
IEEE SENSORS JOURNAL, VOL. 22, NO. 15, 1 AUGUST 2022 15133

Hallway Gait Monitoring Using Novel Radar
Signal Processing and Unsupervised Learning

Hajar Abedi , Graduate Student Member, IEEE, Jennifer Boger , Member, IEEE,
Plinio P. Morita, Member, IEEE, Alexander Wong, Senior Member, IEEE,

and George Shaker , Senior Member, IEEE

Abstract—We propose a novel corridor or hallway gait
monitoring system based on radar signal processing, unsu-
pervised learning, and a subject detection, association and
tracking method. This paper proposes an algorithm that could
be paired with any type of MIMO FMCW radar to capture
human gait in a highly cluttered environment without needing
radar antenna alteration. We validate algorithm functionality
by capturing spatiotemporal gait values (e.g., speed, step
points, step time, step length, and step count) of people walk-
ing in a long hallway. We show that our proposed algorithm
yields an average absolute error for speed estimation between
0.0040 m/s to 0.0435 m/s. These preliminary results demon-
strate the promising potential of our algorithm to accurately
monitor gait in hallways, which increases opportunities for its
applications in institutional and home environments.

Index Terms— Contactless monitoring, doppler, frequency-modulated continuous-wave, multipath, multiple-input and
multiple-output radar, gait analysis.

I. INTRODUCTION

RADAR sensors appeal to healthcare applications, with
potential benefits for older adults, healthcare systems,

and the global economy [1]–[4]. One practical application is
remote gait monitoring [5]–[10] as changes in gait can support
detection and monitoring of changes in health. Extensive
research and multiple longitudinal studies conducted on gait
analysis [11]–[14] have shown that accurate, reliable knowl-
edge of general gait characteristics at a given time, and even
more importantly, over a period of time can enable detection
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and diagnosis of changes in mobility and cognition. Tracking
gait can also support finding the best treatment options and
ongoing management.

Several studies (e.g., [12], [15]) have concluded that a
habitual or usual gait speed (i.e., walking at a normal speed on
level ground) is considered a reliable and consistent clinical
indicator. A person’s walking speed in a clinical setting may
not be an accurate and reliable representation of people’s day-
to-day gait because of their focus on walking and an awareness
of the importance of the quality of their gait. Hence, it may
negatively impact medical conclusions and recommendations.
Thus diagnosis, follow-up, and treatment of pathologies from
gait obtained in clinical settings may be based on inaccurate
data. To obtain more accurate representation of day-to-day
gait patterns, a quantification method of gait parameters in
a naturalistic setting (e.g., one’s home) is required. Gold
standard systems such as the GaitRite mat system [16]–[18]
and Vicon [19] can be expensive, difficult to operate, have lim-
ited coverage, and present challenges for deployment in real-
world settings. Wearable sensors such as Opal sensor [20] and
Physilog [21] could be used for day-to-day gait assessments;
however, many people do not like using wearables or may not
remember to wear them.

A radar-based sensor is a promising alternative to cap-
ture gait information during people’s daily activities in
their living environments over long periods as it is a rel-
atively affordable, easy-to-use, non-invasive, and zero-effort
system [9], [22]–[25].
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Most of the current radar-based gait assessments were con-
ducted in large clutter-free environments [6], [7], [26]–[28].
However, there is a pressing need to develop gait assessment
solutions for naturalistic settings (e.g., individual’s homes,
long-term care, and hospitals). One of the main challenges
in such environments is the existence of stationary objects
(i.e., clutter), creating multipath or ghosting effects [1].
Multipath occurs when a signal takes two or more paths from
the transmitting antenna to the receiving antenna. The number
and particular behaviour of the multiple paths depends on the
room structure and the presence of objects [1]. The multipath
issue is more significant when people walk in the space since
moving even a small object in an environment causes changes
in multipath reflections [1]. To be clinically meaningful and
broadly applicable, radar technologies must be able to work
in practical settings where day-to-day gait assessments will be
made.

An element of most living environments (including private
homes, retirement homes, long-term care, and hospitals) is a
corridor or hallway. This provides a physical location where
people will walk in a relatively constrained and predictable
way many times a day. Walls in the hallway have a strong
“clutter” impact, creating multipath due to the wide beam
of commercially available radar antennas. In our previous
work [29], [30], we designed an in-package hyperbola-based
dielectric lens antenna to sharpen the radar antenna’s beam
to mitigate the multipath problem. While the lens antenna
could be a promising solution at high frequencies, it was
exclusively designed for AWR1443Boost. Designing and fabri-
cating a similar antenna for each radar sensor would be time-
consuming and impractical. Hence, we turned our attention
from hardware design to signal processing.

In this paper, we propose a novel hallway gait monitoring
algorithm to address the multipath problem that could be
deployed for any radar type without the need for radar sensor
alteration or modification. Our proposed method uses the
MIMO features of an FMCW radar to find the range and
azimuth heatmap of the environment along with the Doppler
information of the person who is walking. First, a density-
based spatial clustering of applications with noise (DBSCAN)
algorithm [31] is used to cluster detected points from 2D
Constant False Alarm Rate (CFAR) detection [32]. Then,
we propose a tracking algorithm to track the walking person
over time while removing other “ghosting clusters” (i.e., clus-
ters created due to multipath effects). While the hallway walls
create strong reflections, this technique enables our hallway
gait monitoring algorithm to only track the person walking.
After finding the proper position of the subject in range and
azimuth, another set of signal processing chains is performed
to extract gait instance spatiotemporal values at each cycle.

Although radar sensors have been widely used for gait
analysis, only gait speed was extracted [7], [25], [33], [34].
While walking speed is a good and important gait parame-
ter, additional parameters are needed for a more complete
prediction and assessment, such as fall risk assessment [35].
There are a number of existing studies that employ radar
systems and extract several average gait parameters over the
entire walking period [5], [26], [35], [36]. For example,
in [36], two radar sensors and a treadmill were used to
extract average spatiotemporal gait parameters. However, none

Fig. 1. Proposed hallway gait monitoring algorithm.

Fig. 2. Experimental setup for 14 m-hallway walk.

have developed an automated approach and system that can
extract gait parameters at each single gait cycle. Additionally,
most of the existing studies used radar sensors for almost a
clutter-free environment [26], [35], [36]. Therefore, in contrast
to the existing published research, we employed only one
single FMCW radar and developed autonomous algorithms for
gait analysis and conducted experiments in a highly-cluttered
environment. The accurate results shown in this paper are in
the acceptable error range to be clinically meaningful [37].
Our main contributions to this paper are:

1. An innovative method to remove multipath signals and
track the subject in such a cluttered environment in the
hallway.

2. A novel algorithm to extract spatiotemporal gait parame-
ters at each single gait cycle, such as speed, step points,
step length, stride length and step count, using only one
FMCW radar sensor.

The remainder of this paper describes the algorithm and
presents preliminary testing of its accuracy and applicability.

II. HALLWAY GAIT MONITORING ALGORITHM

The block diagram of our proposed hallway gait monitoring
algorithm is illustrated in Fig. 1. In order to show the detail
of our proposed system and the corresponding result of each
section of the algorithm, we provide the results of the proposed
system deployed in a long hallway, pictured in Fig. 2. It should
be noted that in the hallway alcove, there was a hospital trans-
port stretcher, a wheelchair, a medical cart, a metal cabinet
and some other wooden objects, causing too many multipath
effects. We used a commercially available mm-wave FMCW
radar (AWR1443Boost, available from Texas Instruments)
operating at 77 GHz – 81 GHz [38]. It should be mentioned
that our proposed algorithm could be paired with any other
type of MIMO FMCW radar.
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TABLE I
RADAR SENSOR AND PROPOSED GAIT EXTRACTION ALGORITHM’S PARAMETERS

Fig. 3. Schematic of the hallway walking test setup. The green
rectangles show the step points. The minimum and the maximum relative
angle between the radar position and the hallway walls are 81 and 82,
respectively.

As shown, the AWR1443Boost radar has four receivers (Rx)
and three transmitters (Tx), giving it the capability to esti-
mate both azimuth and elevation angles. Radar configuration
along with a brief description of each parameter set for
our experiment are listed in Table I. Since our goal was
to cover 14 m walking segments, the radar was configured
for a maximum range of 16.4986 m. The radar was placed
1.5 m away from the walking subject’s starting point. The
schematic of the hallway walking test setup is provided in
Fig. 3. As shown, the maximum and minimum relative angle
between the radar position and the hallway walls are 38.19o

and 4.02o, respectively.

A. Parsing and Signal Processing
As shown in Fig. 1, the first step is parsing the received data

collected from radar receivers. Since our signal processing
methods are based on data captured from a MIMO FMCW
radar, this provides the range, azimuth, and doppler informa-
tion of the subject simultaneously [39]. In an FMCW radar, the
first FFT (range-FFT) is performed to provide a range profile.
Moreover, since transmitters and receivers are collocated in
most commercially available MIMO radars, a mutual coupling
reduction algorithm [39] is performed to remove the leakage
between the transmitter and receiver.

B. Clutter Removal
The received signal includes not only the desired walking

subject itself but also unwanted detections, known as clutter,

which come from the reflections of, e.g., walls, floor, or objects
around (i.e., passive clutter). A clutter removal algorithm is
applied to remove such clutter signals [39]. To remove the
reflections from the passive clutter, the average value of the
signal is computed and subtracted from the aggregated signals.
Since the signal variation reflected by clutter is small, remov-
ing the average is equivalent to eliminating the stationary
scatter [39], [40]. Compared with passive clutter, humans have
a much higher variation through their breathing, heartbeat,
and small movements even when standing still, and thus this
variation is more significant during walking. To show the
effectiveness of the clutter removal algorithm in removing
passive clutter and to ensure that signals coming from static
objects are cleaned, Fig. 4 (a) shows the Short-Time Fourier-
Transform (STFT) result [10], [39] of the hallway environment
before performing the clutter removal algorithm when no
subject was there. A strong strip around the zero Doppler
(zero doppler represents the clutter in the STFT pattern [39])
with an amplitude of around 127 dB is visible, showing the
richness of the reflections from the passive clutter. Fig. 4 (b)
shows the same scenario but after clutter removal. As seen,
the reflections from the passive clutter are removed, and
there is no spot around zero doppler. From Fig 4 (a) and (b),
we can conclude that the reflections from the passive clutter
are removed by performing the clutter removal algorithm,
and thus any remaining signals after performing the clutter
removal algorithm is the result of the interactions between the
subject walking in the hallway with the hallway environment
(i.e., active clutter or multipath/ ghosting effects), but not
from the passive clutter. More details of the clutter removal
algorithm and its performance could be found in our previous
works [10], [39].

The range-time map of the environment when a subject
was walking across the hallway is provided in Fig. 5 after
performing clutter removal. As shown, there are various reflec-
tions other than the direct reflections from the subject, created
due to multipath reflections in such a cluttered environment.
In most gait monitoring algorithms [6], [7], it is assumed that
the maximum value of the range profile or of the STFT pattern
represents the torso’s bin [26], [40], [41]. However, as shown
in Fig. 5 and 6, due to the multipath effects, isolating the
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Fig. 4. STFT patterns of the hallway environment (a) before clutter
removal without any subject and (b) after clutter removal without any
subject.

Fig. 5. Range-time map of the environment after performing clutter
removal algorithm when the subject was walking across the hallway.

Fig. 6. Range of the walking subject over time obtained from the common
gait extraction algorithm.

maximum values of the range bin would not result in obtaining
the torso’s correct position. This is because of the constructive
and destructive feature of the electromagnetic waves, where
the amplitude of the multipath signals could be larger than the
direct reflection from the subject. Therefore, the torso’s range
bin cannot accurately be obtained by extracting the maximum
amplitude from the range profile. The same limitation also
applies to isolating maximum values from the STFT patterns.

Fig. 7. A single frame example of the range-azimuth of a walking subject:
(a) the Capon beamformer results (b) CFAR outputs at frame 122. The
black circle represents the subject being tracked, and the red circles
represent reflections.

To find the correct bin of the subject’s torso, after gen-
erating a range profile of the subject and clutter removal,
we performed a Capon beamformer algorithm to create
a range-azimuth heatmap of the environment [42], [43].
This method not only paves the way for future versions
of the algorithm that can track multiple subjects but pro-
vides more information on the environment to distinguish
between the reflections from the walking subject and their
multipath effects. We refer the reader to our previous pub-
lications for details regarding how we applied the Capon
beamformer algorithm to create range-azimuth heatmaps of the
environment [42]–[44].

C. 2D-CFAR
As shown in Fig. 7 (a), the range-azimuth heatmap rep-

resents the density of reflected signals in the environment.
If a walking subject is at a specific range and azimuth, that
location has more reflections in comparison with other non-
occupied positions. This phenomenon is true if there are no
multipath effects or the heatmap is obtained in a clutter-free
environment. However, as shown in Fig. 7, in addition to the
walking person’s position (in the black circle), the heatmap
also shows other strong reflections (in the red circles). The
amplitude of the multipath signals is more than the subject’s
direct reflected signals.

Therefore, the position of the walking signals could not
be isolated by taking the maximum values of the range-
azimuth heatmap. Because the reflections from the hallway
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Fig. 8. Output of the DBSCAN algorithm at frame 122 (a) applied to the data from one frame, (b) applied to the aggregated frames, (c) target cluster
among other ghosting clusters based on the tracking method; the black circle represents the subject being tracked, and the red circles represent
ghosting clusters and (d) the corresponding snapshot of the video.

cause too much noise/anomalies, the common gait monitoring
algorithm [5], [22], [36] could not accurately extract gait
values in a highly cluttered environment, as shown in Fig. 6.
Hence, an algorithm is required to find the exact position of
the walking subject over time (to track the walking subject)
before performing a gait extraction algorithm. To do so,
we first perform 2D-CFAR [32] to detect signals and remove
noise from the range-azimuth heatmap. Fig. 7 (b) shows the
2D-CFAR output of the subject’s detected points and the
ghosting effects.

D. Unsupervised Machine Learning: DBSCAN
To remove the ghosting clusters and to track the subject

walking across the hallway, an unsupervised machine learning
algorithm is applied to cluster the detected points. This allows
for the separation and identification of the true signal from the
ghosting ones. Since the multipath effects in our application
vary from one frame to the other, sufficient information about
the number of ghosting clusters is not known. As the density-
based clustering does not require one to specify the number
of clusters in the data a priori, we chose to apply the density-
based spatial clustering of applications with noise (DBSCAN)
algorithm to group the detected points [31].

For a point to be assigned to a cluster, it must satisfy the
condition that its epsilon neighbourhood (ε) contains at least
a minimum number of neighbours (min_points). Based on the

performance of the different variables set for the DBSCAN
parameters, ε = 2, and min_points = 5 were selected as
optimized values. However, to reliably group the detected
points from the walking subject to a correct cluster, we realized
that data from one frame is not sufficient. As shown in
Fig. 8 (a), the purple points (subjects detected points) are
estimated as noise points or “No-Cluster”—an outlier that
does not belong to any cluster. Note that each range sample
represents 12.99 cm and each ζ sample is 0.6990o. To prevent
missed detection and to avoid having empty detected points as
an input for the clustering algorithm, the clustering algorithm
should be applied to the aggregated data over time. It has
been shown in our previous radar-based human monitoring
application research that adding time as an extra variable or
having an observation time in the signal processing chain
increases the accuracy of detection significantly (e.g., [39].
In other words, the subject being tracked might not appear in
every single frame. Therefore, integrating multiple successive
frames or detecting the subject over time can significantly
improve detection accuracy. We, therefore, selected several
frames (N_frame = 3) of range-azimuth heatmaps, aggregated
their CFAR detected points, and then applied DBSCAN to
the result. N_frame = 3 is selected to ensure the target
cluster has enough detected points to satisfy the minimum
clustering criteria. Additionally, it is chosen not to add too
much complexity as the ghosting clusters would also be more
if we aggregate more frames. As shown in Fig. 8 (b), by
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Fig. 9. Subject’s initial position (a) detected clusters (b) target cluster
(subject’s cluster) and its center point to be tracked over time.

integrating the detected points over N_frame or equivalently
adding time as an extra variable to the processing chain, the
subject’s detected points could be clustered correctly.

In order to remove ghosting clusters, associate the subject’s
cluster to its previous cluster and track the subject over
time, we propose a tracking and association algorithm that
identifies the subject’s cluster (target cluster) during walking
and associates it with the target cluster of the previous frame.
Fig. 8 (c) demonstrates the target cluster obtained from our
proposed tracking algorithms, detailed in the next subsection.
Note that frame 122 in Fig. 8 helps to illustrate the detail in
this paper, while the same results could be obtained in other
frames. A screenshot of the video of the subject’s walking
process in frame 122 is provided in Fig. 8 (d). It should be
mentioned that in this location of the hallway, there was a
hospital transport stretcher and a medical cart on the right
side of the subject in the hallway alcove.

E. Tracking and Association Algorithm
Our proposed tracking algorithm is shown in Algorithm 1.
1) Target Initial Position Extraction: To initiate the tracking

and association process, we need to find the initial position of
the subject that we wish to track. The initial position of the
walking subject could be selected manually so that we can
select the correct cluster that represents the subject from the
DBSCAN outcome. For example, in Fig. 9(a), since the start
position of the subject is known, we know that cluster 3 is the
target cluster. However, as our goal is to have an autonomous
system, it must be able to initiate the process accurately and
automatically. We realized that for all initial points, the cluster
with the maximum number of detected points is the subject’s
cluster. This fact is true only for the initial points when
the subject is about to start walking as they were standing

still and thus the same position for more than one frame.
Therefore, the signal aggregation of almost the same position
has more detected points than other positions. Additionally,
as the subject is about to start walking and has less movement,
the multipath reflections are comparatively less, while during
the walking cycles, as will be shown in this paper, ghosting
clusters could have more detected points. Thus, to get the
initial position of the subject, the cluster with the maximum
number of detected points was selected as the target cluster,
as shown in Fig. 9 (b).

2) Subject Association/Tracking Over Time: Various radar
tracking algorithms have been proposed and extensively used
in different studies, such as extended Kalman filters, unscented
Kalman filters (UKF), multiple hypothesis testing, particle fil-
ters and alpha-beta filter [45]–[48]. In a state-of-art processing
pipeline, the radar detections from CFAR are passed into a
tracking, for example, UKF, where track-to-detect association
is done through detection gating, and the target state parame-
ters (position and velocity) are updated by the tracker [49].
The velocity of the subject is an important decisive element
in the aforementioned tracking methods, however, prediction
based on the velocity of the subject might lead to inaccurate
results. For example, if the subject is missed for a frame or
due to the multipath effects, the target cluster is not selected
correctly and thus, the velocity of the subject is obtained
incorrectly for some frames, the prediction leads to inaccurate
results. Moreover, the velocity of the subjects obtained from
the Doppler highly depends on the relative angles between
the subject and the radar, leading to an inaccurate outcome.
In this paper, our main goal is to find the position of the
subject and the subject’s walking speed based on his position,
but not his Doppler/velocity. Therefore, we base our tracking
method on the current and previous positions of the subject,
a point with the maximum amplitude of each cluster from
the range-azimuth heat map, and some facts about walking
cycles. Because the walking cycles are identified through time-
based deep learning in our previous work [10], it ensures that
the subject is walking, and his position should change over
time. We propose our tracking and association method based
on the Euclidean distance between two consecutive center
points of the subject’s cluster. Our method does not require
a detailed system model, and its low computational complex-
ity ensures code realization even on a microcontroller or a
Raspberry Pi.

In order to associate each identified cluster with the previous
one and to track the subject over time, we first calculate the
center point of each cluster. Our criteria to find the center
point of each cluster is to find the point in the cluster with
the maximum amplitude. As each cluster has a range_index
and azimuth_index–(range samples and ζ samples in plots in
this paper), these can be used to obtain the corresponding
cluster’s amplitude from the range-azimuth heatmap. For our
method, we consider the whole body of a human being to be a
single point [5]. This assumption holds because an individual’s
torso constitutes a significant part of the reflected signals,
which means the torso line can be selected from the occupied
radar range bins by isolating the maximum signal from his
cluster [6], [7]. The center point of the initial subject position
is shown in Fig. 9 (b) as an example. Therefore, if we select
the torso’s range bin from the subject’s cluster, we can reliably
extract distinctive and informative features of gait parameters
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from the velocity of the torso speeding up and slowing down
during the swing phase of each leg [50].

As detailed in Algorithm 1, in order to find the subject’s
cluster among other ghosting clusters, our criteria is to find
the nearest point to the previous center point of the target
cluster (center_old). For each frame, the algorithm takes the
center position of the previous target cluster and the aggregated
output of the detected points from CFAR. The DBSCAN
algorithm is then applied to cluster the detected points. In the
next step, the center of each cluster is calculated by obtaining
the maximum amplitude of the cluster in the range-azimuth
heatmaps. The Euclidean distance between the center point
of the current cluster (cluster_center) to center_old is then
calculated. The cluster with the closest center point to cen-
ter_old is associated with the subject’s cluster, which indicates
the subject’s torso’s position. Consequently, the successive
center points of the subject’s cluster over time show the
subject’s position during walking. Tracking the subject over
time provides the trajectory of walking (range, azimuth, and
Doppler information). Based on the trajectory of walking,
gait parameters can be extracted by performing our proposed
gait extraction algorithm, described in section II. F. As an
example, the tracking algorithm’s output of frames 124 and
126 are shown in Fig. 10 (a) and (b), respectively. As seen,
the algorithm correctly identifies the subject’s clusters and
associates them to the previous corresponding frame.

Algorithm 1 Association Tracking Algorithm
Input: range-azimuth heatmaps, CFAR outputs, initial_center
Output: Center points of the walking subject
center_old = initial_center
For i = N_frame+1: number of frames:
CF_Sum=0

For n = i–N_frame:i
CF_Sum = CFAR outputs (n)+ CF_Sum

CFAR outputs (i) = CF_Sum
If∼isempty
detect_clusters = DBSCAN (CFAR outputs(i))

For j = 1: length (detect_clusters):
center = max (range_azimuth_map (detect_clusters)))
dist (j) = Euclidean_distance (cluster_center, center_old)
center = min (dist)
center_points (i) = center

else
center_points (i) = center_old

F. Gait Extraction Algorithm
As shown in the diagram of our proposed gait extraction

algorithm depicted in Fig. 11, using the position of the subject
over time, the overall velocity of walking (i.e., the distance a
walking person travels over a second (velocity = position/
time)) can be calculated.

The velocity of the torso is calculated by performing a
second FFT (Doppler-FFT) over the torso’s range bin. Since
the maximum velocity of the torso is achieved when the foot
touches the ground (step time) [50], applying a peak detection
algorithm to the results of the absolute value of Doppler-FFT

Fig. 10. Output of the DBSCAN and the tracking algorithm for
(a) frame 124 and (b) frame 126. The black circle shows that the tracking
algorithm correctly identified the cluster of data that corresponds to the
true location of the subject.

over the torso’s range bin, the torso’s maximum speed is
obtained. To extract the torso’s maximum speed, a peak
detection algorithm is applied to the Doppler-FFT. Based on
the peak detection algorithm [51], a local peak is defined as a
data sample which is either larger than the two neighbouring
samples or is equal to infinity. We defined two variables for
the peak detection algorithm, ‘Min Peak Height’ as MPH and
‘Min Peak Distance’ as MPD. MPH finds only those peaks that
are greater than the minimum peak height, and MPD finds
peaks separated by more than the minimum peak distance.
MPD is specified to ignore smaller peaks that may occur in
close proximity to a large local peak. In this paper, MPH is
the minimum acceptable value of the maximum velocity of the
torso. To find a proper value for the MPH, we assumed that
the subject walks more than 0.5 m/s. Moreover, MPD is the
minimum time interval between two consecutive step points.
MPD is set to 0.1 s because we assumed that our subject
could not take a step for less than 0.1 s. These two variables
are selected based on the fact that our subjects are walking
but not running. Moreover, several studies have shown that
the cut-point for speed is 1 m/s [14], [15], meaning that any
value less than this threshold might notify an unhealthy status
of the subject. In this regard, we set MPH to 0.5 m/s to cover
almost all types of subjects and even the worst-case scenarios
when subjects walk very slowly. The corresponding time of the
torso’s maximum speed shows the time when the foot touches
the ground (contact position time/step time). Then, the contact
position time can be obtained, which can be used to determine
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Fig. 11. Proposed gait parameter extraction algorithm.

the number of steps or step counts. Consequently, as shown in
Fig. 11, knowing the step time of every single step (tn) along
with the position of the subject (X (t)), the step point of each
step is acquired. The step length at each cycle is then obtained
by subtracting two consecutive step points. Finally, a count
of the number of occurrences of these maximum values over
time results in the overall step count. It is worth mentioning
that we take advantage of the distinctive feature of FMCW
radars, providing the range and Doppler information of a
subject simultaneously, enabling us to provide spatiotemporal
gait parameters using only one radar sensor. While other
methods reported in the literature have extracted the average
value of cadence and other parameters by applying FFT on
the spectrogram [36], [52]–[56], our proposed method can
show the instance gait values (spatiotemporal gait parameters
at every single gait cycle) of each metric. A full gait cycle is
defined from one heel strike to the next [36]. The duration of
a gait cycle is given by the stride time (or the duration of the
two consecutive step times).

III. EXPERIMENTAL RESULTS

The performance of the proposed system was evaluated
in a long hallway pictured in Fig. 2. Gait parameters were
extracted by asking five volunteers to walk back and forth
along the hallway twice by following a straight line with marks
showing the step points the volunteers were asked to step
on. The total number of step points was 80 for the two full
lapse walks. Although this setup might not properly represent
normal gait, it gives a good estimate of the true gait without
needing GaitRite or Vicon systems.

For all tests, comparison time values were recorded using
a stopwatch and asking volunteers to follow a traced line,
as depicted in Fig. 3. As shown in Fig. 13, the position and
the time duration for the first 2 m-walk (T1, R1), the first
10 m-walk (|(T2, R2)-(T1, R1)|), the first turn (|(T3, R3)-
(T2, R2)|), the second 10 m-walk (|(T4, R4)-(T3, R3)|), the
second turn (|(T5, R5)-(T4, R4)|), the third 10 m-walk (|(T6,
R6)-(T5, R5)|), the third turn (|(T6, R6)-(T7, R7)|), the fourth
10 m-walk (|(T8, R8)-(T7, R7)|), the last 2 m-walk (|(Tend,
Rend)-(T8, R8)|) are calculated. Table II summarizes the gait
values obtained using our proposed method along with the
measured values. Note that the time it took for turning cycles
(2 m-walk) is excluded in walking speed and step length
calculation processes; therefore, 10 m-walk cycles were used
for calculations. The “estimated values” in Table II are the
number of steps the volunteers were asked to follow; thus, we
assume our subjects followed the protocol perfectly. In order
to demonstrate the performance of our proposed algorithm and
to show the result of our gait extraction algorithm, we now
present a case study of results from one of the volunteers.
As shown in Fig. 12, having the position (range) of the subject
while walking toward and away from the radar and corre-
sponding time according to the protocol mentioned above, the
average walking speed of 1.3618 m/s is calculated while the
measured (stopwatch) value was 1.3699 m/s. Applying the
Doppler-FFT to the torso’s range bin, the velocity of the torso
is obtained, as shown in Fig. 13.

Applying the peak detection algorithm to the absolute values
of the velocity of the torso results in the identification of the
step time of each gait cycle, step number, and step counts,
as shown in Fig. 14. As the time of each step time is known
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TABLE II
EXTRACTED GAIT PARAMETERS

Fig. 12. Plot of walking speed captured by the radar system with points
used for calculations indicated.

Fig. 13. Example of torso velocity during walking calculated by the radar
system.

from Fig. 14, and the position of the person is obtained
from Fig. 12, step points at each gait cycle can be obtained,
as shown in Fig. 15. Step length can then be acquired by
subtracting two successive step points, as shown in Fig. 15
by the red arrow and a photo of the step. This means that
spatiotemporal gait parameters at each cycle, such as step
points, step time, speed of torso, and step length, can be
extracted in a long hallway using only one FMCW radar
sensor.

As shown in Fig. 15, the total number of steps calculated
by the system for the overall walk in our case study is 84,
while the actual step number was 80. Correspondingly, as

summarized in Table II, the average step length calculated by
the system was 67.64 cm, while the distance marked on the
floor was 70 cm.

The five subjects in this validation experiment have gait
velocities that range from 1.2811 m/s to 1.3765 m/s, while the
system’s average absolute error for speed estimation ranged
between 0.0040 m/s to 0.0435 m/s. The absolute error was
obtained by comparing the speed results obtained from the
radar sensor and a stopwatch. Although these results are
preliminary (i.e., the small sample size in a constrained
condition) and the ‘ground truth’ may have been flawed as
it was recorded using a stopwatch, these results suggest our
radar system may be accurate enough to detect clinically
meaningful changes (i.e., changes on a scale of 0.05 m/s [37].
The step length of the individual subjects ranges from
65.18 cm to 69.83 cm, with an error of 0.17 cm to 4.82 cm,
respectively. Additionally, the system had an average absolute
error between 1 step to 4 steps in measuring step counts for
10 m-walk and 0 steps to 7 steps for the whole walking
process. As shown, our proposed work is able to extract spa-
tiotemporal gait values at each gait cycle using a single FMCW
radar. It is also worth mentioning that, as shown in Fig. 14,
step time, stride time and stance time could be extracted at
each single gait cycle; however, as we did not have access to a
GaitRite mat or a Vicon system, we did not report them in this
paper.

In order to compare the outcomes of this paper with
previous works, we listed a number of references in Table III
with the reported error range, extracted gait parameters, the
type of the radar and the number of radars used for their
experiment. As shown, the error reported in our work is very
low compared with other reported works, which is clinically
meaningful [37]. Moreover, we used only one FMCW radar
that provided both spatiotemporal gait parameters at each gait
cycle, while other works either used two radars to provide
some detailed gait parameters or added an extra device such as
a treadmill to provide these parameters. Additionally, we pro-
vided spatiotemporal gait parameters at every single cycle; for
instance, step time, step lengths, step points, etc., are extracted
at each cycle for the first time in this paper. Therefore, while
future work with a greater range of test conditions and more
participants must be done to ascertain the accuracy of our
algorithm, these preliminary results demonstrate the promising
potential of our algorithm to accurately monitor several aspects
of gait in hallways.
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TABLE III
COMPARISON OF THE OUTCOMES OF THIS PAPER WITH OTHER PREVIOUS WORKS

Fig. 14. Peak detection algorithm applied to the absolute value of the velocity of the torso. Step counts are shown by the small arrows and numbers
above the velocity plot line.

It should be pointed out that as people in their natural
environments might not start walking down hallways from
standing still, to translate this approach to real-world applica-
tions, we need to add machine learning to the proposed signal

processing chain to identify walking cycles and distinguish
them from other activities. In this paper, we based our algo-
rithm on the assumption that we know the subject is walking.
However, in a real-world application, we first should identify
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Fig. 15. Range of the person walking. Step points (dots) and step counts (numbers) detected by the algorithm are indicated on the plot line.

the walking cycles and then apply a gait monitoring algorithm.
We refer interested readers to our previous work, where we
used a sequential deep learning algorithm to identify walking
cycles, distinguish them from other in-place movements, and
recognize the type of activities [10].

IV. CONCLUSION

This paper proposes a novel method to extract an indi-
vidual’s gait parameters in a long hallway using a single
FMCW radar. Preliminary validation testing of our system
demonstrated unsupervised machine learning combined with
our proposed tracking algorithm was able to track and mon-
itor a walking subject in a cluttered environment such as
a long hallway and extract spatiotemporal gait parameters.
The relative simplicity and cost-effectiveness of this method
make it a realistic approach to monitoring gait in real-world
settings, including people’s homes. Future work should focus
on multiple gait monitoring scenarios.
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