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Abstract—Conventionally, silicon is less often selected as
the material of dielectric metasurfaces in the visible band
than other lossless materials, including titanium dioxide, sil-
icon nitride, and gallium nitride. The reason is its relatively
high extinction coefficient and resulting low transmittance.
This study demonstrated that accurately designednanopillars
made of single-crystal silicon could be used satisfactorily on
a metasurface, even in the visible band. Four line-focusing
metasurface lenses were designed to verify the lens perfor-
mance effectiveness of silicon nanopillars in the visible band.
In addition, a combination of the character projection and the
variable-shaped beam modes in the electron beam lithogra-
phy was operated to evaluate the compatibility between mass
productivity and accuracy. We successfully obtained a highly efficient line-focusing metasurface lens composed of single
crystalline silicon nanopillars. The parameters of the metasurface lens at a wavelength of 532 nm were as follows: lens
thickness, 300 nm; focal length, 3.91 mm; square aperture, 2 mm; numerical aperture, 0.25; measured transmittance,
38.4% to 46.8%; and measured beam spot width, 3.68 μm (full width at half maximum, FWHM) at the focal point. The
results obtained in this study show a promising use of silicon metasurface for optical sensor applications in the visible
band.

Index Terms— Dielectric metasurface, metasurface lens, metalens, single-crystal silicon, micro-optical line generator,
planar optics.

I. INTRODUCTION

METASURFACES have been successfully applied in
several advanced micro-electro-mechanical systems

(MEMS) sensors in the terahertz [1]–[11] and gigahertz
[12]–[16] bands through both plasmonic and dielectric
regimes. Owing to recent improvements in microfabrication
technologies, metasurfaces have also been used in
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optical wavelengths [17]–[19] for various applications,
including metasurface lenses (metalenses) [20]–[23],
holography [24]–[29], waveplates [30]–[32], gratings
[33]–[35], and functional optical devices [37]–[39].

Material selection is an essential aspect to consider in the
design and fabrication of metasurfaces. For radio frequen-
cies, metallic materials are preferred because of their ability
to utilize plasmon resonance and high efficiency. However,
dielectric materials have been attracting increasing attention
at optical frequencies in recent years because of their lossless
nature [40], [41], whereas the Ohmic loss has become a
problem for metallic materials. This problem is crucial in the
transmission mode.

Table I summarizes typically-used dielectric materials for
metasurfaces at optical frequencies. Silicon is often used in
infrared bands because of its high refractive index and low
extinction coefficient. In the visible and ultraviolet regions,
wide bandgap materials transparent in that wavelength range
are often used. However, since a negative correlation gen-
erally exists between the bandgap and the refractive index,
prioritizing transparency reduces the refractive index, posing
fabrication challenges. In other words, to obtain a full 2π
phase coverage, metasurfaces become thicker and require a
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TABLE I
OPERATING WAVELENGTHS AND MATERIALS

FOR DIELECTRIC METASURFACES

fabrication with a high aspect ratio. This makes the integra-
tion of MEMS sensors and metasurfaces difficult. Note that
because single-crystal silicon (c-Si) is an indirect transition
semiconductor, the extinction coefficient does not increase sig-
nificantly even at wavelengths shorter than the bandgap, down
to approximately 500 nm [28], [36]. Recent research found that
metasurfaces made of c-Si exhibited sufficient transmittance
in the visible range by optimizing their design dimensions
[28], [36], [64]–[68]. Thus, the use of c-Si is considered a
practical approach to developing functional sensors by inte-
grating MEMS and metasurfaces due to the complementary
metal-oxide-semiconductor (CMOS) compatibility. However,
as detailed later, c-Si metasurfaces require precise dimen-
sional control to prevent a decrease in transmittance due to
unwanted modes. Typical point-beam type electron beam litho-
graphy (EBL) systems provide sufficient dimensional accuracy
to accomplish this task, even though the processing throughput
is low.

This study reports on the fabrication of c-Si metasurfaces
using an electron beam lithography apparatus that involves
a variable-shaped beam (VSB) mode and character projec-
tion (CP) mode to achieve high-speed e-beam writing for large
area. In particular, a combination method of VSB and CP
modes is proposed to achieve both fabrication compatibility
and metalens functionality. As a demonstration, we adopt
a line-focusing metalens that can be used for 3D scanning
and analytical science. The design wavelength of 532 nm
is chosen, which is one of the most widely used in laser
excitation in Raman spectroscopy. A comparative verification
of the proposed method is performed through the optical
characterization of the fabricated line-focusing metalenses.

II. MATERIALS AND METHODS

The phase profile of a line-focusing lens φ(x) is given by
the following equation:

φ(x) = −2π

λ

(√
f 2 + x2 − f

)
, (1)

where λ is the wavelength, f is the focal length, and x
is the position on the lens. Figure 1 shows the values of
φ(x) for the parameters λ = 532 nm and f = 3.91 mm.
The line-focusing metalens mimics this profile by arranging
pillar-shaped waveguides by varying their dimension, showing
the corresponding phase shift. The continuous occurrence of
the phase shift can be controlled by changing the nanopillar
width placed at x .

Fig. 1. Phase profile of the line generator lens. The vertical axis is folded
back at a period of 2π.

Fig. 2. Simulation setup for electromagnetic field analysis of the
nanopillar.

A. Electromagnetic Field Analysis of Nanopillars
The electromagnetic field analysis of nanopillars was per-

formed using a commercially available finite element method
software (COMSOL Multiphysics 5.6, COMSOL Inc., USA)
using the model illustrated in Figure 2. Materials of the
nanopillar and the substrates were set as c-Si and sapphire,
respectively, to represent a c-Si on sapphire (SOS) wafers. The
octagonal cross-section was adopted to apply CP mode EBL,
as detailed later. The hexagonal lattice is chosen to increase
the fill factor to achieve a large phase shift. The period p of the
lattice was fixed to 345 nm.

The electromagnetic wave frequency domain (ewfd) physics
was considered in the calculations. The width w and height h
of a nanopillar were used as parameters. The thickness of
the sapphire substrate was h/2. The surrounding medium
of the pillar was the air with a thickness of 1.5 h (not
shown). The x-polarized light was incident from the bottom
part of the sapphire substrate and emitted from the output
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Fig. 3. Transmittance of c-Si nanopillar.

Fig. 4. Phase/2π of c-Si nanopillar.

port at the top of the surrounding air. The Floquet periodic
boundary condition was applied to the remaining borders. The
transmittance and the phase at the output port were monitored
using the sweeping parameters w and h. Figures 3 and 4
show the parametric sweep results of the transmittance and
phase/2π , respectively. Note that the nanopillar shows high
transparency over a wide width range when the nanopillar
height is approximately 300 nm.

Figure 5 shows the extracted transmittance and phase/2π
at h = 300 nm with the width range from 90 to 280 nm and
the step of 5 nm. As shown here, full 2π phase coverage
can be achieved by using nanopillars with a width range
from 90 to 280 nm. However, some pillars show low trans-
mittance. In order to achieve high average transmittance, these
pillars should be eliminated.

B. Selection of Nanopillars Based on the EBL Apparatus
The appropriate selection of nanopillars, considering the

characteristics of the fabrication apparatus, is essential to
achieve both sufficient transmittance and high throughput.

Fig. 5. Extracted plots of transmittance and phase/2π at h = 300 nm.

In this study, we used an EBL apparatus F7000S-VD02
(Advantest, Japan) that supports both CP and VSB modes.
In particular, the CP mode uses dedicated stencils to shape
electron beams to write pre-registered features with superior
throughput. The VSB mode expresses any feature with the
combination of rectangles, even though the writing speed
decreases [69]–[71]. As the apparatus has octagonal CPs with
the width-across-flat from 50 to 300 nm with a 10 nm step,
intermediate sizes must be written using VSB mode.

We decided to use CP as much as possible while using VSB
to assist where the phase leaps were substantial to achieve high
throughput while avoiding low transmittance pillars. Figure 6
shows the phasor diagram of the selected pillars to assess
the average transmittance and the continuity of the phase
steps. [72]. This selection hereafter is referred to as non-
correction (NC). For the inner orange plot, the radius and
argument show a transmittance Ti and phase φi . The outer
plot is a projection of the unit circle. The CP and VSB
notations in the figure indicate the EBL mode and designed
size combination, which are used as cell names on the CAD
layout file.

C. Selection of Nanopillars Considering Fabrication
Errors

Error correction between the nominal (designed) size and
the actual (fabricated) size of the selected nanopillars was
conducted. The sizes of the fabricated pillars were measured
using scanning electron microscopy (SEM). Figure 7 shows
the relationship between the nominal width wi and the mea-
sured width wo. We obtained the linear calibration line using
the following equation:

wo = awi + c, (2)

where a and c are the correction coefficients, which are set to
a = 1.1362 and c = 24.811 nm. The combined use of the CP
and VSB modes show good linearity.
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Fig. 6. Phasor diagram for selected nanopillars with the nominal widths
of the CP and VSB methods.

Fig. 7. Relationship between the design and measured widths of c-Si
nanopillars with the calibration line for error compensation.

The calibration line can be used to reselect the pillars based
on Figure 5. Moreover, the pillar can be presented in the pha-
sor expression, as shown in Figure 8. This selection hereafter
is referred to as correction (C). The CP and VSB notations are
cell names in the CAD layout, and the value with an asterisk in
parentheses is wo. Table II presents a list of selected pillars.
We tried four selections: CP only or CPVSB combination,
with (C) or without (NC) correction. They are referred to as
CP_NC, CPVSB_NC, CP_C, and CPVSB_C. Based on these
nanopillar selections, the line-focusing metalens was designed

Fig. 8. Phasor diagram for selected nanopillars by considering the
fabrication error.

TABLE II
LIST OF THE SELECTED NANOPILLARS

to have an aperture size of 2 mm and a numerical aperture
NA of 0.25, according to Equation (1). A Python library and
the gdstk package were used to arrange the nanopillars and
GDSII layout file production.

D. Focusing Simulation
A focusing simulation of the line-focusing metalens was

performed. In this regard, a 3D model corresponding to a
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Fig. 9. CAD layout of the top view of the metasurface comprising an
array of octagonal crystalline Si nanopillars arranged hexagonally with a
lattice constant of p = 345 nm.

Fig. 10. Intensity distribution obtained using FEM simulation along the
(a) x − z plane and (b) x − y plane at z = f.

one-period arrangement of the nanopillars was calculated
using the electromagnetic wave, beam envelope (ewbe) physics
of COMSOL. For the simulation, the aperture size d of the
model was scaled down to 50 µm (1/40 of the design) while
maintaining the numerical aperture of 0.25 and nanopillar
dimensions to reduce the memory requirement. As shown in
Figure 9, the one period of the hexagonal lattice was extracted
along the x-axis, and the periodic boundary condition was
applied for the y-boundary. The simulation was developed
using the GDSII layout file obtained with the CPVSB_NC
selection using the proper file conversion into COMSOL
simulation. The degree of freedom of the model was approx-
imately 20 million, and the model was solved using TSUB-
AME3.0 supercomputer at the Tokyo Institute of Technology.
Figure 10 shows the calculated intensity distributions along
the x − z plane (a) and x − y plane at the focal length
z = f (b). The metalens was placed at z = 0. The position of
the beam waist agrees well with the theoretical focal length of
f = 95 µm. Note that the Figure 10 is expanded 20 times in
the y-direction due to its very thin size (

√
3p = 598 nm). The

simulation results successfully confirmed the line focusing at
the focal point.

III. FABRICATION

A. Comparison of the EBL Writing Speed
The total number of pillars used in this study,

i.e., 38,805,118, the fastest limit is 825.2 seconds in
the point beam (PB) method (1nA condition) to write the

Fig. 11. Schematic of the fabrication process.

pattern, 175.8 seconds in the CP mode, and 326.7 seconds
in the CP-VSB combination mode. The octagonal shape in
the CP mode has the most abundant size variation among
the other polygon or circular shapes in this EBL apparatus.
This study reports comparative optical verification results of
the effectiveness of the line-focusing metalenses using the
microscopic optical experimental setup.

B. Fabrication Process
A schematic of the fabrication process is shown in

Figure 11. A commercially-available SOS substrate (c-Si
layer: 300 nm, sapphire substrate: 460 µm) was diced into
2 cm2 chips (a). After cleaning, a positive electron beam (EB)
resist (ZEP520A-7, ZEON, Japan) was spin-coated with a
hexamethyldisilazane (HMDS) primer and an antistatic agent
(ESPACER 300Z, Showa Denko, Japan).

Metalens patterns with four selections were written using
the EBL apparatus with a dose of 104 µC/cm2. After remov-
ing ESPACER, the resist pattern was developed (ZED-N50,
Zeon, Japan) (b). Subsequently, after removing the resist
residual by the O2 plasma asher, the thin Al film was coated
with vacuum evaporation (c). The EB resist was removed using
the organic solvent dimethylacetamide (DMAC) (d). The Si
layer of the substrate was etched using an inductively-coupled
plasma reactive ion etching (ICP-RIE) apparatus (NE-550,
ULVAC, Japan) using Al masks. Finally, the Al mask was
removed using an etchant solution.

Figure 12 presents the SEM images of the fabricated met-
alens (CPVSB_C). The figure shows the periodic structure of
the central part of the 2-mm-wide metalens. The inset image
depicts the boundary region between the smallest (104 nm) and
the widest (252 nm) pillars. As shown in the SEM images, the
selected pillars were successfully fabricated among all ranges
of selected widths.

IV. CHARACTERIZATION OF THE

FABRICATED METALENSES

A. Demonstration of Line Focusing and Laser Line
Generation

Figure 13 demonstrates the line focusing by the metalenses
with four selections obtained using a room light. Note that
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Fig. 12. SEM images of the fabricated metalens (CPVSB_C).

Fig. 13. Demonstration of line focusing by the fabricated metalenses
under room right.

all four metalenses successfully show lines focusing on their
shadows. These four metalenses correspond to those listed
in Table II. Figure 14 shows the wide projection angle line
generation in the far field by emitting a laser with a wavelength
of 532 nm into the line focusing metalens. The laser beam
spreads horizontally with a wide divergence angle after passing
through the focal point, and the laser line in the far field is
successfully generated.

Transmittances of metalenses to the sapphire substrate ref-
erence are summarized in Table III measured using a photo-
diode power sensor (S120C, Thorlabs Inc., USA). All four
metalenses achieved a transmittance of approximately 40%;
therefore, the Si metasurface has sufficient transmittance for
practical use in the visible band. Although the above results
of transmission efficiency are not as good as those of previous
study [67], the presented fabrication method ensure practical
transmittance and has advantages in high speed e-beam writing
for large area. From the results of these four transmittance
observations, the set with size correction (III and IV) was
found to have better transmittance characteristics than the set
without size correction (I and II). Further, the set (I and
III) using only the CP mode exhibited better transmittance
characteristics than the CP-VSB combination (II and IV) set.

Fig. 14. Demonstration of the laser line generation in the far field.

Fig. 15. Photograph and schematic of the experimental system for the
knife-edge method.

B. Focal Distance Measurement by the Knife-Edge
Method

The focal distance of the line-focusing metalens was evalu-
ated following the knife-edge method using the experimental
setup shown in Figure 15. We used a widescreen beam profiler
(Lase View-LHB-mini, Kokyo, Inc.) to identify the beam
shape hidden by the knife blade. The beam width was obtained
from the knife blade displacement from a two-axis linear
translation stage.

The result of the metalens (IV. CPVSB_C) is shown in
Figure 16. The focal length of f = 3.91 mm was observed,
which agrees well with the design and corresponds to the
numerical aperture of N A = 0.25. The measurements were
conducted three times separately for measurement ranges of
(1) z = 0.9 to 5.9 mm, (2) z = 3.45 to 4.20 mm, and



IKEZAWA et al.: MICRO-OPTICAL LINE GENERATOR METALENS FOR A VISIBLE WAVELENGTH 14857

Fig. 16. Measured beam width with the distance range from 0.9 to
5.9 mm (main plot) and from 3.45 to 4.20 mm (inset).

TABLE III
TRANSMITTANCES OF THE METALENSES [%]

Fig. 17. Setup schematic for focal spot observation.

Fig. 18. Micro-tomographic pictures of a line-converged beam near the
focal point and optically reconstructed propagation image.

(3) z = 3.90 to 4.20 mm. Almost identical focal lengths were
obtained for other metalenses (I. CP_NC, II. CP-VSB_NC,
and III. CP_C).

C. Evaluation of Focusing Performance
The focusing behavior of the fabricated metalenses at the

design wavelength of 532 nm was evaluated with the setup
shown in Figure 17. A laser (λ = 532 nm) was used with a

Fig. 19. Reconstructed intensity distributions in x − z plane.

neutral density filter and an aperture (ID25M, Thorlabs Inc.,
USA) with a diameter of 1 mm. A line-focusing metalens
chip was mounted on a manual two-axis stage. The focal spot
images were captured by using a monochrome complementary
CMOS camera (DCC1545M, Thorlabs Inc., USA) with a 20×
objective lens (M-PLAN APO 20× N A = 0.42, Mitutoyo,
Japan) and a 1× tube lens (MT-40, Mitutoyo, Japan).

Figure 18 shows the captured images from the metalens
(IV. CPVSB_C) at the distances of z = 3.56, 3.91, and
4.26 mm. The tightest focusing was obtained at the designed
focal length of z = 3.91 mm.

Figure 19 shows tomographic reconstruction images of each
metalens. These images were reconstructed from 37 pictures
with a 0.1 mm increment along the z−axis for each lens,
as shown in Figure 18. The x coordinates were calculated
from the size of the image sensor and the magnification of
the objective lens.

The color bar indicates the relative intensity of the obtained
signal.

Figure 20 depicts the intensity distributions at the focal
point extracted from Figure 18. The peak intensities and line
widths (FWHM) are summarized in Table IV. The III. CP_C
metalens exhibited the highest intensity and narrowest FWHM.
Moreover, IV. CPVSB_C shows tight focusing as III. CP_C,
even though a slight decrease in the peak intensity was present.

D. Modulation Transfer Function (MTF) Analysis
The focusing performances of four metalenses shown

in Figure 20 were analyzed using the modulation transfer
function (MTF).
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Fig. 20. Comparison of the intensity and full width at half maximum
(FWHM) at the focal positions of four metalenses.

TABLE IV
PEAK INTENSITY AND FOCUSING-LINE WIDTH

Fig. 21. Edge spread function for four metalenses.

Figure 21 shows the edge spread functions (ESF) of metal-
enses cropped from Figure 20. These ESFs were converted to
the line spread functions (LSF), as shown in Figure 22. Sub-
sequently, MTFs were obtained through the Fourier transform
of the normalized LSFs, as shown in Figure 23. The black
dashed line indicates the diffraction limit. Each dashed line
corresponds to an approximate curve based on a moving aver-
age between two points. From this result, the IV. CPVSB_C
metalens exhibited the best performance, even though the
differences within the comparison range are not substantial.

Fig. 22. Line spread function for four metalenses.

Fig. 23. Modulation transfer functions (MTFs) of the fabricated metal-
enses. The black dashed line represents the diffraction limit.

This result is in agreement with the FWHM performance listed
in Table IV.

V. DISCUSSION

The results showed that a line generator Si metalens oper-
ating at a visible wavelength region could be used with
sufficient transparency. We mainly adopted the CP mode
as an EBL writing method suitable for a high production
throughput, which is helpful for installing on a sensor device.
Simultaneously, the VSB mode complemented the CP mode.
A comparison of the exposure times indicated that the CP
writing pattern was the fastest, followed by the CP-VSB
combination mode. The VSB mode had a low manufacturing
speed; however, both the CP mode and VSB mode were faster
than the typical point beam exposure method in EBL.

Regarding the manufacturing quality, based on the exper-
imental results of the line-focusing performance and MTF
analysis, the CP-VSB combination mode was more effective in
improving the optical performance of the metalens. Further-
more, based on the comparison results of the line-focusing
performance and MTF analysis, the lens function of the met-
alenses with the size correction was confirmed to be superior
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to the metalenses without size correction. This study shows
that precise design with dimensional correction is essential
for materials such as Si, where the phase shift is sensitively
dependent on the nanopillar size. These results indicate that
only size correction is not sufficient, and the synergistic effect
of 5 nm structural complementation and manufacturing error
correction ensures the optical function of the Si metasurface.
As the pillar width accuracy should be less than 10 nm
for producing the metalenses with various sizes in the vis-
ible wavelength, alternative materials with less phase shift
fracturing and fabrication tolerance robustness are preferable.
However, as demonstrated in this study, if the manufacturing
accuracy is sufficient, more opportunities will arise for using Si
metasurfaces with micro-optical sensor devices consisting of
Si, which is the same material as the metasurface. Because Si
has a high refractive index, it allows obtaining a much thinner
structure to have sufficient phase shift than other materials.
Moreover, Si metasurface might apply to MEMS sensors in a
visible band by positively using them as micro-optical devices.

The proposed metalens can be both used in far fields and in
near fields. For line-scan optics applications, it is applied from
a few centimeters to a few meters. It also used for guiding light
to the tight region, for example, the slit of a monochromator.
The small and multifunctional technology of optical elements
in the visible light region of Si material provides numerous
opportunities for small cameras in mobile phones and wearable
devices. For example, the high-precision metasurface fabrica-
tion method proposed in this study allows the development of
miniature augmented reality (AR) devices, such as salt-grain-
sized cameras, to be combined with compound-eye glasses and
meta-optics.
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