology to select
features before feeding data to a shallow neural network. The
studies mentioned above all rely heavily on the use of artifi-
cial features to represent information from multiple sensors,
thus combining the sensors with different sampling rates and
reducing the dimension of the input space to ensure that the
complexity of the input space does not exceed the capacity
limit of the classifier. In contrast, in our proposed method,
manual feature extraction is not required. On the one hand, the
sensor data will be mapped to a unified embedding space, thus
combining sensors with different sampling rates. On the other
hand, the deep learning model trained from natural language,
as feature extractors, can extract and select the features from
the embedding space automatically. Hence, it can significantly
reduce the workload and avoid the difficulty of artificial feature
engineering.

In terms of the research of Huang et al. in [16], they used
multiple independent parallel convolutional neural networks
to extract features for each sensor. The output of each of the
convolutional neural networks was kept the same, thus, the
sensors with different sampling rates can be combined and
automatic feature extraction was also achieved. They have
achieved excellent accuracy on this dataset. However, such
a network structure widens significantly as the number of
sensors increases. Cohen et al. pointed out that it is necessary
to increase the network depth if the width increases [13].
As the size industrial dataset is usually limited, the depth
of a network that can be trained is also limited. Therefore,
the number of input sensors has to be reduced to prevent
the network from being too wide. Huang et al. noted that
the large input dimension of their model was unacceptable as
this will lead to training failure [16]. Hence, they reduced the
input dimension from 43680 to 6000 based on artificial sensor
selection. In contrast, our proposed method is relatively more
insensitive to high input dimensions. Since the amount of data
in natural language is very large, this allows for training deeper
models and therefore it can handle higher input dimensions
compared to shallow networks. This is a preferred advantage
when dealing with large sensor numbers and a lack of a
priori knowledge of these sensors. In our experiment, we used
the original size of the input (43680) without any artificial
dimension reduction.

Moreover, in our proposed method, the model decision basis
provided by the self-attention mechanism is also not available
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TABLE V
EXPERIMENT 2-SUBDATASET

TABLE VI
EXPERIMENT 2-RESULTS COMPARISON

in other methods, and this alleviates the black-box nature of
deep learning models.

B. Experiment 2: Bearing Dataset
1) Task Description: This dataset, created by the Case West-

ern Reserve University Bearing Data Center [38], is based on
a task that identifies the bearing conditions of a electric motor.
Two vibration sensors are mounted on the drive end and the fan
end respectively. The faults occurred in three locations, bearing
rolling element, inner raceway, and outer raceway. Each loca-
tion has three different levels of faults severity, small, medium,
and large. Thus, these nine different faults categories plus
the healthy condition make a total of 10 different categories.
It is a classification problem of 10 categories, and the data
of the 10 categories were collected for four different working
loads (0-3hp). Several subdatasets are created based on the
methods provided in [39], [40] as shown in Table V, and
the proposed method is evaluated on these 6 subdatasets. The
sixth subdataset was slightly different from the others, it was
based on predicting the bearing condition under high working
load (3hp) based on the data collected from low working load
(0-2hp).

2) Data Organisation: As the vibration signal from the
2 sensors was recorded during a certain time period for each
type of condition, and the length of each file was more than
120,000 data points, they need to be chunked into small
portions. A 2 × 120 was chosen as the window size of one
portion (120 data points for each vibration sensor) and the
data was reorganised to a matrix with 4 rows and 60 columns
as the input of our deep network.

3) Experiment Results: The experiment results of the pro-
posed method and the results obtained in previous research
are shown in Table VI. It was observed that the best results
of previous research have been achieved in [40]. They used a
16 layer Visual Geometry Group (VGG-16) as a feature extrac-
tor to extract features in time-frequency images of vibration
signals. Compared with their results, the proposed method has
similar accuracy in tasks 1-5 (nearly 100%). However, this
method shows a worse accuracy than the accuracy in [40]
in task 6. This may be because this research used the raw

TABLE VII
EXPERIMENT 3-RESULTS COMPARISON

data in the time domain as compared to the frequency domain
analysis used in [40]. As mentioned in the task description,
the requirement of this task is to use low working load
data to predict failures under heavy working load and the
speed of motor remains constant. In frequency domain bearing
vibration analysis, the rotation speed of the shaft is a main
factor affecting the frequency feature distribution of vibration
signal [43], and the severity of defects, rotation speed, and
working load mainly affect the amplitude of each frequency
element [15]. Therefore, as the rotation speed remains constant
in this experiment, the frequency domain analysis is less
sensitive than time domain analysis.

C. Experiment 3: Gearbox Dataset
1) Task Description: This dataset was created by Shao et al

on a dynamic simulator which comprised of a motor, a shaft,
a gearbox, and a brake [40]. This task required the identifica-
tion of gear and bearing working conditions of the gearbox
based on the vibration signal. Gear and bearing have four
faulty working conditions and one healthy working condition.

2) Data Organisation: The time window size for the vibra-
tion signal was kept at 4000, this implies that the input
data had 4000 data points, organised as a 40 × 100 matrix.
This model treats each 40 × 100 input as 40 different data
sources and attempts to capture features inter- and intra- data
sources.

3) Experiment Results: The experiment results are shown
in Table VII. As can be seen from the table, the accuracy
obtained by our proposed method is slightly higher than that
obtained by the best results in previous studies [40] [44].
Compared with the method proposed that used wavelet trans-
formation of vibration signal as input data [40], the proposed
method uses the raw vibration signal and does not require any
artificial feature extraction or data transformation.

V. DISCUSSION

The experiment results demonstrate that it is feasible to
use the deep model transferred from NLP, in this case,
a Transformer-based model called GPT-2, to handle the task of
multi-sensor fusion for industrial applications. The proposed
method offers the advantages in the following aspects:

• Interpretability: The attention heat map indicates the
decision basis of the deep learning model which can
be used for key sensor identification, thereby assisting
engineers to conduct system diagnosing or maintenance
or reducing the redundancy of the system. The results
from experiment 1 demonstrate that using the data from
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important sensors to classify system conditions is more
accurate than using data from all the sensors. This sug-
gests that the AM has a positive effect on identifying
key sensors. Such a feature is not available in most other
deep learning models. However, it is worth noting that
no attention allocated to a sensor does not necessarily
mean that the sensor does not have enough information.
It can only indicate that the sensor data with strong
attention are more easy to harness during the back prop-
agation process. In other tasks with accuracy above 95%,
there was little difference between the results obtained
by using the sensors with high attention and all the
sensors.

• Enable the use of deep learning models with limited
industrial data. Normally, transfer learning is a hot topic
to solve the data shortage in industrial scenarios requir-
ing that the two datasets have some kind of similar-
ity [37] [45]. However, even collecting enough data on
similar industrial processes is costly and finding similar
industrial processes also has limitations. Our proposed
method demonstrates that a deep model pre-trained in
natural language can be transferred to industrial sensor
fusion tasks. As natural language is a data-rich modal-
ity, deep learning models can be sufficiently trained
from it. Therefore, the use of deep learning for sensor
fusion tasks is less likely to be limited by the lim-
ited industrial data and the lack of similar industrial
processes.

• Eliminate the need of artificial feature engineering: Man-
ual feature extraction and selection is labour intensive,
difficult and has high uncertainty. However, in order
to combine different sensors and reduce the complex-
ity of the input space, it is usually necessary. In the
proposed method, the sensor data with different sam-
pling rates were combined and mapped to a unified
embedding space, and a deep learning model was used
to extract features from the embedding space automat-
ically. Therefore no manual feature engineering was
required.

However, while the model performs well on classification
problems as shown in this paper, it shows less capacity on
the regression tasks, such as remaining useful life prediction
tasks. The reason for this may be that stacked attention layers
are better at searching for key information rather than mapping
features to a specific value. As mentioned in section II, the out-
put of AM are calculated based on Q, K, and V vectors, where
Q and K vectors are used to search and match information and
only V vector is used to extract features. As the V vector is
obtained only using a linear layer, therefore AM may be less
capable of extracting abstract features from the data. In order
to adapt the AM to the regression task, the computational
mechanism of the attention layer may need to be adapted,
which might be a possible future research direction. In addi-
tion, the large model size and high memory usage are other
limitations of this approach. The computational complexity
and memory usage of this method grow by the square of
the length of the input sequence [46]. As a result, it may
cause high occupancy of computing resources in industrial

applications. How to minimise the model and find a balance
between model performance and resource consumption maybe
another future research direction.

VI. CONCLUSION

In conclusion, this work proposed a new deep transfer
learning method to deal with industrial sensor fusion tasks.
The results of condition monitoring of a hydraulic system
show that the proposed method has achieved high accuracy
without feature engineering in an extremely large input space.
This proposed method allows industrial scenarios to use deep
models with a relatively small amount of data. In its accu-
mulator conditions classification task, the accuracy can be
further improved from 91.4% to 96.4% if only the sensor data
with high attention scores are used as input. This phenomenon
suggests that AM has a positive effect on improving the inter-
pretability of deep learning model. As can be seen from the
results of bearing condition classification, the proposed method
achieves similar accuracy to the best results of previous studies
in Tasks 1 to 5. However, it shows an unsatisfactory result in
Task 6. The reason for the result in task 6 may be due to the
fact that the frequency domain analysis used in [40] has an
advantage in predicting high workloads conditions using low
workloads data when compared to the time domain analysis
used in this study. As for gearbox condition classification, the
proposed method is slightly more accurate in comparison with
the accuracy obtained in [40].

The results of this research show that the pretrained NLP
model GPT-2 based on the architecture of the Transformer
also has the potential to handle multi-sensor fusion tasks.
The GPT-2 acts as a feature extraction engine that could
replace manual feature extraction thus eliminating the difficult
choice of using a deep model or a shallow model with
artificial feature extraction for industrial sensor fusion tasks.
Moreover, the experimental results show that deep learning
model, in this case, GPT-2, trained from natural language
can be transferred to industrial sensor data, which means it
may not be necessary to collect data for specific kinds of
machine or processes before using deep transfer learning.
Hence, the cost and time required for industrial data collection
can be significantly reduced. In addition, the AM allows the
model to provide not only the prediction information but also
the basis for the model’s decision-making which might be
beneficial for industrial applications. Currently, the limitations
of this approach are that the current model does not perform
very well on the regression task and the high computational
resource usage. These may be two valuable directions for
future research.
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