
IEEE SENSORS JOURNAL, VOL. 22, NO. 14, 15 JULY 2022 14165

Discussion of Novel Filters and Models for
Color Space Conversion

Kamil Lelowicz , Member, IEEE, Michał Jasiński, Member, IEEE,
and Adam Krzysztof Piłat , Member, IEEE

Abstract—In the era of artificial intelligence perceptual
algorithms used in state-of-the-art Advanced Driver Assis-
tance Systems (ADAS), algorithm validation is not an easy
task. To ensure the highest possible safety level of the solu-
tion, the performance of the algorithm must be evaluated
under a variety of challenging conditions. To test the algo-
rithms, simulators are used to emulate the virtual environment
around the car taking into account road traffic, infrastructure
and vehicles dynamics. Sensor models are necessary for
virtual testing to provide required data to ADAS algorithms.
This article introduces the issue of modeling the color filter spaces that are used in the automotive industry. The images
generated by the simulator usually have RGB color. In contrast, the automotive industry uses filters such as RCCC
and RYYCy. In this paper, the methods for transforming color space from RGB to RYYCy are discussed. Three novel
approaches are introduced to solve this problem: analytical, polynomial, and based on a neural network. Moreover,
comparative discussion of the presented solutions is shown and with the set of experiments the conversion accuracy
and execution time of each algorithm are compared. In addition, introduced solution were compared with modified models
that are presented in the literature.

Index Terms— Cameras, virtual validation, mathematical modeling.

I. INTRODUCTION

D IGITAL imaging devices, such as digital cameras, are
used in automotive applications to record the environ-

ment around the vehicle as well as the interior of the cabin.
Output data of such imaging devices is usually fed to neural
networks [1] to extract information from the surrounding envi-
ronment such as positions or trajectories of other vehicles [2],
[3], road markings, traffic signs [4]. These image processing
devices may be a part of Advanced Driver-Assistance Systems
(ADAS), which usually gather and fuse data from multiple
sensors, such as lidars, radars and cameras. ADAS systems
are designed to monitor of car environment, detect potentially
dangerous situation and warn driver about it or even take con-
trol (fully or partially) to avoid accident [5], [6]. It makes the
system immensely complex. Thus, a key challenge is testing

Manuscript received 17 March 2022; accepted 5 April 2022. Date of
publication 10 June 2022; date of current version 14 July 2022. This
work was supported by the Polish Ministry of Science and Higher Educa-
tion carried out in cooperation of Aptiv Services Poland S.A.—Technical
Center Kraków and AGH University of Science and Technology—Faculty
of Electrical Engineering, Automatics, Computer Science and Biomed-
ical Engineering under Project 0014/DW/2018/02. The associate editor
coordinating the review of this article and approving it for publication was
Dr. Daniele Tosi. (Corresponding author: Adam Krzysztof Piłat.)

The authors are with the Department of Automatic Control and Robot-
ics, AGH University of Science and Technology, 30-059 Kraków, Poland
(e-mail: lelowicz@agh.edu.pl; jasinski@agh.edu.pl; ap@agh.edu.pl).

Digital Object Identifier 10.1109/JSEN.2022.3169805

of ADAS functions. To prove the robustness of algorithms
million miles of test drives should be conducted [7]. It is very
costly and time-consuming to drive these miles under real-
world conditions. Virtual simulations provide the ability to
perform these tests, thus virtual testing is a essential topic
in developing the functionality of ADAS algorithms. The
flow chart in Figure 1 depicts virtual test-bench with camera
sensor model and corresponding data flow. The RGB image is
rendered by virtual simulation. Camera sensor model converts
RGB image to raw RCCC (C - clear) or RYYCy (Y - yellow,
Cy - cyan) format and adds distortion to the image to make
it as similar as possible to the image from the real camera.
The output from the sensor model is propagated to the ADAS
module, which controls vehicle functions such as steering and
acceleration. This affect the dynamics of the vehicle. The
adjusted state of the vehicle dynamical model is fed back to
the simulator. This article focuses on the topic of modeling
camera sensors, and in particular on the topic of modeling
RYYCy color filters that are used in the automotive industry.

A. Color Filters Used in an Automotive Application
An image sensor (imager) is a device that captures and

transmits information being later used for image generation.
More specifically, imager transforms the alternating attenua-
tion of light waves into small bursts of current [8]. Two main
types of imagers are available: charge-coupled device (CDD)
and complementary metal–oxide–semiconductor (CMOS).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2041-5943
https://orcid.org/0000-0003-4349-3311

14166 IEEE SENSORS JOURNAL, VOL. 22, NO. 14, 15 JULY 2022

Fig. 1. Data flow in virtual test-bench with camera sensor model.

CCDs and CMOS imagers are quite common, since they
similarly accumulate photo generated charge in each pixel pro-
portionally to the local illumination intensity. However, CDD
sensors allows for creation low-noise images. CMOS sensors
are more susceptible to noise [9]. Neverthless, CDDs consume
much more power than an equivalent CMOS sensor and are
less cost efficient. On top of the image receiving surface of a
given imaging device a mosaic filter, being used for sensing
color information, and microlens array, which condenses the
incident light on each pixel, are placed [10]. Color filters block
the incident light according to the wavelength range so that the
information about the light color is split into a few separately
filtered intensities. The most common one is Bayern filter [11],
which gives information about the intensity of light in red,
green, and blue (RGB) wavelength regions (RGB channels).
However, in automotive industry typical RGB cameras are
rarely used [4], [12], [13].

More often, instead of RGB filtering, automotive cameras
incorporate color arrays with red and triple clear channels
(RCCC). The RCCC sensor is similar to a monochrome
sensor. Thus, is more sensitive and offers better reproduction
of details, but still provides the separate red color infor-
mation [14]. In case of solutions used in the automotive
industry for the environment perception, the grey scale image
interpolated from clear pixels is employed for cars obstacles,
pedestrian and other road users. The color information from
red channel is needed for the detection of traffic lights,
vehicle backlights and traffic signs [15], [16]. However, the
information about the color coming from red channel only is
not sufficient for the correct perception, under all environment
conditions. Therefore, a new RYYCy array color matrix was
invented [12], [13], [17], where RYYCy represent red, double
yellow and cyan channels respectively. Newly proposed filter
was introduced to precisely distinguish between white and
yellow road lines and, at the same time, to maintain the good
performance in low light quality by using wide-bandwidth
yellow filter.

B. Related Work
Algorithms for image analysis are usually designed and

validated using simulation systems that emulate the envi-
ronment surrounding the vehicle and provide image data
representing the field of view captured by the cameras [18].
The most popular simulators are: dSPACE ASM Traffic [19],

CarMaker [20] and open source CARLA [21]. Any image
processing algorithm can be explicitly tested within a given
virtual environment, by providing image data as input and
by analyzing the information extracted from that image. It is
possible to automatically verify the algorithm output by com-
paring it with ground-truth data generated by the simulation
system itself [22], [23].

For reliable testing, the image data provided by virtual
simulations should match the output from real cameras as
close as possible. Physical camera models required Physically
Based Ray Tracing (PBRT) method. Geometric optics is used
to compute how light propagates from a light source to
camera aperture taking into account reflection of objects in
the scene [24] and including effect of camera multi-element
spherical lenses [25]. This allows the calculation of spectral
irradiance that is used to predict an array of pixel responses
using phenomenological model of the image sensor array
[26], [27]. Thus, arbitrary set of color filters can be simulated.

However, in order to test the algorithms in real-time appli-
cations, the image data should be triggered with the same
frequency as the real imaging device, for example a frame rate
of an imaging device configured as video camera [28]. Several
approaches to different fidelity level can be incorporated for
simulation using a number of testing methods: hardware in the
loop (HiL), software in the loop (SiL), processor in the loop
(PiL). Hardware in the loop tests by their nature require real-
time simulation. For SiL tests, the simulation execution time
must meet higher requirements. Thousand of virtual kilometres
are needed to be covered in the shortest possible time to test
each new software version used in cars. Thus, execution time
of the models has to be as low as possible. Accordingly,
there is a need to not only accurately but also very efficiently
reproduce the output of a digital imaging device based on
given image data representing a scene to be captured by the
imaging device.

Accurate physical models of cameras require huge com-
putational effort, which causes limitations in using these
solutions in real-time simulations. Nevertheless, currently all
available simulators are able to generate RGB camera output
using simplified models. Therefore, one way to solve the
problem is to find out, if there is an effective and accurate
method converting an RGB image into a raw RYYCy image.
The conversion of an RGB image to raw RCCC requires a
calculation for the clear channel (C) which can be realised
as a weighted average of the channels R, G, and B. For the
conversion to RYYCy no explicit method is known.

Gossett and Chen [29] proposed conversion from RGB to
RYB space which is similar to RYYCy. Color mixtured in
RGB is handled in additively, in our case the same should
apply to RYYCy. However, in this article RYB is a subtrac-
tive color space, which reflects the behavior of colors when
pigments are mixed. The proposed transformation model uses
trilinear interpolation assuming that eight vertex points of the
transformation are defined. The values of colors in vertex
points were chosen based on Itten’s suggestions [30]. In [31]
Sugita and Takahashi presented a method for interconversion
between RGB and RYB color spaces. In this case RYB is
also modeled as a subtractive color space. The study explicitly

LELOWICZ et al.: DISCUSSION OF NOVEL FILTERS AND MODELS FOR COLOR SPACE CONVERSION 14167

Fig. 2. RGB to RYCy conversion.

presents the equations that allow the transformation of RGB
space to RYB and the inverse transformation.

C. Contribution
The main goal was to develop algorithms for transforming

color space between different filters and comparing them with
each other. The authors introduce an analytical model [32] and
proposed two novel methods to solve the conversion problem
from RGB to RYYCy color space (Figure 2). Additionally,
two methods from the literature [31] and [29] were modified
and adapted to also solve the presented problem. An experi-
mental analysis of the presented solutions was carried out. The
accuracy of the conversions was compared, and the influence
of noise on the obtained results was investigated. Additionally,
the algorithms were implemented on GPU in a form allowing
easy incorporation of the methods into existing simulation
systems and an analysis of their execution times was presented.

II. EXISTENCE OF COLOR CONVERSION SOLUTION

FOR DIFFERENT SETS OF FILTERS

The response of the imager with mosaic filter can be
accurately modeled by a linear system, defined using spectral
sensitivity function of each filter [33]. If the spectral distrib-
ution of light incident on the imager is given by f (λ), where
λ represents wavelength, the responses of the three cones can
be modeled as vector components, given by:

ci =
� λmax

λmin

si (λ) f (λ) dλ i = 1, 2, . . . l (1)

where:
• si denotes the sensitivity of the i -th color filter.
• l denotes number of filters.
• λmax and λmin denote the interval of wavelengths outside

of which all these sensitivities are zero.

Mathematically, the equation 1 describes the inner prod-
uct, defined in Hilbert space, of square integrable functions
L2[λmin ,λmax]. Thus, the filter response corresponds to a pro-
jection of the spectrum onto space spanned by the sensitivity
functions {si (λ)}l

i=1. In the study RGB and RYYCy color
arrays utilized three separate filters. Thus, l = 3 (Figure 3).

Nevertheless, the nature of light is quantified. Consequently,
the equation (1) may be replaced by its sampled counter-
parts [33]. If n uniformly spaced samples are used over the
visible range and [λmin ,λmax] and n � 3 the equation is as

Fig. 3. Example of a mosaic filters.

follows

ci =
n�

k=1

si (λi) f (λi)�λ = sT
i f i = 1, 2, 3 (2)

where:
• �λ is the wavelength sampling interval.
• {λ}n

i=1 −1 are uniformly spaced wavelengths covering the
visible region of spectrum and λi = λ0 + i�λ.

• f = [f (λ0), f (λ1), . . . , f (λn−1)]T is n × 1 vector of
samples of f (λ).

• si = �λ[si (λ0), si (λ1), . . . , si (λn−1)] is n × 1 vector of
samples of si (λ) scaled by the interval �λ.

For simplicity of notation, the equation (2) can be rewritten
as:

c = ST f (3)

where:
• c = [c1, c2, c3]T .
• S = [s1, s2, s3] is the n × 3 matrix with filters sensitivity

vectors as its columns.

A. Proposition
For the same spectral distribution of light incident on the

imager and two different sets of filters, one can get:
c1 = ST

1 f (4)

c2 = ST
2 f (5)

To find a function such as c1 = ST
1 S+

2 c2, converting color
from one filter space to another, one has to find matrix
S+

2 , for which S=
2 ST

2 . Such a matrix S+
2 exists only when

its transposition, ST
2 , has linearly independent columns [34].

Unfortunately, this condition is not met, since matrix ST
2 is

3 × n where n � 3, and hence matrix S+
2 does not exist.

Instead, for a given spectral distribution f j , one can solve the
following equation:

P j c2 = f j (6)

then the color conversion equation is defined as follows:
c1 = ST

1 P j c2 (7)

Thus, for each spectral distribution there is an equation that
is able to convert c1 to c2. For different spectral distribution
equation (6) in the following form can be transformed into:�

P j + �P
�
(c2 + �c) = f j + �f (8)

14168 IEEE SENSORS JOURNAL, VOL. 22, NO. 14, 15 JULY 2022

Fig. 4. The amount of red, green and blue colors as a functions of light
wavelengths in the RGB color filter.

from equation (3), one can get:
c + �c = ST (f + �f) (9)

thus:
�c = ST �f (10)

after substitution (10) to (8) and simplifications one can get:
�Pc2 =

�
I − �P j + �P

�
ST

2

�
�f (11)

It is worth noticing that for small �f in Frobenius norm sense,
�P can be also small. Consequently, for small deviations of
spectral distribution f changes in matrix P should be small as
well. Hence, there is a possibility that exists a model in the
form of:

c1 = j (f)c2 (12)

which can be presented in a more general form:
c1 = g(c2) (13)

where g : R
3 → R

3 is a continuous function. However,
two spectral distributions can produce the same vector c.
Consequently, the general solution for this particular problem
does not exist, due to the ambiguity of the transformation.

III. RESEARCH

A. Analytical Model - RGB2RYYCyAna
The inputs to the algorithm are [32]:

• sRGB image or sRGB stream from virtual simulation.
• Camera spectral sensitivity charts, each describing the

relative amount of light detected by a given color filter
as a function of light wavelengths (Figure 4).

As mentioned above, the algorithm solves the problem of
converting sRGB color space into some custom color space,
i.e. RCCC or RYYCy. To achieve this goal, the sRGB color
space is converted into CIE 1931 xyY color space [35]
(Figure 5). Then, the CIE xy chromacity diagram and the
dominant wavelength definition are used in order to estimate
the light wavelength of the given sRGB color (Figure 6).
After the wavelength recovery, the camera spectral sensitivity
functions are used to get the amount of primary colors of the
output color filter. Finally, in order to be able to display the

Fig. 5. Chromacity diagram with the sRGB gamut triangle. Own
elaboration based on [36], [37].

output image in the simulation environment, the RGB channels
used in simulation are adjusted to the amount of primary colors
of the output color filter.

The algorithm consists of multiple steps, leading to the con-
verted image, and incorporate ideas that improve the quality
of the conversion.

1) Convert sRGB Color Space Into CIE 1931 xyY Color
Space: In this step, first an sRGB triple into CIE 1931 XYZ
color space is converted. For this purpose, a well-known
matrix multiplication of the linear sRGB values is used. The
numerical values below match those in the official sRGB
specification [36]:⎡

⎣X
Y
Z

⎤
⎦ =

⎡
⎣0.4124 0.3576 0.1805

0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

⎤
⎦
⎡
⎣Rsrgb

Gsrgb

Bsrgb

⎤
⎦ (14)

Linear sRGB values can be obtained as follows:⎧⎪⎪⎨
⎪⎪⎩

Clinear = Csrgb

12.92
for Csrgb ≤ 0.04045

Clinear =
�

Csrgb + α

1 + α

�2.4

for Csrgb > 0.04045
(15)

where α = 0.055 and C is either R, G or B and it has
value between 0 and 1. Next, the CIE 1931 XYZ color space
is converted into CIE 1931 xyY color space, where upper
case Y is the parameter representing luminance, which is
constant during conversion, and subsequently lower case x and
y represent chromacity coordinates easily calculated from X ,
Y and Z :

x = X

X + Y + Z
(16)

y = Y

X + Y + Z
(17)

2) Recover the Wavelength Value of the Input Color: In the
wavelength recovery process, a key role is played by the CIE
1931 xy chromacity diagram shown in Figure 5.

LELOWICZ et al.: DISCUSSION OF NOVEL FILTERS AND MODELS FOR COLOR SPACE CONVERSION 14169

Fig. 6. Dominant wavelength and complementary wavelength visuali-
sation.

Several important remarks have to be mentioned about this
diagram:

• All colors from the sRGB color space lie inside the black
dashed triangle.

• The locus of the points that define horseshoe-shaped
region are the chromacity coordinates for pure spectral
colors and each spectral color corresponds to a single
wavelength of the visible light.

• Coordinates of the points on the horseshoe-shaped region
and wavelengths corresponding to that points are tabu-
lated with 1 nm wavelength interval.

• Colors that lie on the line of purples are non-spectral so
no corresponding wavelength exist for these colors.

• Colors that lie inside the horseshoe-shaped region are the
mixture of the pure spectral colors.

The consequence of the above mentioned facts is that colors
from sRGB space do not have dominant wavelengths corre-
sponding to them. However, some of the colors from sRGB can
be assigned to a proper dominant wavelength value. In order to
get a dominant wavelength value, the following steps should
be taken (Figure 6):

• Create a line between the point corresponding to a given
color and the D65 white point.

• Find the intersection point of the created line with the
horseshoe-shaped region.

• Take the xy coordinates of the found point being the
coordinates of the pure spectral color corresponding to
the given color.

• Read the wavelength value for the pure spectral color
based on its xy coordinates, which equals to the dominant
wavelength value.

Unfortunately, not for all colors (sRGB triples) the dominant
wavelength is explicitly estimated. In fact, there are three
different cases of the wavelength recovery process discussed
below:

• If the color is in grayscale range, with a given threshold
and tolerance, namely, if all elements of the given sRGB

triple are greater than 130 and the difference between all
the sRGB triple values and its median is less than 50,
the dominant wavelength is not calculated, assuming that
all RGB channels take values between 0 and 255. The
closer the colour is to the D65 point, the influence of the
dominant wavelength is less.. In this case wavelengths of
other lengths also have a large influence on the resulting
colour shade. In other words, for grey tones it is difficult
to find the dominant wavelenght.

• If the color is not in grayscale range then:
– If xy coordinates of the color lie inside the trian-

gle limited by the two green dashed lines and the
magenta line, then the dominant wavelength for that
color does not exist and the color is assumed to have
two different wavelength values:λred = 612 nm (the
dominant wavelength for sRGB red color) and λblue

= 449 nm (the dominant wavelength for sRGB blue
color). These are the two closest colours which have
the dominant length.

– Otherwise the dominant wavelength for that color is
calculated as described above.

3) Calculate Primary Colors Values of the Output Color Filter:
In this step, the camera spectral sensitivity functions is used
for the purpose of primary colors values extraction. In case of
the RYYCy color filter three different functions exist, one for
each primary color (red, yellow and cyan). In this case, there
are also three different cases of how to calculate primary colors
values.

When the input color (sRGB triple) is classified as
grayscale, then spectral sensitivity functions cannot be used,
since no wavelength can be assigned to that color and each
channel of the output color filter has the following value:

C = Y (18)

where C is the value of the given primary color of the output
color filter and Y is the luminancy corresponding to the input
color.

If the dominant wavelength for the input color exists, then
then the value of each primary color can be calculated as
follows:

C = css(λ)Y (19)

where css(·) is spectral sensitivity function corresponding to
that color and λ is dominant wavelength value calculated for
the input color.

If the input color does not have its dominant wavelength,
then each primary color value is calculated as a weighted
sum of the two spectral sensitivity functions values calculated
from sRGB red wavelength value (λred) and from sRGB blue
wavelength value (λblue).

C = (css(λred)wred + css(λblue)wblue) Y (20)

where weights wred and wblue are calculated from the sigmoid
functions. This allows to mix colours and achieve the desired
shade of colour using the two closest colours that have the
dominant wavelength.

14170 IEEE SENSORS JOURNAL, VOL. 22, NO. 14, 15 JULY 2022

Fig. 7. Analytical model flowchart.

4) Increasing the Luminance of Each Primary Color: In this
step the luminance of the primary colors that were calculated
for the non-grayscale input colors is increased with the gain
parameter. The values of gain parameters are chosen separately
for each primary color in the process of optimization that is
minimizing the error between the image in virtual simulation
and the image from real camera in which the custom color
filter is used. Therefore, the gain values highly depend on the
type of camera that is simulated. Figure 7 present flowchart
of the algorithm.

B. Data Sets
The data set consists of about 80 pictures of two color charts

under different lighting conditions. Each color chart consists
of 100 different colors, 10 for each row. To change lighting
conditions RGBW diod lamp was used as the only light source.
The number of images taken was the result of trying to get
the best possible coverage for the RGB data. Both RGB and
RYYCy cameras were placed next to each other, as close as
possible, that the light reflected from the colour chart falls

Fig. 8. Experimental setup.

at the closest possible angle to the both cameras, in order
to minimise differences in the perception of light. The light
source has been positioned at such a distance that uniform
illumination is achieved on the colour chart. The distance from
cameras to the testchart was approximately 1.5m, to ensure
that the board is fully visible to both cameras and cameras do
not occlude the light source.

Figure 8 presents an experimental setup. From each color
in the chart a 5 by 5 pixel square was taken. Thus, each color
is represented by 25 samples. This allows for the estimation of
the noise present in the data, assuming that the surroundings
of a pixel on a flat colour should be homogeneous. In order
to avoid any non-linearities related to the image processing,
the data read directly from the 12-bit imager were used. Data
were normalised to values from zero to one, no other data
processing steps were performed. Gathered data are visualised
in Figures 11, 12 and 13.

C. Neural Network Black-Box Approach -
RGB2RYYCyNN

Based on the deliberations presented in II, it is assumed that
a function which can transform one color space can exist in
the form of:

c1 = g(c2) (21)

Large gathered data set and the assumption of function conti-
nuity, make it possible to use neural networks to solve this
problem. The effectiveness of the use of neural networks
in the approximation of functions has been comprehensive
justified over the last three decades [38]. Works on universal
approximations theorem [39], [40] indicate that a continuous
function defined on bounded domain can be approximated by
a large two-layer neural network. Recently, there has been
interest in understanding the approximation capabilities of
deep networks [41]. The theoretical benefits of using deeper
neural network for specific functions approximation were
demonstrated in [42]. The development of the neural network
was based on Residual neural network (ResNet). The core
idea of ResNet is “identity shortcut connection” that skips
one or more layers. Skipping over layers is motivated by
the possibility of avoiding the problem related to vanishing
gradients. The author’s [43] argue that the use of more layers
should not degrade network performance because the use of

LELOWICZ et al.: DISCUSSION OF NOVEL FILTERS AND MODELS FOR COLOR SPACE CONVERSION 14171

Fig. 9. Neural network architecture.

identity mapping upon the current network, and the resulting
architecture would perform the similarly.

The proposed neural network architecture is a dense
feed-forward neural network f (x, θ) (Figure 9). The size and
dimensions of the network were selected empirically on the
basis of studies carried out. The best results were obtained with
9-layer networks. A larger number of layers caused a signifi-
cant overfitting of the network. A smaller number of layers did
not allow to obtain good results using additional lottery ticket
approach. The first 8 layers are regular densely-connected
neural network layers. Additionally, each layer is performing
batch normalization. The activation function is leaky rectified
linear unit (Leaky ReLu):

f (x) =
�

x if x > 0,

0.25x otherwise.
(22)

In practice, networks with ReLu functions tend to show better
convergence performance than sigmoid functions and resolves
issues with vanishing gradient [44]. The last layer differs in
the activation function, which is sigmoid function. The loss
function was defined as L1-norm.

To overcome overfitting problem two approaches were
used. In the first one, together with samples from data set,
an artificially created image was processed by the network.
The input image is shown in Figure 10a. The example of
image processed by neural network is shown in Figure 10a.
For each batch the gradient of output image was computed.
The image gradient was defined as a vector of its partials [45]:

∇ f =
�

gx

gy

�
=
�

∂ f
∂x
∂ f
∂y

�
(23)

where ∂ f
∂x is the derivative with respect to x and ∂ f

∂y is the
derivative with respect to y. These were calculated using
1-dimensional convolution operation ∗:

∂ f

∂x
= �−1 0 1

� ∗ A (24)

∂ f

∂y
=
⎡
⎣−1

0
1

⎤
⎦ ∗ A (25)

Subsequently, for each channel the sum of gradient magnitude
were calculated:

gi =
H�

k=1

W�
j=0

�
gx(k, j)2 + gy(k, j)2 for i = 1, 2, 3 (26)

Fig. 10. Images used for regularization.

where H and W are image height and width respec-
tively. On this basis, a following component was added to
the cost function in order to achieve smoothness of color
transformation:

f = K min{0,

�
3�

i=1

gi

�
− th} (27)

where th was estimated from the sum of gradient of input
image and K was arbitrary parameter adjusted during training.

Also, the lottery ticket pruning procedure was used to
prevent overfitting and reach higher test accuracy. The results
presented in [46] show that for fully connected feed-forward
networks winning lottery ticket can achieve better results
on test dataset. Densely connected neural networks contain

14172 IEEE SENSORS JOURNAL, VOL. 22, NO. 14, 15 JULY 2022

approximately 118000 trainable parameters at the start of
learning. During the lottery ticket identification only weights
from biases and dense layer kernels were pruned. Weights
associated with batch normalization layers were not pruned.
Thus, approximately around 116500 parameters were taken
into account in the lottery ticket procedure. Identification
of the winning ticket was made by training the network
and pruning its smallest-magnitude weights. The incorporated
pruning scheme was as follows:

1) Create an empty mask m0 and randomly initialize a
neural network f (x, θ0).

2) Train the network for k iterations, yielding parameters
θ j .

3) Prune p% of smallest-magnitude the parameters in
mi−1 � θ0, creating a mask mi .

4) Reset the remaining parameters to their values in θ0.
5) Repeat points 2-4 i -times, creating the final mask m and

the winning ticket f (x, m � θ0).
6) Continue standard approach training of the winning

ticket neural network f (x, m � θ0).

The final network was trimmed 12 times, each time 15%
of remaining weights were pruned. This process leads to
only 14% of initial dense layer kernels and biases weights
have magnitude different from zero. More aggressive pruning
during a single iteration resulted in worse results. A less
aggressive approach did not eliminate the problem of over-
fitting. Increasing the number of iterations caused the network
to become too small, resulting in a underfitting problem.

D. Polynomial Model - RGB2RYYCyPoly
According to equation (7) for a given spectral distribution

conversion from c1 to c2 is linear. Thus, each channel is
represented as linear combination of color triplets, which can
be presented as follows:

yi =
3�

j=1

αi j x j for i = 1, 2, 3 (28)

However, for different spectral distributions and therefore also
for different x the coefficients a is distinct. Nevertheless,
in line with the considerations presented in section II the
conversion function should be continuous. Consequently, the
following modification of equation (28) was proposed:

yi = min
�

1, yi0 +
3�

j=1

γi j x
βi j
j

�
for i = 1, 2, 3 (29)

Furthermore, account has been taken of the saturation that
occurs in the actual data. The purpose of these modifications
is to improve model matching to gathered data during opti-
mization.

From the relationship between RYYCy and RGB filters, one
can conclude that yellow channel (Y) should depend mostly
on red and green channel from RGB filters. Similarly, cyan
in the real world can arise from a mixture of blue and green.
Additionally, the conversion of red channel includes a possible
influence of green filter. This leads to the modification of

Fig. 11. Red surface.

equation (29) for color triplets:
y1(x1, x2) = min

�
1, y10 + γ11xβ11

1 + γ12xβ12
2

�
(30)

y2(x1, x2) = min
�
1, y20 + γ21xβ21

1 + γ22xβ22
2

�
(31)

y3(x2, x3) = min
�
1, y20 + γ32xβ32

2 + γ33xβ33
3

�
(32)

Reducing the size of the problem should allow for better
generalization of the model. It also helps to mitigate the
problem of overfitting to data noise. Furthermore, the idea
of separating variables for individual channels allows for data
visualization.

Figure 11 represents the dependence of the R-channel data
in the RYYCy color filter array depending on the R-channel
and G-channel data in the RGB filter. Moreover, the figure
also shows the plane of the best fit for function 30. All plane
functions (30-32) were determined by numerical optimization.
The loss function was defined separately for each conversion
as follows:

lossi =
N�

n=1

|yi − dn,i | for i = 1, 2, 3 (33)

where:
• N is number of data samples.
• dn,i are RYYCy data for each channel.
• yi is one of the functions (30-32).

Analysing the graph, the polynomial model allows for good
approximation for the red channel. This is mainly related to the
fact that one red filter is transformed into another red filter with
different sensitivity. Nevertheless, the graph shows a slight
influence of the green channel.

In the case of yellow channels, it is a mixture of red and
green channels what is presented in Figure 12. Similarly, for
cyan channel, which is dependent on data from blue and green
filters. The flattening visible in both graphs 12 and 13 is due
to the fact that the RYYCy filter transmits more light than
the RGB filter. This causes that for certain conditions, the
images from the RYYCy camera are overexposed. For the
collected data, there is no noticeable transformation ambiguity
effect resulting from the theoretical considerations presented
in section II. In particular, there is no visible effect of two
significantly different RYYCy colors corresponding to one

LELOWICZ et al.: DISCUSSION OF NOVEL FILTERS AND MODELS FOR COLOR SPACE CONVERSION 14173

Fig. 12. Yellow surface.

Fig. 13. Cyan surface.

RGB color. Thus, the approximation of color conversion using
polynomial functions is justified.

E. RGB2RYBbyGC
Gosset and Chen [29] claimed that definition of a rigorous

mathematical conversion from RGB to RYB would be difficult.
Instead, they stated that a reasonable approximation my be
obtained by defining a cube with each axis representing either
Red, Green or Blue. By defining appropriate RYB values
for each of the eight colors represented by the corners of
the cube the trilinear interpolation can be used to obtain
suitable RYB values for any colors defined in RGB. In our
case, the conversion is from RGB to RYYCy. Thus, one need
to define the RYYCy values for the corners of the cube.
To achieve this, numerical optimization was used. The RYYCy
values for the corners of the cube were optimized such that
the trilinear interpolation minimizes the error defined by the
objective function 33. Additionally, the values from trilinear
approximation are saturated to be in range from 0 to 1.
Obtained interpolation cube is shown in Figure 14.

F. RGB2RYBbyST
Model presented in [31] transforms RGB addtive color

model to the RYB subtractive color model. The model was
modified to transform to a color space that is additive.
Thus, the RYB space resembles RYYCy. The resulting model

Fig. 14. RGB interpolation cube. For each corner of the RGB cube,
RYYCy coordinates are established using numerical optimization. The
trilinear interpolation results in suitable RYYCy values for any RGB color
defined inside the cube.

equations are as follows:
y �

1 = x1 − min
�
x1, x2

�
(34)

y �
2 = x2 + min

�
x1, x2

�
2

(35)

y �
3 = x2 + x3 − min

�
x1, x2

�
2

(36)

(37)

Equation normalization:
yi = y �

i

n
f or i = 1, 2, 3 (38)

Here, n is calculated as follows:
n = max

�
x1, x2, x3

�
max
�

y �
1, y �

2, y �
3

� (39)

where:
• xi are respectively R, G, B
• yi are respectively R, Y, B

G. Limitations
All methods presented are pixel based. They do not use

contextual information that may be present in the image.
It can lead i.e. to odd edge discolouration appearing on
the image. Furthermore, RGB2RYYCyAna and modified
RGB2RYBbyST are not data-driven, which means that effects
that are not modelled by these colour transformation algo-
rithms are likely to cause larger errors.

IV. DISCUSSION

The discussion focuses on comparing presented models..
The considerations take into account key quality indicators
and execution times of the algorithms.

A. KPIs
The following two functions were used to calculate the

quality indicators:

J1 =
N�

n=1

3�
i=1

|yn,i − dn,i | (40)

J2 =
√

3

3

N�
n=1

 !!" 3�
i=1

�
yn,i − dn,i

�
(41)

14174 IEEE SENSORS JOURNAL, VOL. 22, NO. 14, 15 JULY 2022

TABLE I
NORMALIZED L2-NORM

where:
• N is number of test data samples.
• dn,i are RYYCy data for each channel.
• yn,i are RYYCy data obtained from models.

The first metric is a mean absolute difference for all channels.
The second one is using L2-norm to calculate distance and is
also normalized to give output from range 0 to 1.

B. Results
Results for KPI J2 are presented in Table I. The best results

were obtained for the Neural Network model. The error rate
was approximately 2.3%. In the case of RGB2RYYCyPoly
and modified RGB2RYBbyGC the obtained results were two
times worse. Nevertheless, the visual differences between cap-
tured RGB images converted to RYYCy using these methods
were hardly noticeable. Comparing the presented performance
indicators for the polynomial model and the neural network
one can see that in both cases the error had a very simi-
lar distribution with a heavy tail. The significant difference
between the median and the mean value and the relatively
large 95th percentile value that leads to heavy tail distributions
was most likely the result of presence of a significant amount
of noise in the data. The worst results were obtained for
the RGB2RYYCyAna and modified RGB2RYBbyST. There
were large discrepancies between theoretical assumptions and
the actual analytical model performance. The use of quantum
efficiency data describing filters characteristics and assumption
made about dominant length estimation did not allow for good
results to be obtained. The rigidly defined equations in the
case of the modified RGB2RYBbyST model do not correctly
represent the transformation either.

Table II present results for J1 KPI. As in the previous
case, the best results were obtained for the neural network.
The existence of large errors in the RGB2RYYCyAna and
Modified RGB2RYBbyST makes it inapplicable for practical
use. In the case of a RGB2RYYCyPoly, RGB2RYYCyNN
the best results were obtained for the red channel. They
were about 15% better in both cases compared to the best
of the other channels. This was mainly due to the presence
of the red filter in both color filter arrays. However, the
errors were not so significantly different from the other filters.
This leads to the conclusion that either the shape of the
red filters was noticeably different or there was significant
noise in the data. The RGB2RYYCyPoly gives better results
for red and blue filters than the modified RGB2RYBbyGC
model. For the yellow filter, RGB2RYBbyGC peforms slightly
better than RGB2RYYCyPoly. However, it should be noted
that model RGB2RYYCyPoly uses only 15 parameters while
model RGB2RYBbyGC uses 24.

TABLE II
ABSOLUTE DIFFERENCE

TABLE III
NOISE

Noise sources in the raw data from imager are mainly
due to the existence of dark current. In order to estimate
the level of noise in the images, the collected data presented
in section III-B was used. Each colour is represented by
25 samples. The reference value from which the noise was
calculated was the average of these samples. In order to be
comparable with the quality indicators presented above, the
noise estimation was performed using the previously used
function J1 (40). Table III shows noise estimate for the data
used for models optimization. An estimate of noise in the data
that was processed by the models is also presented. The noise
levels for both RGB and RYYCy are about twice as low as
the errors obtained for the best model. However, it should be
noted that the noise in these data affected the error of the
methods simultaneously from two sides. Together with input
data the noise propagated to the output of the models where it
was compared to data that also had noise. As it can be seen, all
the models presented did not amplify the amount of noise in
the output data. By comparing the indicators presented, it can
be concluded that noise retained its distribution after passing
through the models.

LELOWICZ et al.: DISCUSSION OF NOVEL FILTERS AND MODELS FOR COLOR SPACE CONVERSION 14175

TABLE IV
ALGORITHMS RUNNING TIME

Based on the observations, one can try to estimate that the
maximum effect of noise on the error as the sum of the noise
present in the RGB and RYYCy data. Thus, the contribution
of noise to the error of the methods can be estimated up to a
maximum of 2%. Consequently, the data obtained by the use
of a neural network allows for a very accurate representation
of the transformation because their error is only slightly bigger
than noise power. The other source of error may be due to the
existence of multiple solutions for a single colour as shown
in section II. This is evidenced primarily by the large values
for the 95th percentile for the neural network and polynomial
model presented in Tables II and I.

Since the data set was chosen to represent the whole space,
it can be concluded that the compared methods do not amplify
noise in the data. On the basis of the experimental data one can
find that the partial derivatives of the presented colour space
transform functions are limited. In practical applications, the
data to be transformed will come from a virtual simulation and
will contain no noise. Consequently, the property of not ampli-
fying noise is not so important for the colour transformation
model.

C. Algorithms Running Time
In computer memory each pixel is represented by a finite

number of bits. Thus, the colour conversion problem is dis-
crete and finite which allows to present above algorithms in
the form of lookup table. Assuming 24-bit color depth an
implementation in CUDA leverages of lookup tables technique
was prepared. For each algorithm lookup tables of the pre-
cisely same size were generated. During the test fifty images
with resolution 3840 × 2160 were processed by algorithm
implemented in CUDA on Nvidia RTX2080Ti. Algorithms
conversion time are presented in Table IV.

No differences were observed between the tables created
by the different algorithms due to the fact that the whole time
complexity of the algorithm depends on memory access, not
on calculations. Experiments show that the algorithm allows
to process images with resolution 3840×2160 with frame rate
at up to 200Hz.

V. SUMMARY

The publication presents a theoretical analysis of the color
transformation from one color space to another. The analysis
showed that in general case the task did not have a solution, but
there may be methods to obtain a satisfactory approximation
of the color transformation.

RGB2RYBAna and modified RGB2RYBbyST approaches
obtained the worst quality indicators of all. Additionally for

RGB2RYBAna model additional knowledge of camera spec-
tral sensitivity for specific filters is required to apply these
method. It is not possible to obtain results comparable to the
other models without additional optimization of the model
hyperparameters in order to account for external influences
such as lens effects and color filter imperfections.

In the case of the RGB2RYYCyPoly, RGB2RYYCyNN
and modified RGB2RYBbyGC better results were obtained.
Polynomial and model RGB2RYBbyGC allowed for a signif-
icant reduction of parameters compared to the neural network
and guaranteed smoothness of the solution, which was a
big problem in the black box approach. In addition, for
model RGB2RYYCyPoly the relationship between RGB and
RYYCy filters was taken into account, which reduced the
number of parameters. Model RGB2RYYCyPoly uses 42%
less parameters than model RGB2RYBbyGC.

The actual implementation of the transformation is done
form a finite discrete space to another finite discrete space.
Thus, the look-up table approach can be used to accelerate
computation speed for all presented methods.

REFERENCES

[1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” J. Field Robot.,
vol. 37, no. 3, pp. 362–386, Apr. 2020.

[2] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3D object detection
and tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 11784–11793.

[3] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“PointPillars: Fast encoders for object detection from point clouds,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 12689–12697.

[4] H.-W. Huang, C.-R. Lee, and H.-P. Lin, “Nighttime vehicle detection and
tracking base on spatiotemporal analysis using RCCC sensor,” in Proc.
IEEE 9th Int. Conf. Humanoid, Nanotechnol., Inf. Technol., Commun.
Control, Environ. Manage. (HNICEM), Dec. 2017, pp. 1–5.

[5] B. Kiran et al., “Deep reinforcement learning for autonomous driving:
A survey,” IEEE Trans. Intell. Transp. Syst., early access, Feb. 9, 2021,
doi: 10.1109/TITS.2021.3054625.

[6] L. Liu et al., “Computing systems for autonomous driving: State
of the art and challenges,” IEEE Internet Things J., vol. 8, no. 8,
pp. 6469–6486, Dec. 2020.

[7] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transp. Res. A, Policy Pract., vol. 94, pp. 182–193, Dec. 2016.

[8] R. F. Lyon, The Optical Mouse: Early Biomimetic Embedded Vision.
London, U.K.: Springer, 2014, pp. 3–22.

[9] E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode
for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc.,
vol. 2, no. 3, pp. 33–43, May 2014.

[10] N. Junichi, Image Sensors and Signal Processing for Digital Still
Cameras. Boca Raton, FL, USA: CRC Press, 2005.

[11] Z. Liu, T. Lian, J. Farrell, and B. A. Wandell, “Neural network
generalization: The impact of camera parameters,” IEEE Access, vol. 8,
pp. 10443–10454, 2020.

[12] K. Weikl, D. Schroeder, and W. Stechele, “Optimization of automotive
color filter arrays for traffic light color separation,” in Proc. Color Imag.
Conf., 2020, pp. 288–292.

[13] P. Pawłowski, K. Piniarski, and A. Dąbrowski, “Highly efficient lossless
coding for high dynamic range red, clear, clear, clear image sensors,”
Sensors, vol. 21, no. 2, p. 653, Jan. 2021.

[14] G. Karanam. Interfacing Red/Clear Sensors to ADSP-BF609�Blackfin
Processors. Analog Devices, Inc. Accessed: Jul. 15, 2021.
[Online]. Available: https://www.analog.com/media/en/technical-
documentation/application-notes/ee358.pdf

[15] R. Jenkin and P. Kanel, “Fundamental imaging system analysis for
autonomous vehicles,” Electron. Imag., vol. 2018, pp. 1–10, Jan. 2018.

[16] H.-P. Lin, P.-H. Liao, and Y.-L. Chang, “Long-distance vehicle detection
algorithm at night for driving assistance,” in Proc. 3rd IEEE Int. Conf.
Intell. Transp. Eng. (ICITE), Sep. 2018, pp. 296–300.

http://dx.doi.org/10.1109/TITS.2021.3054625

14176 IEEE SENSORS JOURNAL, VOL. 22, NO. 14, 15 JULY 2022

[17] O. Eytan and E. Belman, “High-resolution automotive lens and sensor,”
U.S. Patent 2019/0 377 110 A1, Dec. 12, 2019.

[18] T. Sulkowski, P. Bugiel, and J. Izydorczyk, “In search of the ultimate
autonomous driving simulator,” in Proc. Int. Conf. Signals Electron. Syst.
(ICSES), Sep. 2018, pp. 252–256.

[19] dSPACE. ASM Traffic. Accessed: Jun. 15, 2021. [Online]. Available:
https://www.dspace.com/en/pub/home.cfm

[20] PGAutomotive. CarMaker. Accessed: Jun. 15, 2021. [Online].
Available: https://ipg-automotive.com/products-services/simulation-
software/carmaker/

[21] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. 1st Annu. Conf.
Robot Learn., 2017, pp. 1–16.

[22] N. Hirsenkorn, T. Hanke, A. Rauch, B. Dehlink, R. H. Rasshofer, and
E. Biebl, “Virtual sensor models for real-time applications,” Adv. Radio
Sci., vol. 14, pp. 31–37, Sep. 2016.

[23] M. Jasinski, “A generic validation scheme for real-time capable auto-
motive radar sensor models integrated into an autonomous driving
simulator,” in Proc. 24th Int. Conf. Methods Models Autom. Robot.
(MMAR), Aug. 2019, pp. 612–617.

[24] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering:
From Theory to Implementation, 3rd ed. San Francisco, CA, USA:
Morgan Kaufmann, 2016.

[25] A. L. Lin, “He computational image systems evaluation toolbox,”
Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA,
USA, 2015.

[26] H. Blasinski, J. Farrell, T. Lian, Z. Liu, and B. Wandell, “Optimizing
image acquisition systems for autonomous driving,” Electron. Imag.,
vol. 30, no. 5, pp. 161-1–161-7, Jan. 2018.

[27] Z. Liu et al., “A system for generating complex physically accurate
sensor images for automotive applications, Electron. Imag., vol. 2019,
no. 15, pp. 1–5, Jan. 2019.

[28] S. Schmidt, B. Schlager, S. Muckenhuber, and R. Stark, “Configurable
sensor model architecture for the development of automated driving
systems,” Sensors, vol. 21, no. 14, p. 4687, 2021.

[29] N. Gossett and B. Chen, “Paint inspired color mixing and compositing
for visualization,” in Proc. IEEE Symp. Inf. Vis., Oct. 2004, pp. 113–118.

[30] J. Itten, The Art of Color: The Subjective Experience and Objective
Rationale of Color. New York, NY, USA: Van Nostrand Reinhold, 1973.

[31] J. Sugita and T. Takahashi, “Paint-like compositing based on RYB color
model,” in Proc. ACM SIGGRAPH Posters, New York, NY, USA, 2015,
p. 1.

[32] M. Piatek and M. Jasinski, “Method for simulating a digital imaging
device,” Patent EP3 709 623 A1, Sep. 16, 2020.

[33] Z. Sadeghipoor, Y. M. Lu, and S. Süsstrunk, “Optimum spectral sensi-
tivity functions for single sensor color imaging,” Proc. SPIE, vol. 8299,
pp. 26–39, Jan. 2012.

[34] R. Penrose, “A generalized inverse for matrices,” Math. Proc. Cambridge
Phil. Soc., vol. 51, no. 3, pp. 406–413, 1955.

[35] A. D. Broadbent, “A critical review of the development of the CIE1931
RGB color-matching functions,” Color Res. Appl., vol. 29, no. 4,
pp. 267–272, 2004.

[36] Multimedia Systems and Equipment—Colour Measurement and
Management—Part 2–1: Colour Management—Default RGB Colour
Space—SRGB, IEC Central Secretary, International Electrotechnical
Commission, Geneva, CH, Standard IEC 61966-2-1:1999, 1999.

[37] E. C. Carter, Y. Ohno, M. R. Pointer, A. R. Robertson, R. Seve,
J. D. Schanda, K. Witt, “Colorimetry,” Int. Commission Illumination,
Vienna, Austria, Tech. Rep. CIE 15:2004, 2004. [Online]. Available:
https://www.cdvplus.cz/file/3-publikace-cie15-2004/

[38] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, Dec. 1989.

[39] J. Park and I. W. Sandberg, “Approximation and radial-basis-function
networks,” Neural Comput., vol. 5, no. 2, pp. 305–316, Mar. 1993.

[40] A. R. Barron, “Universal approximation bounds for superpositions
of a sigmoidal function,” IEEE Trans. Inf. Theory, vol. 39, no. 3,
pp. 930–945, May 1993.

[41] S. Liang and R. Srikant, “Why deep neural networks for function approx-
imation?” in Proc. 5th Int. Conf. Learn. Represent., 2017, pp. 1–17.

[42] M. Telgarsky, “Representation benefits of deep feedforward networks,”
2015, arXiv:1509.08101.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, vol. 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Ed. Red Hook, NY, USA: Curran
Associates, 2012.

[45] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

[46] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” 2019, arXiv:1803.03635.

Kamil Lelowicz (Member, IEEE) received the
master’s degree in automatic control and robot-
ics. He is pursuing the Ph.D. degree with the
AGH University of Science and Technology, Cra-
cow, Poland. He is also engaged in commercial
research and development and product devel-
opment activities of advanced automotive driver
assistance system and cabin monitoring system.
His research interests include modeling and sim-
ulation, computer vision, and machine learning.
Mr. Lelowicz is a member of Polish Chapter of

the IEEE Vehicular Technology Society.

Michał Jasiński (Member, IEEE) received the
master’s degree in automatic control and robot-
ics. He is pursuing the Ph.D. degree with the AGH
University of Science and Technology, Cracow,
Poland. He works in cooperation with automotive
industry being involved in research and devel-
opment projects for advanced safety systems.
His research is mostly focused on sensor mod-
eling, virtual validation, and machine learning.
Mr. Jasiński is a member of a Polish Chapter of
the IEEE Vehicular Technology Society.

Adam Krzysztof Piłat (Member, IEEE) received
the M.Sc. degree in 1996, the Ph.D. degree in
2002, and the D.Sc. degree in 2014. He is a
Professor with the AGH University of Science
and Technology. He is currently working with the
Department of Automatic Control and Robotics
as a Researcher, a Didactic, and the Head of
the Photovoltaic, Robotics and Magnetic Levita-
tion Laboratory. He is the author and coauthor
of 42 articles, 85 papers, four books, 12 book
chapters, and 20 patents. He is a member of

IEEE Control Systems Society and Robotics and Automation Society.
His scientific interest are focused on interdisciplinary modeling, sim-
ulation, controller synthesis, and real-time control. His research are
mainly focused on devices design and prototyping with embedded active
magnetic levitation technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

