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Abstract—In this paper we present a state estimation
scheme for Unmanned Aircrafts (UAs) utilizing dynamics
based models and multi-sensordata fusion. Employing the UA
dynamics in estimation can substantially enhance the estima-
tor performance,but obtainingaccurate dynamics parameters
for each UA is computationally costly and complex. To elim-
inate these issues, we propose two decoupled Extended
Kalman Filters (EKFs), namely the Rotational Decoupled
Extended Kalman Filter (RDEKF) and the Translational Decou-
pled Extended Kalman Filter (TDEKF). The dynamics para-
meters in these filters are identified in real-time using the
Deep Neural Network and the Modified Relay Feedback Test
(DNN-MRFT) approach. This approach doesn’t demand prior
knowledge of the UA physical parameters, requiring only an Inertial Measurement Unit (IMU) and a positioning system
for model classification. Our estimation scheme provides position, velocity and attitude estimates, in addition to smooth
lag-free inertial acceleration estimates. We show experimentally the advantages of our approach on trajectory tracking
problems that uses low rate position sensors. We also demonstrate how utilizing the estimated acceleration in feedback
control can reduce the tracking error of an optimally tuned system by 43%. Moreover, the proposed estimator produces
smooth estimates that leads to a reduction of controller action by 6.6%, when compared to kinematic based estimators.
We compare the achieved results against other methods that require full prior knowledge of the UA parameters or the
noise models, and show advantages in performance and real-time capability.

Index Terms— Acceleration feedback, state estimation, DNN-MRFT, dynamic model, Kalman filter, unmanned
aircraft (UA).

NOMENCLATURE

W Inertial Frame formed from the basis {wx,wy,wz}.
B Body Fixed Frame formed from the basis

{bx, by, bz}.
S Sensor Fixed Frame formed from the

basis {sx , sy, sz}.
Fv A vector v described in frame F . vi corresponds to

the i th element of Fv.
F v̄ A 2D vector projection of vector v on the basis

forming the x-y plane of frame F .

Manuscript received 31 March 2022; revised 10 May 2022; accepted
15 May 2022. Date of publication 21 June 2022; date of current ver-
sion 14 July 2022. This work was supported by the Khalifa Univer-
sity of Science and Technology under Award RC1-2018-KUCARS and
Award CIRA-2020-082. The associate editor coordinating the review
of this article and approving it for publication was Dr. Yulong Huang.
(Mohamad Wahbah and Mohamad Chehadeh contributed equally to this
work.) (Corresponding author: Mohamad Chehadeh.)

Mohamad Wahbah, Mohamad Chehadeh, Mahmoud Hamandi, and
Yahya Zweiri are with the Khalifa University Center for Autonomous
Robotic Systems (KUCARS), Department of Aerospace Engineer-
ing, Khalifa University, Abu Dhabi, United Arab Emirates (e-mail:
Mohamad.chehadeh@ku.ac.ae).

Lakmal Seneviratne is with the Department of Mechanical Engineering,
KUCARS, Abu Dhabi, United Arab Emirates.

Digital Object Identifier 10.1109/JSEN.2022.3183187

W
B R An orthonormal rotation matrix that describes

the orientation of frame B with respect to frame
W , B

W R = W
B R−1 = W

B RT .
I Diagonal matrix consisting of the UAs’ inertia

around the B principal axes, = diag(Ix,Iy,Iz).
In Square diagonal identity matrix of size n × n.
N (0, R) Zero mean normally distributed noise with

variance R.
O Observability matrix.
α Rotational acceleration of the UA.
Bᾱt Inertia normalized thrust generated moment

vector, = M̄ · [ I−1
x I−1

y
T .

χ = T −1
λz

T −1
prop Keqz .

�p Diagonal matrix of rotational profile drag coeffi-
cients in the B frame, = diag(γp,x, γp,y, γp,z).

�̄ Diagonal matrix of total rotational drag coeffi-
cients in the B frame, = diag(γx, γy).

�p Diagonal matrix of translational profile
drag coefficients in the B frame, =
diag(λp,x, λp,y, λp,z).

� Diagonal matrix of total translational drag coef-
ficients in the B frame, = diag(λx, λy, λz).
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μi Rotational velocity of the i th rotor.
ω Rotational velocity of the UA.
τ Time delay quantity. τbx , τby , and τz are asso-

ciated with closed loop delays of the rotational
dynamics around bx , around by, and along bz
respectively.

θ Angle of rotation around wx , referred to as the
roll of the UA.

φ Angle of rotation around wy, referred to as
the pitch of the UA.

ψ Angle of rotation around wz, referred to as the
yaw of the UA.

a Linear acceleration of the UA.
abs Body specific accelerations of the UA.

aT Mass normalized generated thrust, = B Ft ·bz
m .

g Gravity field vector with W g = [0, 0, ag]T ,
and where ag is the gravitational acceleration
constant.

kT Thrust coefficient of the rotor.
kC Motor command to rotational velocity coefficient.
m Mass of the UA.
p Position of the UA.
q Quaternion, = {qw, qx , qy, qz}.
qr Estimated orientation quaternion.
ri Position of the center of the i th motor relative to

the UA’s center of mass.
ui Motor command sent to the i th electronic speed

controllers.
uM Modified Relay Feedback Test output.
uT Collective motor commands sent to all electronic

speed controllers, generating thrust force along
bz .

ūM Differential motor commands sent to opposing
electronic speed controllers causing a moment
around bx and by respectively, = [ubx uby ]T .

ūMbi as Estimated bias in the differential motor com-
mands sent to opposing electronic speed con-
trollers.

uTbias Collective motor command bias.
v Linear velocity of the UA.
vh

i Velocity of the i th rotor hub.
xR State vector of the Rotational Decoupled

Extended Kalman Filter (RDEKF).
xT State vector of the Translational Decoupled

Extended Kalman Filter (TDEKF).
xf Vector of filtered states.
xg Vector of ground truth states.
F Total force of applied to UA.
Fd Force applied due to drag.
Fg Force due to gravity.
Fi Thrust force of the i th motor.
Fm Rotor motion inflow drag force due to rigid body

translation.
Ft Total generated thrust due to the rotors’ rotations.
K̄eq Vector of equivalent gain for rotational dynamics

around bx and by accounting for propulsion gain
and inertia, = [Keqbx

Keqby
]T .

Keqbz
Equivalent gain of the vertical motion dynam-
ics, accounting for propulsion gain and inertia.

Kx , Ky Loop gain associated with lateral loop
dynamics.

BM Total moment applied to UA.
BMd Moment due to profile drag and rotor motion

inflow.
BM f Moment due to blade flapping.
BMg Moment due to the gyroscopic effect.
BM t Moment generated due to rotors’ rotation.
T� Diagonal matrix of the rotational time con-

stants, = diag(Tγx , Tγy ).
T� Diagonal matrix of the translational time con-

stants, = diag(Tλx , Tλy , Tλz ).
T̄prop Diagonal matrix associated with the propul-

sion system dynamics causing moment around
bx and by, = diag(Tpropbx

, Tpropby
).

Tprop Time constant associated with the propulsion
system dynamics.

β Modified Relay Feedback Test phase
parameter.

� Phase obtained from β.
ζ Tunable data generation parameters.
h Modified Relay Feedback Test amplitude.
D Subspace containing the time parameters of

the processes defined in the DNN-MRFT, di ∈
D.

Ď Discretized subspace from D adhering to the
relative sensitivity criteria of the DNN-MRFT,
ďi ∈ Ď.

J ∗ Relative sensitivity specifications.
M Map that generates data si from process para-

meters di , M−1 defines its inverse.
S Data feature space used for training, si ∈ S.

I. INTRODUCTION

UNMANNED Aircrafts (UA)s have seen increasing popu-
larity in the last decade due to their versatility and high

maneuverability compared to other robotic platforms. Due to
their increased workspace compared to Unmanned Ground
Vehicles (UGV)s and manipulators, UAs became an attractive
option for a myriad of industries, including defense, agricul-
ture, and entertainment. In the majority of these applications,
the vehicle’s autonomy is imperative to achieve the allocated
tasks.

While autonomy requires a UA to be endowed with a
combination of abilities, such as mission planning, trajectory
tracking, optimal control, etc.; state estimation using on-board
sensors is usually essential to be able to achieve the major-
ity of these abilities, and thus achieve platform autonomy.
As such, in what follows we will present a novel UA state
estimator, that estimates decoupled translational and rotational
pose of the platform. Moreover, the estimator incorporates
the platform dynamics to be able to estimate in real-time
the platform accelerations, while relying on off-the-shelf
sensors.
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A. Relevant Work
Most UAs used nowadays have an on-board Inertial Mea-

surement Unit (IMU), and a source of position sensing,
such as Real-Time Kinematics (RTK) systems [1], Motion
Capture (MoCap) [2], Radio Frequency (RF) [3], [4], elec-
tromagnetic [5], and Ultra Wide Bandwidth (UWB) [6]),
in addition to on-board measurements (e.g. visual odome-
try [7], [8]). IMUs usually consist of three axes gyroscopes,
accelerometers, and magnetometers. The literature is mature
with a variety of kinematic estimators that estimate the UA
attitude from IMU measurements [9]–[11]. The shortcoming
of these filters is that they consider quasi-stationary flight
for certain assumptions on stability and performance to hold.
These attitude estimators are usually augmented with position
measurements to achieve several advantages such as higher
update rates of position, velocity estimation, IMU biases
correction, or providing a phase lead in position and velocity
estimates.

Another class of filters use kinetics, in addition to the
kinematic equations of motion, and as such can be referred to
as dynamics based filters. Such filters utilize model knowledge
to estimate additional states, or physical properties, and to
provide smoother estimates. A large variety of such filters
exist in the literature, with each group following a differ-
ent approach. A notable contribution made by [12] explains
how an accelerometer measures body specific accelerations
only. These accelerations are caused by forces that affect
the housing of the accelerometer, but not the sensor itself.
In other words, the accelerometer measures the generated
thrust, the induced drag, and other forces acting on the UA
body, but not the gravity. The work of [13] utilized this
fact to develop a tunable deterministic observer that requires
the prior knowledge of translational drag to estimate the
UA’s drag. This drag estimate is later used in the UA’s
velocity estimation. In [14], the authors developed an Extended
Kalman Filter (EKF) that estimates attitude angles, inertial
lateral velocities, and gyroscope biases. The developed EKF
utilizes the UA’s under-actuation constraints to reduce drifts in
velocity; however, their method assumes smooth flights (i.e.
almost constant propeller rotational velocity) and requires a
prior knowledge of the nominal rotor drag coefficient and the
UA mass. The authors of [15] improved on [14] by achieving
a real-time estimate of the lateral drag parameters, where these
parameters were shown to be observable in [15]. The designed
filters in [13]–[15] provided estimates of the lateral velocity,
and the attitude only.

In [16], the work of [15] was extended to provide low-drift
state estimates in three dimensions by incorporating the input
to the motor command. While their method is promising,
it required extensive pre-flight calibrations of motor’s com-
mand to motor’s thrust. Such mapping disregards motor
dynamics, which would result in poor estimate of high-
frequency components. Work in [17] showed that the inertia
of the UA along with its motor’s lift and torque constants
can be estimated in real-time by an EKF using on-board
measurements, without the need of a test bench. However,
the corresponding model states were only observable under
certain maneuvers that require manual operation by a pilot,

or hand-tuning of the flight controller. Another dynamic filter
was presented in [17], which required only prior knowl-
edge of the drone mass, and the diagonal distances between
the motors; however, this filter disregarded drag and motor
dynamics, which contribute greatly to the platform motion,
and correspondingly the state estimation. In the recent work
of [18], a UKF was developed to estimate concurrently the
lateral and vertical drag terms, the inertia of the UA, the inertia
of the blades, the motor torque constant, the mass of the UA,
along with its attitude and velocity. While their approach is
promising, it requires the use of motor speed measurement
sensors, which are not available in most commercial UAs.
Similar to [17], the approach in [18] required the UA to
preform aggressive maneuvers in order to estimate the UA
inertial and drag parameters.

While the above methods estimated different dynamics of
the corresponding platforms, none of them provides estimates
for inertial accelerations, which can be quite useful for high
performance feedback control as found in [19], [20]. The
authors in [19] perform agressive maneuvers by utilizing
inertial acceleration readings from a high-end IMU fused with
thrust estimates from motor’s rotational speed measurements.
To mitigate the need for motor’s rotational speed measure-
ments, [20] proposed an adaptive notch filtering technique
that finds the platform acceleration and propeller induced
vibration directly from IMU measurements. While these two
methods provide promising methods to accurately filter IMU
measurements in real-time, both methods require accurate
measurements of the platform’s propellers’ rotational speed.
As such, it is not straightforward to apply them to different
UAs, as many commercial platforms do not provide such
measurements.

To conclude, there is a gap in the current UA state
estimation literature in having a dynamics based estimator
that can adapt in real-time for rotational and translational
drag parameters, while providing smooth and lag-free inertial
acceleration estimates. Estimators that can estimate model
parameters online without requiring expensive sensors or addi-
tional measurement sources would enable mass deployment
of high performance, and low-cost UAs. As such, the main
motivation of this article is to provide an in-flight high-
performance dynamics based estimators that does not require
prior knowledge of the dynamics and uses sensory setup found
on typical commercial UAs.

B. Contributions
Motivated by the above, this paper aims at presenting a

novel UA dynamics based state estimator, that can be tuned
online without any previous knowledge of the platform dynam-
ics. The proposed estimation scheme, illustrated in Fig. 1,
requires only an IMU and a position sensor, which is the
standard configuration in mainstream autonomous UAs. The
model based prediction and sensor fusion are implemented
in two novel filters, which we refer to as the Rotational
Decoupled Extended Kalman Filter (RDEKF) and the Transla-
tional Decoupled Extended Kalman Filter (TDEKF). Accord-
ingly, the contributions of this paper can be summarized as
follows:
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Fig. 1. Structure of the proposed estimation scheme. When a switch “sw x” is at position “Ident”., the identification phase is activated for that loop,
and the Deep Neural Network Modified Relay Feedback Test (DNN-MRFT) framework is used to identify the model parameters of that loop. After
the model parameters has been updated, the switch flips to position “Oper.” so that the operation phase starts and the estimates are used to control
the UA. Note that the controller outputs are used as inputs for the RDEKF and TDEKF prediction steps. The model parameters are identified and
adapted in real-time in-flight.

1) Propose a general filtration approach to estimate a UA’s
translational and angular pose, while taking the platform
and actuator dynamics into account.

2) The proposed framework is shown to be able to provide
a smooth and lag-free estimate of the platform’s rota-
tional speeds and inertial accelerations, without requir-
ing motor speed measurements as in [18] and [19].

3) As dynamics based filters for a nonlinear system are
challenging to tune, this paper proposes the use of an
AI method (the DNN-MRFT framework [21]) to esti-
mate online, and in real-time, the platform’s dynamics
required by the proposed filter. This alleviates the need
for expensive pre-flight calibrations as required by [16].

4) The proposed filter and tuning approach are validated
in an extensive experimental campaign that shows the
advantage of the proposed approach in estimating the
platform’s angular speeds and inertial acceleration and
the ensuing platform’s pose. In addition, the exper-
imental campaign clearly showcases the use of the
DNN-MRFT framework for the tuning of the proposed
filter. A video that summarizes the conducted experi-
ments of this paper is available in [22].

Our experimental campaign shows that the proposed
RDEKF and TDEKF state estimates can be used to perform
multiple flight trajectories. During this campaign, we demon-
strate how the RDEKF and TDEKF provide significantly
smoother and lag-free estimates of the rotational speeds and
inertial accelerations, achieving an average Root Mean Square
Error (RMSE) of 0.1532 m/s2 and 0.0459 rad/s respectively,

as seen in Section V-B. These results represent a significant
improvement compared to raw gyro and accelerometer mea-
surements. Hence, it follows that the use of RDEKF and
TDEKF resulted in better reference tracking achieving 43%
reduction in ramp reference tracking, as well as reducing the
controller action by approximately 6.6% when tested on a
figure-eight trajectory. In addition, we execute a high speed
figure-eight maneuver using low rate position measurements
of 10 Hz only. Such maneuvers are usually infeasible without
high rate measurements, yet by using the proposed filters, the
maneuver was executed successfully and with good tracking
performance. Such experiment illustrates how our approach
can enable accurate tracking using low frequency position
measurement systems, such as on-board cameras, or RTK
systems. The full closed-form model and the linearization steps
are included in this document, and can be found in a detailed
workbook in [23].

C. Structure of the Article
This article is organized as follows. In Section II we sum-

marize the nonlinear dynamic model of the UA, and derive the
corresponding semi-decoupled linear kinetics and nonlinear
kinematics model. Then in Section III we present the design
of the RDEKF and TDEKF based on the developed model.
In Section IV we briefly describe how the dynamic model
parameters can be tuned using the DNN-MRFT approach.
The proposed approach is validated through experimental
results, shown in Section V. Finally, Section VI concludes the
article.
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II. SYSTEM MODEL

Kalman filtering utilizes the knowledge of the model to
predict the states of the system. As such, using a prediction
model that closely matches the actual UA physical plant will
lead to better noise filtering, and estimation. Detailed models
can be achieved by considering all the dynamics that affect the
UA, which would result in accurate estimation of the evolved
states over the prediction horizon. However, such detailed
models are expensive to obtain (i.e. require extensive lab and
flight tests), in addition to being computationally expensive
to estimate, and thus difficult to use in a real-time estimator.
A better approach is to use lumped models with parameters
that describe accurately the evolution of the states in the pre-
diction horizon, while still being possible to compute in real-
time. In this section, we first explore the non-linear UA model
found in literature. We then present our proposed linearized
SISO models that greatly simplify the full model computation,
while retaining estimation accuracy. Finally, we introduce the
linearized models used by RDEKF and TDEKF and show how
the parameters identified by DNN-MRFT can be used in the
estimation models.

A. Nonlinear Model
It is necessary to model all forces acting on the UA body

to relate the measurements obtained by the inertial sensors
to our proposed model. As such, we aim first to develop
a nonlinear model that captures said forces, then introduce
the necessary assumptions and linearizations to achieve real-
time performance, and to be able to use DNN-MRFT for
parameter identification. The reference frames used in this
work are defined in the Nomenclature and are shown in Fig. 2
for illustration.

For a body motion that abides to Newtonian dynamics, the
summation of forces is:

ma =
�

F (1)

where F is any force applied to the body. For a UA, this can
be expanded into:

ma = Ft − Fd − Fg (2)

The total generated thrust Ft is due to the rotors’ rotations,
and can be modeled as [24]:

B Ft = kT

4�
i=1

μ2
i bz (3)

where a rotor’s rotation is related to the Electronic Speed
Controller (ESC) input command by:

μi = kCui (4)

where ui is the motor command sent to the i th motor. Note
that in this article, we will also use ui with i ∈ {bx , by, z} to
conveniently describe differential, or collective motor thrust
commands that correspond to the outputs of the individual
inner control loops, for rotations around bx and by , and
collective thrust.

The induced translational drag forces Fd consist of two parts
as seen from B [24], [25]. The first part of the drag is lateral

Fig. 2. Notation and reference frames used in this work. Without loss of
generality, B is defined assuming “X” quadrotor configuration.

(i.e. co-planar with bx × by) and is mainly attributed to blade
flapping, and profile drag on the rotors and the UA’s body. The
second part of the drag, which is the prominent one, is along
bz and is mainly caused by the change in inflow angle, and
the profile drag on the rotors and the UA body. The change
in inflow angle changes the thrust coefficient kT , and was
approximated in [24] for the i th motor to be:

kTi = kT0 +�kTi (5)

where the change increment, �kTi , is given by:
�kTi = cr

μi

Bvh
i (6)

where cr is a constant of the rotor’s physical properties, and
where Bvh

i is given by:
Bvh

i = Bv + Bω × ri (7)

Thus, rotor motion inflow not only damps translations along
bz , but also rotational motion by producing opposing moments.
It follows that Fd can be modeled as [24], [25]:

B Fd = (B Fm · bz)bz +�p
Bv (8)

Finally, the gravity force is given by:
B Fg = mB g (9)

On the other hand, the rotation dynamics of the UA are
given by:

I d

dt
(Bω) = BM t − BMg − BMd − BM f (10)

The moment vector BM t , generated by the rotors due to
rotation is [26]:

BM t =
4�

i=1

�
ri × Fi − d(i)kmμ

2
i bz

�
(11)

where d(i) is a function of the motor direction, that returns one
for counter-clock wise rotations, and negative one for clock
wise rotations, and km is a positive coefficient. The gyroscopic
moments are given by [25]:

BMg = Bω × I Bω (12)
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TABLE I
MAPPING OF NONLINEAR MODEL PARAMETERS TO THEIR REPRESENTING LUMPED LINEARIZED MODEL PARAMETERS. THESE LUMPED

PARAMETERS ARE OBSERVABLE THROUGH DNN-MRFT REAL-TIME IDENTIFICATION ALGORITHM. THE USE OF THE OBTAINED LUMPED

PARAMETERS IN THE PREDICTION STEP OF TDEKF AND RDEKF IS SHOWN IN FIG. 4 AND FIG. 3 RESPECTIVELY

and the moments caused by the profile drag and motion inflow
are given by [24]:

BMd = BMm + �p
Bw (13)

where BMm is a vector of the moments due to the motion
inflow caused by angular rotation, as presented in Eq. (6).
Lastly, the moments caused by blade flapping are adopted
from [18]:

BM f =
4�

i=1

k f μi
Bvh

i × bz (14)

where k f is a positive coefficient.

B. Linearized and Loosely Coupled Models
Designing a dynamics based estimator based on the form

of nonlinear coupled equations presented in Eqs.(2) and (10)
poses two challenges. The first challenge is associated with the
computational and tuning complexity of a high dimensional
strongly coupled EKF estimator. The second challenge is
related to the identification or estimation of the physical para-
meters of the UA. We solve the first challenge by loosening
the coupling between the rotational and translational dynamics,
and thus ignoring gyroscopic moments presented in Eq. (12).
It is argued in [27] that the effect of the gyroscopic moments
can be neglected for the range of the physical parameters
of the common multirotor UA sizes and designs. The only
coupling that remains is due to kinematics, which cannot
be ignored. The second challenge is solved by performing
accurate real-time identification of lumped system parameters
through DNN-MRFT. We refer to them as lumped parameters
due to the fact that a single parameter may be used to capture
a few physical phenomena that have the same effect from
the dynamics perspective. For example, drag from motion
inflow and profile drag are described by one lumped parameter.
Table II summarizes the mapping of nonlinear model parame-
ters to their representing lumped linearized model parameters.
Linear drag models were found to be good approximates of
the underlying physics even at translational speeds of few
meters per second [21], [24], [28], [29] which justifies the
linearization of nonlinear drag terms.

The model structures used for identification were proposed
by [27] and confirmed experimentally in [21], [28], [30]. The
vertical motion dynamics (i.e. the movement along bz), are

given by [27]:

Tpropbz
Tλz

B ...
pz(t)+ (Tpropbz

+ Tλz )
B p̈z(t)+ B ṗz(t)

= Keqbz
uT (t − τz) (15)

with Keqbz
= K propbz

Kz . Attitude dynamics corresponding to
rotations around bx and by have the same model structure of
vertical motion dynamics, and can be modeled as [27]:

Tpropi Tγ j
Bω̈ j (t)+ (Tpropi + Tγ j )

Bω̇ j (t)+ Bω j (t)

= Keqi ui (t − τi ) (16)

with i ∈ {bx , by}, j ∈ {x, y}, and K̄eq = [Keqbx
Keqby

]T =
[K propbx

Kbx K propby
Kby ]T .

The time delay terms appearing in Eqs. (15) and (16) are
used to capture propulsion, processing, communication and
measurement delays. The time delay is distributed among the
forward (e.g. delay in propulsion) and feedback (e.g. delay in
measurement) paths of the control loop. The DNN-MRFT is an
input-output identification method, hence it cannot distinguish
these delays. For the simplicity of computation we assume that
all delays are present in the forward path.

Lateral motion dynamics, i.e. motion along wx or wy,
cascade attitude dynamics, due to underactuation, and are
modeled as follows [30]:

Tλx
W p̈x(t)+ W ṗx(t) = Kxφ(t)

Tλy
W p̈y(t)+ W ṗy(t) = Kyθ(t) (17)

Quaternions are used to properly handle rotational speed
integration, to obtain UA attitude as needed in Eq. (17),
through the following formulas:

q̇ = 1

2
q ⊗

�
0, Bωx ,

Bωy,
Bωz

�
qt = qt−1 ⊕ q̇�t

where qt is the new estimate of the orientation, qt−1 is
the previous estimate, and �t is the integration time step.
It should be noted that this work uses the Hamilton quaternion
convention.

Note that we have omitted the yaw moment as estimation
of the yaw dynamics is not of interest in this work, where the
focus is devoted to fast transient dynamics that are present in
aggressive maneuvers. Moreover, control and estimation for
yaw dynamics is simpler due to the presence of full state
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measurements and the lower relative degree of the system [30].
Therefore, in this work, we are using a kinematic estimator
for the yaw states based on a modified version of the imple-
mentation of [31] that allows absolute yaw measurements and
yaw body rates to be fused.

III. DECOUPLED DYNAMICS BASED

ESTIMATION SCHEME

Due to the nonlinear properties brought by the coupled kine-
matics and the quaternion integration, a nonlinear estimator
needs to be used. Extended Kalman Filters solve this issue
by linearizing the prediction and the measurement models to
provide corrected estimates. In this section, we go over the
construction of the two proposed Extended Kalman Filters,
and their respective prediction and measurement steps.

Let us consider the state-space model for an arbitrary
nonlinear system with the states x(t), an input u(t), and
additive process and measurement noises:

ẋ(t) = f (x(t), u(t))+ N (0, Rproc) (18)

y(t) = h(x(t), u(t))+ N (0, Rmeas) (19)

The process noise variance is Rproc, and the measurement
noise variance is Rmeas . Equation (18) describes the change
in the system caused by its current state, and the input it is
subjected to, while Eq. (19) shows how the measurements
change as the states and input change.

To be able to use the EKF, let us linearize the state equation
f and the output equation h around the current states x at
time t , and re-write the generalized model equations (18,19)
to obtain the following linear time varying (LTV) system:

ẋ(t) = A(t)x(t)+ B(t)u(t)+ N (0, Rproc) (20)

y(t) = C(t)x(t)+ D(t)u(t)+ N (0, Rmeas) (21)

where A(t) is the state matrix, B(t) is the input matrix, C(t)
is the output matrix, and D(t) is the feedforward matrix.
The forms of these matrices for the RDEKF and TDEKF are
detailed in the appendix.

Finally, the system above is discretized to be able to apply
the prediction and correction steps. The prediction step shown
below estimates the system states at the next iteration from
the current system states and input:

x̃n+1 = Fn xn + Gnun (22)

where:
Fn = eA(t)�t (23)

Gn =
� �t

0
eA(t)�t dt B(t) (24)

with �t being the filter time step.
On the other hand, the correction step shown below corrects

the estimate of the system states to reduce the error between
the measured and estimated states

x̂n = x̃n + Kn(zn−H x̃n) (25)

where Kn is the Kalman Gain, zn is the state measurement,
and where we assumed that H = C is a constant matrix
independent of the system states and correction step, and that
D = 0.

A. Estimator Design
Let’s donate xR as the states vector of the RDEKF, and xT

as the state vector of the TDEKF. The vector xR ∈ R
12×1 is

defined as follows:
xR =

�
q Bω̄ Bᾱ Bᾱt ūMbi as

�T
(26)

The process bias ūMbi as is used to offset rotations caused by
motor mismatch, and weight imbalance. The states in xR, apart
from q, are all defined as 2D vectors, i.e.,the projection of the
corresponding vector on bx and by respectively. The angle
ψ is assumed to be measured externally, and q is updated
accordingly.

The TDEKF estimates the states vector, xT ∈ R
11×1 defined

as follows:
xT =

�
W p Wv Babs aT uTbias

�T
(27)

The process bias uTbias compensates for the slow drift in
thrust command caused by battery voltage drop. These two
states are modeled as scalar quantities rather than a vector,
as the generated thrust is always aligned with bz. The rest of
the estimates in xT are three-dimensional quantities.

B. Prediction Model
Eq. (28) and Eq. (29) shows respectively the nonlinear

dynamic system of the RDEKF and TDEKF, while the details
corresponding to the measurement model of the two systems
are discussed in the next subsection. The two system models
are also illustrated in Figs. 3 and 4 for clarity.

Let us denote by f (x R(t), ūM ,
Bωz) as the function

describing the nonlinear dynamics of the RDEKF shown
below:

q̇ = 1

2
q ⊗

�
0, Bωx ,

Bωy,
Bωz

�
ω̇ = ᾱ

α̇ = T̄ −1
prop[T −1

� K̄
T
eq

�
ūM − ūMbias

� − ᾱt ] − �̄−1ᾱ

α̇t = T̄ −1
prop[T −1

� K̄
T
eq

�
ūM − ūMbias

� − ᾱt ]
u̇Mbias = 0 (28)

Then, let us denote by f (xT (t), uT (t),WB R) as the function
describing the nonlinear dynamics of the TDEKF shown
below:

ṗ = v

v̇ = W
B Rabs

ȧbs = �−1abs − aT T −1
propwz + χ(uT − uTbias )wz + W

B RT g

ȧT = −T −1
propaT + χ(uT − uTbias )

u̇Tbias = 0 (29)

In the case of the RDEKF, u(t) consists of ubx (t) and uby (t),
while for the TDEKF u(t) is uT (t), and the gravity vector g.
The gravity is treated as an input for representation sake; while
the filter is running it is assumed to be constant.

The above nonlinear systems can be linearized by com-
puting the Jacobian of the corresponding f functions; the
resultant LTV system is reported in the appendix for clarity.
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Fig. 3. Estimator prediction model used in the RDEKF.

Fig. 4. Estimator prediction model used in the TDEKF.

C. Measurement Model
The proposed RDEKF and TDEKF fuses multiple state

measurements to correct the predicted states as detailed below.
The TDEKF is updated with acceleration measurements from
a 3-axis accelerometer, in addition to position measurements.
The position measurements could be acquired from either
intrinsic measurements (such as GPS), or extrinsic measure-
ments (such as a MoCap system). The RDEKF is updated
with angular velocity measurements from a 3-axis gyroscope,
in addition to orientation measurements. For the orientation
measurements, we utilized a modification of the orientation
estimation approach presented in [31] to provide angle esti-
mates, which are used by the TDEKF and RDEKF as measure-
ment sources. The gains in the orientation estimation filter are
scheduled to depend greatly on the gyroscope measurements
during aggressive maneuvers.

In addition to the above measurements, the RDEKF and
TDEKF are designed to accommodate for propeller thrust
measurements; these measurements are usually derived from
the measurement of the propeller rotational speeds. Since these
measurements are not available in all UAs, in what follows we
will show how to incorporate it in the correction model, and
later we will show that the proposed filter can still work even
when such measurements are not available.

Finally, since the inertial sensors sampling rates are usually
much higher from that of a position sensor, the multi-rate
sampling approach described in [32] is used.

To incorporate the measurements in the filters, we need
to provide measurement models that relate the measured
quantities, to the filter estimates. The gyroscope measurements
model adopted in this work is:

Bωgyro =B ω + N (0, Rgyro) (30)

where Rgyro is the additive noise variance. The gyroscope
directly measures the rotational velocity of the UA, thus its

observation matrix is:
Hgyro = �

02×4 I2 02×2 02×2 02×2
	

(31)

The orientation measurements can be modeled to have an
additive measurement noise with variance Rang:

qr = q + N (0, Rang) (32)

The orientation provided by the corresponding measurement
directly relates to the quaternion estimate from the filter, thus
the orientation observation matrix is trivial:

Hr = �
I4 04×2 04×2 04×2 04×2

	
(33)

The accelerometer measurement model used in the TDEKF is:
Baacc = abs + N (0, Racc) (34)

where Racc is the measurement noise variance. The accelerom-
eter gives a direct measurement of abs , hence, the accelerom-
eter observation matrix has a trivial derivation:

Hacc = �
03×3 03×3 I3 03×1 03×1

	
(35)

It should be noted that the accelerometer is assumed to be
perfectly aligned with the UA’s body. Hence, it provides
measurements of the UA acceleration, without the need for
any transform. Additionally, the accelerometer is assumed to
be calibrated using six-point tumble method [33], and that any
corresponding calibration bias has been eliminated.

The position measurement model depends on the sensor
used. In the experimental part of this work, we use a MoCap
system. We also simulated other positioning systems by reduc-
ing the update rate of the MoCap system to match typical
arrangements usually found in deployed UAs; e.g. an RTK
receiver with centimeter level accuracy, or a UWB localiza-
tion system. The measurement model for the aforementioned
systems is:

ppos = W p + N (0, Rpos) (36)
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where Rpos is the noise variance, and the observation matrix
is

Hpos = �
I3 03×3 03×3 03×1 03×1

	
(37)

Finally, the measurement model for the inertia normalized
thrust generated moment ᾱt and the mass normalized gener-
ated thrust aT are shown below:

ᾱt ,umeas = ᾱt + N (0, Rᾱt ) (38)

aT ,umeas = aT + N (0, RaT ) (39)

where umeas is the measured propeller thrust, and Rᾱt and
RaT are respectively the noise variance of the measurement
of ᾱt and aT . The corresponding observation matrices are as
follows:

Hᾱt = �
02×4 02×2 02×2 I2 02×2

	
(40)

HaT = �
01×3 01×3 01×3 I1 0

	
(41)

D. Observability of TDEKF and RDEKF
A system is said to be observable if, for any two sets

of states and inputs, the corresponding measurements are
distinct [34]. As such, if a system is observable, and given
distinct observations and known inputs, we can deduce the
underlying state vectors. On the other hand, a system is said
to be detectable if, all unobservable system states are stable.

The full observability analysis of the TDEKF and RDEKF
systems are reported in the appendix for clarity, and the main
findings are reported in what follows.

As it seems, in the case where aT and ᾱt are measurable
(i.e.,the platform’s propeller rotational speeds are not measur-
able), the system is fully observable, with the corresponding
observability matrices having rank equal to the dimensionality
of the system i.e.,rank(OTaT

(t)) = 10 and rank(OTᾱt
(t)) = 12

for all t .
On the other hand, if aT and ᾱt are not measurable, the

corresponding system is not observable. A canonical decom-
position of the TDEKF system shows that in this case, the
linear addition of aT and uTbias is observable while their
linear difference is not observable. Moreover, the eigenvalue
corresponding to the unobservable state is zero. As such,
the unobservable state is not stable and the system is not
detectable. A similar analysis, with similar conclusions, can
be made in the case of the RDEKF and the corresponding
linear combinations of ᾱt and ūMbias .

During our experimental campaign, we observed that unob-
served state (linear difference of aT and uTbias in the case
of the TDEKF, and ᾱt and ūMbias in the case of the RDEKF)
simply integrate any bias present in the system. As our filter is
tuned online, such biases remain small, and the corresponding
value of the unobserved state remain manageable if the system
is run for a short period of time. However, and to avoid any
unexpected behavior, when propeller rotational speeds are not
measurable, we assume uTbias = 0 and ūMbias = 0, and we
incorporate these assumptions in the measurement model. Note
that the resulting system is observable even in the absence of
propeller’s rotational speed measurements.

IV. IDENTIFICATION OF MODEL PARAMETERS

THROUGH DNN-MRFT
The DNN-MRFT approach was suggested in [21] to per-

form real-time identification and near-optimal tuning of UA
control loops. The objective of the DNN is to find the unknown
dynamic parameters of the unmanned aircraft (UA) based on
input data generated by the MRFT controller [35]. MRFT
excites a stable periodic motion. Measured periodic system
output is then fed to a deep neural network (DNN) which
classifies the unknown process and provides the corresponding
system parameters. In this section, we present the DNN-MRFT
approach and its specific implementation when applied to find
the dynamic parameters in the RDEKF and TDEKF prediction
models.

A. Problem Formulation
Let τ ∈ [τmin, τmax ], Tprop ∈ [Tprop,min, Tprop,max ],

Tλ ∈ [Tλ,min , Tλ,max], and Keq ∈ [Keq,min , Keq,max ], with
D = τ × Tprop × Tλ × Keq denoting the domain of the
unknown parameters characterizing a linear system G(s, di ),
(The Laplace variable s will be dropped for brevity) where
di ∈ D. Let us define the features space S ⊂ R

n×m , where
n denotes the number of elements in each feature vector,
and m denotes the number of feature vectors. Then the map
(di , ζ ) �→ si = M(di , ζ ), where si ∈ S and ζ denotes tunable
data generation parameters, defines a data generation function
that acts on the process G(di ). Our goal now is to find an
inverse map, si �→ di = M−1(si ), to infer the unknown
process parameters from experimentally generated data si .

B. Data Generation Through MRFT
The data generation function M we use is the MRFT given

by [35]:

uM (t)

=



h : e(t) ≥ b1 ∨ (e(t) > −b2 ∧ uM (t−) = h)

−h : e(t) ≤ −b2 ∨ (e(t) < b1 ∧ uM (t−) = −h)

(42)

where b1 = −βemin and b2 = βemax , and uM (−t), emax ,
and emin are the previous command, maximum error, and
minimum error, respectively. MRFT parameter β is a tunable
data generation parameter.

The use of MRFT for data generation has multiple advan-
tages over other methods. Firstly, it is a closed-loop method
making the system stable and robust to external disturbances
during the data generation phase (refer to [30] for a proof of
periodic stability). Secondly, it exploits the gain scale property
of linear systems, thus eliminating the need for including Keq

in the unknown parameters’ domain D, which greatly reduces
the numerical complexity of the problem. We use the error
input to MRFT e(t) and the MRFT output uM (t) as data
vectors for training; hence S ∈ R

n×2. The parameter n defines
the length of the data vector, and it is selected to fit the
largest steady-state oscillation period from all members of Ď.
A suitable value of the MRFT parameter β ∈ [−1, 1] is found
through the process of the design of optimal non-parametric
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TABLE II
RANGE OF MODEL PARAMETERS, OPTIMAL VALUE OF MRFT PARAMETER β∗ , AND THE TEST SET REPORTED MAXIMUM AND AVERAGE VALUES

OF THE RELATIVE SENSITIVITY FUNCTION SHOWN IN EQ. (44) FOR EVERY LINEARIZED DYNAMIC MODEL USED. NOTE THAT β∗ VALUE FOR THE

UNDERACTUATED LATERAL LOOPS DEPENDS ON ATTITUDE IDENTIFICATION, AND IT IS USUALLY CLOSE TO ZERO

tuning rules [35], resulting in the optimal data generation
parameter β∗. For simplicity, we refer to M(di , β

∗) by M(di ).
A summary of the DNN-MRFT tunable parameters used in

this work for attitude, altitude and lateral loops is given in
Table II.

C. Process Classification Based on DNN
We use a DNN to approximate the mapping from MRFT

generated data to the unknown process dynamics. To allow
real-time computation of the controller parameters, and to
speed up the DNN training process, we approximate the map
M−1 over the set Ď to obtain M̌−1 : Š → Ď. This changes
the DNN task from regression over M−1 to classification over
M̌−1. The optimal controllers can be found offline for every
output class in Ď, and arranged in the form of a look-up
table to be used in-flight. To discretize the process parameters
domain we use the following discretization function:

�(D, J ∗) = {Ď : J (ďi , ď j ) < J ∗ ∧ {ďi , ď j } ∈ Ď} (43)

where J (di , d j ) is defined as the relative sensitivity func-
tion [36]:

J (di , d j ) = Q(C(d j ),G(di ))− Q(C(di ),G(di ))

Q(C(di ),G(di ))
× 100%

(44)

where C(d) is a controller that is optimal for the process
with model parameter d , and Q(C,G) is the Integral Square
Error (ISE) performance index of applying a controller C on
process G. The constant, J ∗ in Eq. (43), defines a controller
performance specification that prevents under-discretization
such that ∀di ∈ D ∃ ďi ∈ Ď : J (ďi , di ) < J ∗. This condition,
however, does not prevent over-discretization of the parameters
space. We use J ∗ = 10% in this work which was found to
provide satisfactory performance in [21]. Note that when i = j
in Eq. (44), the relative sensitivity evaluates to J (di , di ) = 0.

Due to over-discretization, the addition of noise from sen-
sors, and nonlinearities, the map M̌ is surjective, i.e. it is
not invertible. This non-invertibility condition may lead to
instability of the closed loop controllers due to the inevitable
misclassification. Thus, we explicitly include the relative sen-
sitivity measure J (ďi , ďT ) defined in Eq. (44) to penalize
misclassifications. The parameters ďT denote the labeled out-
put process parameters, as the ground truth is available in
simulation where the DNN training is performed. The Softmax
function used in training is modified to be as follows:

pi = eκiT ·ai�N
j=1 eκ jT ·a j

(45)

where pi is the Softmax output probability, ai is the input
logit, and κiT = 1 + J (ďi , ďT ) is a biased function of the
relative sensitivity. As a loss function for training the DNN,
the modified formulation in Eq. (45) is utilized alongside the
cross-entropy function L = − �N

i=1 yi log (pi), where y is a
one-hot encoded vector that indicates the ground truth class T .
The partial derivative of L with respect to the logit ai is
computed as:

∂L

∂ai
= κiT × (pi − yi ) (46)

Such modification penalizes misclassifications in proportion
to the degradation of the closed-loop performance compared to
the optimal. A full derivation of the modified Softmax function
can be found in [21].

The training set T ⊂ Š×Ď and the validation set V ⊂ Š×Ď
are both used for DNN training phase, and the testing set
U ⊂ D \ Ď, used for benchmarking, is sampled from outside
Ď to avoid over-fitting. To improve robustness qualities of the
DNN approximation of M̌−1, we add a randomly sampled
constant bias to MRFT, and a Gaussian noise to the training,
validation, and testing samples.

The application of DNN-MRFT approach to the underactu-
ated lateral loops (i.e. outer loops) is dependent on the attitude
loops tuning and identification results, and hence the outer
loop map is defined as (ďo,i , ďi ) �→ šo,i = M̌o(ďo,i , ďi ) with
ďo,i ∈ Ďo, and ďi ∈ Ď. Hence, identification of the attitude
loops needs to be carried first to estimate ďi , and then ďo,i

can be estimated. A simpler inverse map, M̌o,di (ďo,i , can be
estimated which keeps the DNN structure the same for all
control loops at the expense of having |Ď| outer DNNs, i.e. one
DNN for every ďi ∈ Ď. The process of cascading DNN-MRFT
is detailed in our previous work [30]. As a result, the set of
DNNs we used are as follows: first, a DNN to for altitude with
208 output classes (we have widened the range of time delay
compared to attitude to accommodate for network delays),
a DNN for attitude loops with 48 output classes, and a set
of 48 DNNs for lateral loops with an average of 15 output
classes for each. ADAM algorithm was used for training,
which takes a few minutes per DNN. The DNN inference
time takes a few milliseconds in modern embedded processors,
which enables the real-time performance.

The DNN architecture used for all inverse map approxima-
tions is the same, as it showed to provide the best classification
accuracy while doing a sweep of the hyperparameters of
different DNN architectures. The used DNN consists of mul-
tiple fully connected layers, with ReLU activation functions
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Fig. 5. Used deep neural network architecture. The inputs are the
observed variable and the MRFT controller action, while the output is
the identified class ďn. The last fully connected layer has a size of the
number of discretized processes in Ď.

in between. Drop-out and batch normalization layers were
added to the outputs of the activation functions to reduce over-
fitting. The drop-out rate used was 40%. The modified Softmax
function described earlier was used in the last layer. The DNN
architecture used can be seen in Fig. 5. The testing set results
are summarized in Table II.

D. DNN-MRFT Application Considerations for RDEKF
and TDEKF

It is important to ensure that the self-excited oscillations
do not excite the nonlinearities of the physical system. For
example, consider the nonlinearity of the proposed TDEKF
process presented in Fig. 4. Keeping wz aligned with bz
during identification ensures negligible contribution of the
rotation matrix nonlinearity, i.e. W

B R ≈ I3. In consequence,
the identification of the drag parameters Tλx and Tλy , which
are defined for movements along bx and by respectively,
requires the self-excited oscillations to induce lateral move-
ments while keeping wz aligned with bz . Obviously, this is
not possible due to the under-actuated nature of multirotor
platforms, and the thrust vector must change its orientation to
generate accelerations along wx or wy. Consequently, during
the DNN-MRFT phase, the UA will change its orientation
slightly to produce oscillations during lateral processes iden-
tifications. For the purpose of this work, we assume that
λz has no effect during that phase and the side projected
area of the UA remains the same during MRFT; note that
this is possible since Bv i � Bvz , and Bv i ≈ Wv i for
i ∈ {x, y}.

The proposed approach can be summarized in Fig. 1. The
figure depicts the UA physical system, the sensors measuring
its state, the actuation system, and more importantly, the
proposed estimation scheme. In our approach, we assume that
the UA is in hover state, and all the switches sw are in posi-
tion Oper.. The switches will then move to position Ident .
consecutively. This will trigger the DNN-MRFT algorithm as
described, causing oscillations and identifying the system. This
phase lasts just a few seconds for each loop, and guarantees
stability of the loop under test [30]. After all loops have been
identified, and the two estimators’ dynamic parameters have
been updated, the switch is flipped to position Oper.. In this
switch position, the estimator will collect the control action
and predict the states of the UA, while providing corrections
as new measurements arrive.

V. EXPERIMENTAL RESULTS

In this section, we provide experimental data that showcases
the performance of the proposed estimator. The testing setup

Fig. 6. The QDrone platform used in the experiments.

consisted of the UA, a MoCap system, and a workstation.
The UA used was the Quanser QDrone platform (seen in
Fig. 6) with an on-board Intel Atom x7-Z8750 processor.
All the control and estimation algorithms were executed in
real-time on-board of the UA. Thus, the whole estimation
scheme, including TDEKF and RDEKF, require less than
1 ms to be evaluated in the operation phase of the QDrone
flight. In the identification phase, the identification DNNs
are loaded on-board and require a few milliseconds for
prediction.

On-board also is a BMI160 IMU, and an Intel AC 8620 Wifi
module. The IMU’s gyroscope has noise root mean
square (RMS) of 0.07 ◦/s, a noise spectral density of 0.007
◦/s/

√
H z, and a non-linearity of 0.1 %FS. The accelerom-

eter has an RMS noise of 1.8 mg, a noise spectral density
of 300 μg/

√
H z, and a non-linearity of 0.5 %FS. For

MoCap system positioning, we used the Optitrack Prime
17 cameras which transmit images to the workstation that
is equipped with a software to resolve the pose of QDrone,
and then streams this pose to QDrone in real-time over
WiFi. The workstation also provided the Graphical User
Interface (GUI) needed for interacting with the UA. The codes
were developed in MATLAB Simulink environment, and a
C++ code was generated using QUARC from Quanser. The
full estimation scheme for QDrone is released as an open-
source software, and can be found in the detailed workbook
in [23].

This section is split into four parts. First, we demonstrate
the use of DNN-MRFT to identify the parameters of the
SISO models presented in Section II-B. Then we examine
the proposed estimation scheme and the identified model by
studying the effect of down-sampling position measurements
on trajectory tracking of a figure-eight maneuver. To highlight
the importance of providing acceleration as an estimate, a ramp
test is carried out to show how incorporating filtered acceler-
ations can enhance controller tracking. Finally, we showcase
another advantage of our estimation scheme, in the form of
controller action reduction, which reduces noise in operation,
and increases the flight time of the battery. The aforementioned
tests assumes a calibrated accelerometer, i.e. S

BR = I3 with
proper scaling adjustment of the accelerometer gains. The
calibration was carried out in accordance with the method
outlined in [33]. A video recording of all the experiments in
this section is available in [22].
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Fig. 7. Proposed translational filter open-loop performance.

TABLE III
IDENTIFIED QDRONE PARAMETERS USED IN THE RDEKF AND TDEKF

PREDICTION MODELS. THE ACCURACY OF DNN-MRFT
BASED IDENTIFICATION WAS VALIDATED IN OUR

PREVIOUS WORK [21] AND [30]

A. Parameters Identification Using the DNN-MRFT and
Prediction Performance

We first utilize the DNN-MRFT framework to identify the
UA model parameters, as described in Section II-B. At hover,
we successively trigger the identification phase, as shown
in Fig. 1. The identified parameters obtained are shown in
Table III. The attitude loops were estimated to have similar
dynamics, as the drone is symmetrical in design. The slight
difference in process gain can be attributed to a slight weight
distribution imbalance. For the altitude loop, the estimated
process had considerably higher delay compared to the atti-
tude, this is expected as a MoCap system have larger delays
compared to the on-board inertial measurements. Finally, the
lateral loops test was carried out with a small MRFT relay
height; as to reduce the attitude angles during the test. The
maximum angular amplitudes recorded during the MRFT
phase for the lateral loops bx and by were 0.1042 rad, and
0.0972 rad, respectively. Thus, it was assumed that the damp-
ing constants Tλx and Tλy were due to lateral motion only. The
identified model parameters can be found in Table III.

We use two metrics for the quantitative evaluation of both
estimators and controllers performance. The first quantitative

metric used is the Root Mean Square Error (RMSE) in which
we compute the �2 norm of the difference between the filter
estimates and the ground truth. The RMSE is calculated using
the following equation:

RM SE =
�N

i=1 ||xf
i − xg

i ||2
N

(47)

where N is the number of the measurement samples in the
trajectory. When assessing controller performance, the vector
xf

i is replaced with the vector of reference states xr
i . In the

second quantitative metric, we evaluate the Mean Contouring
Errors (MCE) as a measure of control performance. The
following equation defines the MCE:

MC E =
�N

i=1 min
�||xr

i − xg
i ||2

�
N

(48)

For all results, the ground truth is obtained from
post-processing the MoCap measurements. Post-processing
improves the accuracy of the ground truth due to non-causality.

Before examining the closed-loop performance of the filters,
it would be beneficial to see how well the identified model can
estimate the states when running in open-loop. The open-loop
performance can be meaningfully investigated for translational
dynamics, as in some practical scenarios position measure-
ments might be absent. Specifically, we test the TDEKF
estimator performance by neither providing position nor accel-
eration measurements. Fig 7 shows the estimated position, and
acceleration, using the TDEKF model shown in Fig. 4 when
performing a figure-eight trajectory. The estimated accelera-
tions follow the ground truth trend, which indicates that the
predicted model is close to the actual system. However, due
to sudden drop in battery levels and nonlinear asymmetries,
we can see that during large accelerations along wx and wy
the estimate along wz diverges significantly from the ground
truth. These differences in accelerations would accumulate and
cause a drift in velocity and position.

B. Effect of Position Measurement Update Rate on Filter
Performance

To assess the performance of the proposed filtering scheme,
along with the identified model, we perform two figure-eight
maneuvers with two different update rates of the position
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Fig. 8. TDEKF estimates during a figure-eight trajectory with 300 Hz
position measurements update.

measurements. The figure-eight measures 3 by 2 meters and
takes 10 seconds to execute. In the first figure-eight maneuver,
the position measurement rate is 300Hz, we then repeat the
previous test with a down sampled position measurement of
10Hz. We chose the 10Hz rate as most commercially available
RTK or UWB positioning systems provide position measure-
ments at least at 10Hz. RTK and UWB are the popular choices
for UAs operated outdoors, where a MoCap system is not
always feasible. For both cases we run TDEKF and RDEKF
at 1kHz since our control loop, and hence prediction, runs at
1kHz. Note that as the IMU measurements and the prediction
algorithms are running at 1kHz, down sampling the posi-
tion measurements will only affect the TDEKF performance,
hence such comparative assessment does not hold for the
RDEKF.

When providing position measurement updates at 10Hz,
we observed that the velocity and position estimates lag behind
the ground truth, possibly due to the added delay introduced
by down sampling. However, we can see that it still provides
smooth and stable estimates of position and velocity that are
suitable for feedback control (refer to Fig. 9). Due to this lag,
the estimates RMSE figures presented in Table IV show an
increase in the error figures for the 10Hz case, but these errors

Fig. 9. TDEKF estimates during a figure-eight trajectory with 10 Hz
position measurements update.

TABLE IV
TDEKF AND RDEKF RMSE FIGURES MEASURING DEVIATIONS

BETWEEN THE FILTERS’ ESTIMATES AND THE GROUND TRUTH FOR

DIFFERENT POSITION MEASUREMENT UPDATE RATES

remain small for the practical interest. The increase in the error
figures was smallest for the acceleration, then the velocity, and
was largest for the position. Such distribution of the increase
of the error can be changed by the tuning of process noise
Q matrix. We found that with the proposed filter structure,
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TABLE V
FIGURE-EIGHT TRACKING RMSE & MCE MEASURING THE DEVIATION

BETWEEN THE GROUND TRUTH AND THE REFERENCE TRAJECTORY

WHEN DIFFERENT POSITION MEASUREMENT

UPDATE RATES ARE USED

the RMSE results slightly change for a wide range of Q
matrix tuning (i.e. filters performance is almost insensitive to
changes in Q tuning), which makes the implementation of the
TDEKF and RDEKF straightforward and easily applicable to a
wide range of UA designs. In tracking, MCE figures observed
less increase compared to RMSE when moving from 300 Hz
to 10 Hz, as seen in Table V. This implies that the 10Hz
position estimates remain close to the ground truth, but are
lagged. These results are promising for trajectory tracking
applications where only low update rate position sensors are
available, and lag in trajectory execution is tolerated.

Table VI shows a comparison between our achieved RMSE
and those from [16]. The authors in [16] carried out an
experiment using a Global Navigation Satellite RTK System
(RTK-GNSS) following a rectangular path to assess their
dynamics based filter performance. The position RMSE’s
reported were 0.3109 m, 0.5895 m, and 1.3527 m, for W px ,
W py, and W pz respectively. Velocity estimates were also
evaluated, and the filter achieved RMSE’s of 0.0803 m/s,
0.0757 m/s, and 0.0838 m/s for Wvx , Wvy , and Wvz

respectively. From Table VI we can see that our proposed
approach achieved significantly better position estimates, albeit
using a MoCap. MoCap has higher position accuracy than
RTK-GNSS, however both report high-precision measure-
ments, and both were running at the same sampling frequency
of 10 Hz. The velocity estimates reported by [16] slightly
out-preformed ours due to the fact that the trajectory flown
in [16] is simpler than ours. It is also worth noting that work
in [16] performed extensive offline identification, and had full
knowledge of the UA physical parameters beforehand.

The RDEKF angular velocity estimates are provided for the
300Hz case in Fig. 10, with their respective RMSE shown
in Table IV. The oscillations with a frequency close to 7Hz
are due to amplified low frequency body vibrations. The
filter successfully rejects all higher frequencies compared to
the raw gyroscope measurements, without lagging estimates
corresponding to physical movements.

C. Assessment of Acceleration Estimates
Due to the novelty of including accelerations as a state,

we can not compare with other dynamics based filters from
literature. Authors in [20] did however propose a regression
based notch filter for removing the noise from accelerom-
eter measurements in UAs. The performance of the filter

TABLE VI
COMPARISON BETWEEN OUR PROPOSED APPROACH AND

3D-DMAN-UKF WITH GNSS FROM [16]

Fig. 10. Proposed RDEKF angular velocity estimates. The high-
frequency noises in the sensor measurements have been suppressed.

was not analyzed quantitatively, but the authors claimed that
the filter removed most of the noises, without introducing
a lag or attenuation in the signal. Similarly, our proposed
filter did not introduce lag in estimating the acceleration,
even during the 10 Hz position measurements. The advan-
tage of our approach is that the filters are synthesized with
complete autonomy in-flight, whereas the filter presented
in [20] requires tuning the filter parameters for every UA
used.

Although providing a control strategy that incorporates
acceleration feedback is not in the scope of this article, a test
that shows the advantages of using filtered acceleration in
control is necessary to demonstrate the benefits of the proposed
filtering scheme. In this test, we provide a ramp reference
on W pz and compare the performance of a Proportional
Derivative (PD) controller, to that of a Proportional Double
Derivative (PDD) controller. The optimal PD and PDD values
were found using the DNN-MRFT model identification and
controller tuning framework [28], [30]. We used the filter
estimates to track a ramp position reference with a slope of
0.5 m/s for 2 seconds, thus moving the UA a total of 1 m.
As seen in Fig. 11 using a PDD controller provided faster
response than a PD controller, as the RMSE dropped from
0.0791 m to 0.0449 m, which constitutes 43% increase in
control performance.

D. Reduction of Controller Action
An additional advantage of the proposed estimator is the

reduction in controller action (i.e. changes in the control
signal). Fig. 12 shows the thrust commands produced by the
controller when operated with and without the estimators, for
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Fig. 11. Ramp tracking performance of PD and PDD controllers using
the proposed TDEKF estimates.

Fig. 12. Controller command reduction when using the proposed
estimation scheme.

the figure-eight trajectory described earlier. The estimators
clearly smoothed the high rate MoCap position measurements,
which resulted in a notable reduction of the controller energy,
leading to a smoother flight. It can be noticed that the
high-frequency variations in uT reduced when using the filter.
The reduction in controller action was around 6.6%, increasing
signal-to-noise ratio (SNR) from 15.73 d B to 20.96 d B ,
assuming all high frequencies were noises.

VI. CONCLUSION

In this work, we presented a decoupled estimation
scheme that utilized dynamics-based prediction models, and
multi-sensor data fusion. The two decoupled estimators
increased the states’ estimation accuracy, up-sampled states
measured at low rate, and to provided estimates for higher
order states. Our approach for estimator design consisted of
two phases, the identification phase and the operation phase.
Our approach has the advantages of being implemented in
real-time on-board the UA without any prior knowledge of
UA parameters, and not requiring additional sensors such as
motor speed encoders. The estimation scheme was validated
experimentally, providing smooth and accurate estimates with

low-rate position sensors, thus reducing the controller energy.
Finally, our approach also provided smooth acceleration esti-
mates, a feature that was not found in previous dynamics based
filters for UAs. Having knowledge about the inertial acceler-
ation can increase control performance, as was demonstrated
in the ramp tracking experiment in this paper.

The current form of DNN-MRFT performs identification
using input-output measurements, which does not guarantee
the accuracy of the input to state models. Despite this fact,
the estimation scheme performed well, which motivates further
theoretical research on the relationship between input-output
models and input to state models in the future. Also, the
insensitivity of the proposed estimation scheme to the Q
matrix tuning offered practical benefits, but requires further
in-depth theoretical analysis, which we plan to investigate in
our future work.

APPENDIX

OBSERVABILITY ANALYSIS OF THE PROPOSED FILTER

The analysis of the observability of the proposed estimator’s
states is essential to understand if, given the measurements and
inputs, the estimator can observe the underlying states.

To study the observability of the nonlinear system equa-
tions (18) and (19), we will study the rank of the observability
matrix O(t) [37] of the corresponding LTV system presented
in equations (20) and (21). The observability matrix of a
generic LTV system can be computed as follows [38]:

O(t) =

⎡
⎢⎢⎢⎢⎢⎣

C(t)
C(t)A(t)
C(t)A(t)2

...

C(t)A(t)k−1

⎤
⎥⎥⎥⎥⎥⎦ (49)

where k is the dimension of the corresponding state vector.
Following [37], a system is said to be locally observable, if the
rank(O(t)) = k, for all t .

In the case where a system is not fully observable, it is
important to understand if the system is detectable1 (i.e.
unobserved states are stable) [38]. To check the detectability
of the system, it is required first to isolate unobservable
states, by performing a canonical decomposition of the state-
space equations. To decompose the system, let us assume the
existence of a Lyapunov transformation, characterized by the
transformation matrix P(t) as follows [38]:�

Ao(t) 0
A21(t) Ano(t)

�
= [P(t)A(t) + Ṗ(t)]P−1(t)

where the index [ ]o refers to the observable subsystem, while
the index [ ]no refers to the unobservable subsystem. For P(t)
to qualify as a Lyapunov transformation, P(t) needs to be
nonsingular, P(t) and Ṗ(t) to be continuous, and P(t) and
P−1(t) to be bounded [38]. For simplicity, let us assume that
we can find such a transformation with Ṗ(t) = 0, i.e. with a
constant matrix P .

1Detectability is a dual concept of stabilizability in the controllability
analysis of linear systems
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Following this transformation, the decomposed system can
be written as follows [38]:�

żo(t)
żno(t)

�
=

�
Ao(t) 0
A21(t) Ano(t)

� �
zo(t)
zno(t)

�
+

�
Bo(t)
Bno(t)

�
u(t)

y(t) = �
Co(t) 0

	 �
zo(t)
zno(t)

�
(50)

The submatrices Ao(t), Bo(t), and Co(t) are associated with
the observable transformed state vector zo(t). Note that the
observable subsystem is indeed observable, with rank(Oo(t))
= rank(O(t)), where Oo(t) is the observability matrix of the
system defined by Ao(t) and Co(t).

a) TDEKF observability: Let us first look at the TDEKF
system. To linearize our system, we construct the Jacobian of
the system presented in Eq. (29); the resultant LTV system is
shown below:

AT (t) =

⎡
⎢⎢⎢⎢⎣

03×3 I3 03×3 03×1 03×1

03×3 03×3
W
B R(t) 03×1 03×1

03×3 03×3 �−1 −T −1
propwz −χwz

01×3 01×3 01×3 −T −1
prop −χ

01×3 01×3 01×3 01×1 01×1

⎤
⎥⎥⎥⎥⎦
(51)

BT (t) =

⎡
⎢⎢⎢⎢⎣

04×1 04×3
02×1 02×3

χwz
W
B RT (t)

χ 01×3
01×1 01×3

⎤
⎥⎥⎥⎥⎦ (52)

where the above AT (t) and BT (t) are evaluated while assum-
ing W

B R(t) to be estimated externally.
For the analysis of the TDEKF observability, let us first

look at the case where aT is measured, and construct the
corresponding observation matrix CTaT

as follows:

CTaT
=

⎡
⎣ I3 03×3 03×3 03×1 03×1

03×3 03×3 I3 03×1 03×1
01×3 01×3 01×3 I1 01×1

⎤
⎦ (53)

It is easy to see that the corresponding observability matrix
OTaT

(t) has rank(OTaT
(t)) = 11 for all t; as such the TDEKF

is fully observable in the case where aT is measured.
On the other hand, let us look at the case where aT is

not measurable, and construct the corresponding observation
matrix CT as follows:

CT =
�

I3 03×3 03×3 03×1 03×1
03×3 03×3 I3 03×1 03×1

�
(54)

which yields an observability matrix OT (t) such that
rank(OT (t)) = 10 for all t . Clearly, the system becomes
unobservable if aT is not measurable; in this case, let us
analyze if the system is detectable.

For the LTV system defined by AT (t), BT (t) and CT ,
it is possible to find a Lyapunov transformation satisfying the
previously stated conditions, such as:

zo,i = xT ,i ∀i ∈ {1, . . . , 9} (55)

zo,10 = maT + nuTbias (56)

zno = maT − nuTbias (57)

where m, n ∈ R
+ are free constants that can be chosen

arbitrarily. The above transformation shows that, if aT is not
measurable, the summation of at and uTbias is observable,
while their difference is not. It is easy to see that the eigenvalue
corresponding to the new state zno is zero; as such, the
corresponding state is not stable and the TDEKF system is
not detectable. As zno is not stable, it can jeopardize the
performance of the proposed filter.

From an experimental point of view, we observed that zno

integrates any bias in the system. As the proposed filter is
tuned online, such biases are small, and the corresponding
value of zno remains small when the system runs for few
minutes. However, and to avoid unexpected behavior, in the
case where aT is not measurable, it is convenient to assume
that uTbias = 0, and to incorporate this assumption in the
measurement model. It is easy to see that, following this
assumption, the corresponding TDEKF filter is fully observ-
able for all t .

b) RDEKF observability: Similar to the TDEKF, and to
linearize our RDEKF system, we construct the Jacobian of
the system presented in Eq. (28); the resultant LTV system is
shown below:

AR(t) =

⎡
⎢⎢⎢⎢⎣
Qq(t) Qω(t) 04×2 04×2 04×2
04×2 02×2 I2 02×2 02×2

04×2 02×2 −�̄−1 −T̄ −1
prop −η

04×2 02×2 02×2 −T̄ −1
prop −η

04×2 02×2 02×2 02×2 02×2

⎤
⎥⎥⎥⎥⎦ .

(58)

BR =

⎡
⎢⎢⎢⎢⎣

04×2
02×2
η
η

02×2

⎤
⎥⎥⎥⎥⎦ (59)

where Qq(t) = ∂ q̇(t)
∂q(t)

���
t=tn

, Qω(t) = ∂ q̇(t)
∂Bω̄(t)

���
t=tn

,

η = (T −1
� T̄ −1

prop K̄eq)
T ,

and AR(t) is evaluated while assuming Bωz to be estimated
externally.

Similar to the TDEKF, it is easy to show that the RDEKF
is observable if ᾱt is measurable, while the absence of
such measurements render the system unobservable. In the
case where ᾱt is not measurable, we can find a Lyapunov
transformation similar to the TDEKF system, such as:

zo,i = xR,i ∀i ∈ {1, . . . , 8} (60)

zo,9−10 = mᾱt + nūMbias (61)

zno,1−2 = mᾱt − nūMbias (62)

where m, n ∈ R
+ 2×2 are diagonal matrices that can be

chosen arbitrarily. Similar to the TDEKF, the above transfor-
mation shows that if ᾱt , summation between ᾱt and ūMbias is
observable, while their difference is not. It is easy to see that
the eigenvalues corresponding to zno,1−2 are zero; as such,
the unobservable states of the RDEKF are not stable, and the
corresponding system is not detectable. Similar to the TDEKF,
and to avoid unexpected behavior in the online computation of
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the RDEKF system, in the case where ᾱt is not measurable,
it is convenient to assume ūMbi as = 0. Similar to the TDEKF,
such an assumption can be incorporated in the measurement
model, rendering the ensuing system observable.
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