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Modified Zeroing Neurodynamics Models for
Range-Based WSN Localization From

AOA and TDOA Measurements
Lijuan Wang , Dan Su, Mei Liu , and Xiujuan Du

Abstract—With the rise of the internet of things, wireless
sensor network (WSN) technology has gained unprecedented
development and has attracted increasing attention from
researchers. Due to the inherent characteristics of WSN,
such as interaction with the environment, WSN localization
becomes an essential and attractive topic in academia and
industry. In this paper, the range-based localization problem
in a mobile WSN application scenario is considered to be
time-varying and modeled as a dynamic matrix equation by
introducing the time parameter. Two modified zeroing neu-
rodynamics (ZND) models are proposed and investigated
to deal with range-based WSN localization problems from
angle of arrival (AOA) measurement and time difference of
arrival (TDOA) measurement. In addition, the convergence of
the proposed models is theoretically analyzed. Furthermore,
computer simulations on WSN localization are carried out to
prove the effectiveness of the proposed models in terms of accuracy and robustness to the dynamic environment.
Additionally, the application to underwater sensor node localization of underwater acoustic network (UAN) testbed is
provided to illustrate the feasibilities of the proposed models for solving UAN localization problem.

Index Terms— Angle of arrival, time difference of arrival, wireless sensor network localization, zeroing neurodynamics
model.

I. INTRODUCTION

LOCALIZATION technology is widely used in natural and
artificial systems. Typical examples include echolocation

systems of animals [1], migration habits of birds [2], wire-
less sensor networks (WSNs) [3], satellite networks [4], etc.
Location-based services play an essential role in people’s daily
life. For instance, wise healthcare can monitor the physiologi-
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cal state of nursing targets and locate their positions in case of
an emergency; in a retail venue, with the help of tracking the
personnel location, salespersons prepare customer preferences
when they receive a notification of customer entry. These
scenarios are implemented in WSN and supported by accurate
localization solutions. Therefore, localization technology is
vital for WSN applications that are particularly sensitive to
location information [5].

WSN is a data-centric network, in which sensing data is
collected by randomly distributed sensor nodes, usually bound
to sensor positions, and finally transmitted to a remote appli-
cation [6]. In general, the sensor position is obtained through
physical hardware measurement or algorithm estimation [7].
Considering cost efficiency, a few powerful sensor nodes in
WSN, called anchor nodes, are equipped with global posi-
tioning system (GPS) modules or deployed at predetermined
positions to obtain their own positions in advance. Other
sensor nodes that are not aware of their positions are called
unknown nodes. They need to estimate their positions by
localization solutions with the assistance of anchor nodes.

Many localization solutions for WSNs have been investi-
gated to provide the position information of unknown nodes,
e.g., range-based and range-free [8]. Owing to range esti-
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mates or angle estimates by additional hardware, range-based
solutions generally have a higher localization accuracy as
compared to range-free solutions. In this paper, a neuro-
dynamics method is provided for solving the range-based
WSN localization problem. Specifically, two modified zeroing
neurodynamics (ZND) models along with different activation
functions (AFs) designed for the angle of arrival-based and
time difference of arrival-based WSN localization problems
are proposed. Analytical discussions and computer simulations
show that the modified ZND models are applied to WSN
localization with satisfactory convergence, high accuracy, and
robustness to the dynamic environment. Additionally, a com-
parative simulation of the modified ZND models with the
multidimensional Kalman Filter (KF) algorithm in the exam-
ple of locating the vehicle is performed to demonstrate the
effectiveness of the modified ZND models.

The remainder of this paper is organized as follows.
Section II reviews the work related to localization solutions
of sensor nodes. Section III is intended as an introduction to
the WSN localization problem modeling. The modified ZND
models are proposed in Section IV, together with the analyt-
ical discussions on the convergence. In Section V, computer
simulations on WSN localization and underwater acoustic net-
work (UAN) localization are carried out. Section VI concludes
this paper. The main contributions made by this paper are
pointed out as below.

1) Neurodynamics methodology is explored and extended
to the WSN. To be specific, modified ZND models
are proposed to solve the range-based WSN localization
problem efficiently.

2) The range-based localization problem from angle of
arrival (AOA) or time difference of arrival (TDOA)
measurement in a mobile WSN application scenario is
considered to be time-varying and modeled as a dynamic
matrix equation.

3) Two modified ZND models with different AFs are pro-
posed to solve the aforementioned range-based WSN
localization problems. Moreover, analytical discussions
and computer simulations verify the effectiveness of the
modified ZND models with high accuracy and robustness
to the dynamic environment.

Notations: To lay a basis for further investigation, parameter
settings and definitions employed in the ensuing sections are
listed in TABLE I.

II. RELATED WORK

In this section, we mainly review the work related to
localization solutions of sensor nodes.

Existing localization solutions can be broadly classified into
the following categories: distributed and centralized, range-
free and range-based, anchor-based and anchor-free. Specifi-
cally, for centralized localization solutions, there is a central
node being responsible to aggregate the localizing information
and calculate the positions of other nodes. On the contrary,
each node determines its own position in distributed solutions.
In [5], a novel intelligent localization algorithm is investigated
to enable each sensor node determine its own position by pas-
sively listening to the beacon signals. Although providing good

TABLE I
SUMMARY OF NOTATIONS AND DESCRIPTIONS

accuracy, it requires the beacon node to vary the transmitted
power at each transmission. In [6], a series of centralized and
distributed expectation-conditional maximization algorithms
based on distance measurements are developed to approximate
the maximum likelihood estimator of the unknown positions.
They can provide good performance even working without the
prior knowledge of the measurement error statistics.

Furthermore, range-based solutions are supported by one
or two range measurement techniques that measure specific
physical properties of communication signals (for example,
received signal strength (RSS), angle of arrival (AOA), time
of arrival (TOA), and time difference of arrival (TDOA)) to
achieve range measurements between the unknown node and
anchor nodes. Subsequently, utilizing measured range informa-
tion, range-based solutions conduct the geometric calculation
and work out the position of the unknown node by establishing
the system of equations to accomplish the localization process.
While, range-free localization solutions estimate the positions
of sensor nodes using connectivity information between sensor
nodes rather than ranging (i.e., distance or angle) information.
Authors in [9] present a path mechanism for beacon-assisted
localization in WSN to increase the accuracy of the estimated
position. Obstacle are taken into account in the design of
an efficient localization approach [10] for WSN to improve
localization accuracy in a realistic environment. The mobility
information of sensors is utilized in two range-based models,
namely the TOA model and the RSS model, to achieve node
localization [11]. In view of energy efficiency, Kan et al. [12]
provide a location and tracing system for WSNs to achieve
highly accurate tracking of targets. Although such two tech-
nologies improve the energy efficiency of the system, they also
increases the complexity and uncertainty of the system.
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Actually, the localization problem in a mobile WSN appli-
cation scenario is investigated in these literature, where
the positions of nodes vary over time. In this regard, the
WSN localization problem can be considered time-varying.
However, as in [9]–[12], most existing works deal with this
problem in a static manner. Besides, the abilities of existing
works are limited when solving the time-varying WSN local-
ization problem due to the use of static methods. Considering
the fact that range-based solutions generally have a higher
localization accuracy as compared to range-free solutions, they
are suitable for WSN applications that demand high-precision
position information [13], [14]. Consequently, in this paper,
the time-varying WSN localization problem is modeled as
a dynamic matrix equation by introducing the time para-
meter. Based on AOA and TDOA measurement algorithms,
the neurodynamics method is provided for solving the time-
varying WSN localization problem to achieve fast and accurate
localization. Notably, the neurodynamics method we provide
is used for the geometric calculation after acquiring range
information.

Up to now, a number of powerful and intelligent technolo-
gies have been applied in WSNs to solve various problems
effectively, for instance, multi-agent based distributed artificial
intelligence for power allocation [15], conventional neural net-
works for secure routing [16], the firefly algorithm for dynamic
cluster formation [17], and so on. Beyond that, neural net-
works [18]–[21] are also well extended and applied to WSNs.
Thereinto, zeroing neural network (ZNN) proposed in [22],
as well as its modifications [23]–[27], show their superior
efficiency and accuracy for handling some complex academic
and practical problems, such as the time-variant Sylvester
equation solving [28], [29], nonlinear optimization [30], [31],
and automatic control [32]. Furthermore, some methods based
on ZNN have recently been reported and adopted to deal with
wireless localization problems. In [28], a noise-suppressing
model for solving time-variant generalized Sylvester equations
is presented. Its application to acoustic source localization
illustrates the ability of this model in localizing a moving node.
In [33], a ZNN-based approach is applied to the range-free
localization in WSN in an effective way.

It can be seen that ZNN can be applied to solve wireless
localization problems efficiently. However, to the best of our
knowledge, existing works for solving the time-varying WSN
localization problem are considerably rare. In addition, as a
special type of neurodynamics, zeroing neurodynamics (ZND)
is generalized from ZNN and can guarantee that each ele-
ment of the error function converges to zero [34], [35]. For
this reason, a quite implementable and feasible ZND-based
method for solving the range-based and time-varying WSN
localization problem is provided.

III. WSN LOCALIZATION PROBLEM AND ZND SOLUTION

This section describes the AOA-based and TDOA-based
WSN localization problems in the form of a dynamic matrix
equation and provides the unified formulation of these prob-
lems. Afterwards, based on the unified formulation, the routine
of the conventional ZND model for solving WSN localization
problems is presented.

A. Localization Problem
In this paper, we consider the AOA algorithm in a

2-dimensional (2D) case and the TDOA algorithm in a
3-dimensional (3D) case. For simplicity, a small and local-
ized topology in WSN is explored, where an unknown node
estimates its own position with the assistance of several anchor
nodes. Suppose the number of the anchor nodes is m (m ≥ 2
for the AOA algorithm and m ≥ 5 for the TDOA algorithm).

1) AOA Algorithm: For the AOA algorithm, the position
of the unknown node is calculated by the measured arrival
angle of the communication signal at the receiver, i.e., the
anchor node. Consider a 2D mobile scenario, in which the
position of the unknown node changes with time, and m anchor
nodes are randomly placed and fixed. Then the localization
problem of the moving unknown node in WSN is subsequently
investigated. First, we define the coordinates of m anchor
nodes and the unknown node as

M =
�

x1 x2 · · · xm

y1 y2 · · · ym

�
∈ R

2×m , x(t) =
�

x(t)
y(t)

�
∈ R

2.

Second, according to the geometric meaning of AOA, the
following equation is obtained:

tan(αi (t)) = y(t) − yi

x(t) − xi
, (1)

where i ∈ {1, 2, · · · , m}; αi (t) denotes the arrival angle of
the communication signal between unknown node and the
i th anchor node. Then the above equation can be rewritten as

− tan(αi (t))x(t) + y(t) = yi − xi tan(αi (t)).

Finally, the AOA-based WSN localization problem on moving
unknown node in 2D scenario is finally formulated as⎡
⎢⎢⎢⎣

− tan(α1(t)) 1
− tan(α2(t)) 1

...
...

− tan(αm(t)) 1

⎤
⎥⎥⎥⎦

�
x(t)
y(t)

�
=

⎡
⎢⎢⎢⎣

y1 − x1 tan(α1(t))
y2 − x2 tan(α2(t))

...
ym − xm tan(αm(t))

⎤
⎥⎥⎥⎦ . (2)

2) TDOA Algorithm: The TDOA algorithm measures the
time differences of the disparate arriving signals originated
from the source to a number of spatially separated receivers,
i.e., the anchor nodes, to estimate the position of the source,
i.e., the unknown node. Different from subsection III-A1, a 3D
mobile scenario is observed in this subsection. The coordinates
of m anchor nodes and the unknown node are defined as

N =
⎡
⎣x1 x2 · · · xm

y1 y2 · · · ym

z1 z2 · · · zm

⎤
⎦ ∈ R

3×m , x(t) =
⎡
⎣x(t)

y(t)
z(t)

⎤
⎦ ∈ R

3.

According to the physical meaning of TDOA, we have the
following equations [28]:

ri (t) = vTi (t)

=



(xi − x(t))2 + (yi − y(t))2 + (zi − z(t))2,

�Ti1(t) = Ti (t) − T1(t),

ri1(t) = v�Ti1(t) = ri (t) − r1(t),

where i ∈ {1, 2, · · · , m}; v is the propagation speed of the
communication signal between the unknown node and the
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anchor node; Ti (t) symbolizes the time of signal from the
unknown node to the i th anchor node; �Ti1(t) represents the
time difference of signal from the unknown node separately
to the i th and first anchor nodes; ri (t) denotes the distance
between the unknown node and the i th anchor node; ri1(t)
denotes the distance difference from the unknown node to
the i th and first anchor nodes. By the derivation in APPEN-
DIX, the TDOA-based WSN localization problem on moving
unknown node in 3D scenario can be formulated as⎡
⎢⎢⎢⎣

x21 y21 z21 v�T21(t)
x31 y31 z31 v�T31(t)
...

...
...

...
xm1 ym1 zm1 v�Tm1(t)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(t)
y(t)
z(t)
r1(t)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

(Q2 − Q1 − (v�T21(t))2)/2
(Q3 − Q1 − (v�T31(t))2)/2

...

(Qm − Q1 − (v�Tm1(t))2)/2

⎤
⎥⎥⎥⎦ , (3)

where Qi = xi
2 + yi

2 + zi
2.

3) Unified Formulation: From (2) and (3), it is easy to find
that AOA-based and TDOA-based WSN localization problems
can be finally unified into the following form:

P(t)s(t) = z(t). (4)

The above equation is a dynamic matrix equation, where
P(t) ∈ R

p×q is a known coefficient matrix with p, q ∈ Z and
involves the measured physical property of the communication
signal, i.e., AOA or TDOA; z(t) ∈ R

p is a known vector;
s(t) ∈ R

q is an unknown vector with q = 2 or q = 4,
involving the coordinate of the unknown node to be solved.
Consequently, the subsequent task of this work is to solve (4).

B. Conventional ZND Model
So far, many successes have been achieved for the design

and application of ZND on dynamic problems. In the conven-
tional ZND model [22], the WSN localization problem (4) is
solved by the following three steps.

(1) Construct the error function e(t) = P(t)s(t)− z(t) ∈ R
p.

(2) To guarantee that each element of e(t) converges to zero,
the evolution equation is designed as ė(t) = −γ F(e(t))
where ė(t) denotes the time derivation of e(t); γ > 0 is
a scaling factor; F(·) : R

p → R
p stands for an array

of AFs with each element being a linear function and
denoted by f (·) : R → R.

(3) Substitute e(t) in step (1) into the evolution equa-
tion to obtain the conventional ZND solution for the
WSN localization problem: Ṗ(t)s(t) +P(t)ṡ(t) − ż(t) =
−γ F(P(t)s(t) − z(t)).

Thus, the routine of the conventional ZND model for solving
the WSN localization problem (4) is completed.

IV. MODIFIED ZND MODELS

Based on ZND methodology, we further explore and pro-
pose two modified ZND models for solving the localization
problem (4) in this section.

For simplicity, the error function in step (1) is adopted here:
e(t) = P(t)s(t) − z(t). The corresponding design formula is
modified as

ė(t) = −ϕL(e(t)), (5)

where ϕ, a positive value, is used to scale the convergence
rate of the ZND model. Different from the conventional ZND
model, L(·) : R

p → R(·)p stands for an array of AFs with
each element being a monotonically-increasing odd function
and denoted by L(·) : R → R, such that each item of error
function decreases to zero, and then the theoretical solution of
(4) can be obtained. In view of practical WSN application
scenarios, the localization problem (4) is often normal or
overdetermined in mathematics. By employing the design
formula (5), the ZND model for WSN localization problem
(4) with normal situation (i.e., for P(t) ∈ R

p×q with p = q)
is derived:

ṡ(t) = P+(t)[ż(t) − Ṗ(t)s(t) − ϕL(P(t)s(t) − z(t))], (6)

where P+(t) denotes the pseudoinverse of matrix P(t). For
the case of overdetermined localization problem with p > q ,
by taking the error function into (5), and multiplying both sides
by PT(t) with superscript T being the transpose operator, the
ZND model has the form:
PT(t)P(t)ṡ(t) = −ϕPT(t)L(P(t)s(t) − z(t))

−PT(t)Ṗ(t)s(t) + PT(t)ż(t). (7)

If P(t) is of full column rank, then PT(t)P(t) is invertible
and P+(t) = (PT(t)P(t))−1PT(t) holds [36]. Thus, model
(7) can be rewritten as

ṡ(t) = P+(t)[ż(t) − Ṗ(t)s(t) − ϕL(P(t)s(t) − z(t))]. (8)

Obviously, the formulations of model (6) and (8) are the same.
Hence, based on model (8), the WSN localization problem
(4) can be solved no matter with a normal or overdetermined
situation.

Generally speaking, an AF acts as a projection operation
from one set to another, and different choices for the AF
lead to different convergence performances. Note that the
conventional ZND model with the linear AF takes a long
time to converge to the theoretical result. Therefore, in this
section, based on model (8), two modified ZND models
with different AFs are thus proposed to handle the WSN
localization problem (4). The convergence performance is
provided theoretically as well.

A. MZDL1 Model
As mentioned before, the ability of the ZND model (8)

activated by the linear AF is limited. On the contrary, nonlinear
AFs have attracted much attention in light of the superior
convergence, and numerous related studies have been explored
and investigated. Inspired by the work in [34], a specially-
designed AF is firstly employed to activate the ZND model (8):

L1(x) = κ1|x |τ sgn(x) + κ2|x |σ sgn(x), (9)

where symbol | · | denotes the absolute value of a scalar;
scaling factors κ1, κ2 > 0; design parameters τ ∈ (0, 1) and
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σ ∈ [1,∞). In addition, the sign function sgn(x) [34] is
defined as follows:

sgn(x) =

⎧⎪⎨
⎪⎩

1, x > 0,

0, x = 0,

−1, x < 0.

(10)

By adding the above AF L1(x) to model (8), a modified
ZND model for solving the WSN localization problem (4)
is given as

ṡ(t) = P+(t)[ż(t)−Ṗ(t)s(t)−ϕL1(P(t)s(t) − z(t))]. (11)

For convenience, the modified model (11) is termed MZDL1
model in this paper. Then we have the following theorem on
convergence of the MZDL1 model (11).

Theorem 1: Given a random and rough initial position s(0),
the real-time position of the unknown node, which is estimated
via the MZDL1 model (11), converges to the theoretical
position s∗(t) in finite time

tL1 ≤ |	(0)|1−τ

ϕκ1(1 − τ )
,

where 	(0) denotes the element of position-vector e(0) with
the largest absolute value.

Proof: From the aforementioned description, we know
that, s∗(t) is the theoretical result of the WSN localization
problem (4) based on AOA algorithm or TDOA algorithm. The
state-position vector s(t) synthesized by the MZDL1 model
(11) for solving these WSN localization problems, starting
from a randomly-generated initial state s(0), converges to
s∗(t) in finite time tL1. According to the definition of the
error function, when the error function converges to 0, s(t)
approaches s∗(t). Therefore, position estimation s(t) can be
investigated by discussing error function e(t). Next, rewrite
the MZDL1 model (11) as ė(t) = −ϕL1(e(t)), of which the
i th subsystem can be defined as

ėi (t) = −ϕL1(ei (t)).

Then, define 	(t) be the element of the vector e(t) with
the largest absolute value, i.e., |	(t)| ≥ |ei (t)| for all i
(i = 1, 2, . . . , p) at time instant t . Depending on the sign
of 	(0), the analyses can be divided into the following three
situations.

• For the first situation of 	(0) > 0, according to |	(t)| ≥
|ei (t)|, we have 	(t) ≥ |ei (t)|. This means that ei (t)
converges to zero when 	(t) reaches zero. Let t	 denote
the convergence time of 	(t). That is, the MZDL1 model
(11) converges to the theoretical result s∗(t) at time
instant t	 when solving WSN localization problem (4).
Additionally, based on the definition of L1(x), we have
the following equation for calculating t	 :

	̇(t) = −ϕ(κ1	
τ (t) + κ2	

σ (t)).

Since κ2	
σ (t) > 0, we have

	̇(t) < −ϕκ1	
τ (t).

The above equation can be redefined as

dt < − 1

ϕκ1
	−τ (t)d	(t).

Integrating on both sides of the above equation generates� t	

0
dt < − 1

ϕκ1

� 0

	(0)
	−τ (t)d	(t).

Solving the above equation obtains

t	 <
(	(0))1−τ

ϕκ1(1 − τ )
= |	(0)|1−τ

ϕκ1(1 − τ )
.

• For the second situation 	(0) < 0, through similar
procedure, convergence time t	 is thus derived:

t	 <
(−	(0))1−τ

ϕκ1(1 − τ )
= |	(0)|1−τ

ϕκ1(1 − τ )
.

• For the third situation 	(0) = 0, we finally have

t	 = 0 = |	(0)|1−τ

ϕκ1(1 − τ )
.

From the previous analyses of the three situations, it is con-
cluded that, MZDL1 model (11) converges to the theoretical
result s∗(t) in finite time tL1 when solving WSN localization
problem (4). That is, synthesized by the MZDL1 model (11),
the real-time position of the unknown node converges to s∗(t)
in finite time tL1, which is calculated as follows:

tL1 = t	 ≤ |	(0)|1−τ

ϕκ1(1 − τ )
.

B. MZDL2 Model
To further explore the applicability of the ZND methodology

in WSN, another special nonlinear AF is constructed to
accelerate convergence time of model (8) for solving WSN
localization problem (4), which is shown as

L2(x) = 
(exp(θx) − exp(−θx)), (12)

where the design parameters θ ≥ 1, and the scaling factor

 > 0. Based on L2(x), another modified ZND model (called
MZDL2 model) is presented as

ṡ(t) = P+(t)[ż(t)−Ṗ(t)s(t)−ϕL2(P(t)s(t)−z(t))]. (13)

For the MZDL2 model (13), we have the following theorem
on its convergence.

Theorem 2: Given a random and rough initial position s(0),
the real-time position of the unknown node, which is estimated
via the MZDL2 model (13), converges to the theoretical
position s∗(t) globally.

Proof: From the aforementioned description, we know
that, s∗(t) is the theoretical result of the WSN localization
problem (4) based on AOA algorithm or TDOA algorithm.
If AF L2(x) is used, the state-position vector s(t) synthesized
by the MZDL2 model (13), beginning with any initial state
s(0), can converge to s∗(t) globally. Similar to the proof in
Theorem 1, position estimation s(t) is analyzed by considering
the error function e(t). Inspired by the proof process of con-
vergence analysis in [37], [38], we define a Lyapunov function
candidate V (t) = �e(t)�2

2/2 for the MZDL2 model (13). Then
the time derivative of V (t) is V̇ (t) = eT(t)ė(t). Let ei (t)
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Fig. 1. Validation results of AOA-based WSN localization synthesized by MZDL1 model (11) and MZDL2 model (13) with the initial state �(0) randomly
initialized, where ϕ = 1; κ1 = 1; τ = 0.2; κ2 = 6; σ = 5; � = 2; θ = 3.

(i = 1, 2, . . . , p) denote the i th subsystem of e(t) and take
(5) into account, then V (t) and V̇ (t) can be rewritten as

V (t) =
p�

i=1

e2
i (t)/2 ≥ 0,

and

V̇ (t) =
p�

i=1

ei (t)ėi (t) = −ϕ

p�
i=1

ei (t)L2(ei (t)).

By Taylor expansion, L2(ei (t)) is formulated as

L2(ei (t)) = 
[exp(θei (t)) − exp(−θei (t))]
= 2


�
θei (t) + θ3e3

i (t)

3! + θ5e5
i (t)

5! + · · ·
�

= 2


+∞�
r=1

θ2r−1(ei (t))2r−1

(2r − 1)! .

Finally, V̇ (t) is shown as

V̇ (t) = −δ

p�
i=1

ei (t)
+∞�
r=1

θ2r−1(ei (t))2r−1

(2r − 1)!

= −δ

p�
i=1

+∞�
r=1

θ2r−1(ei (t))2r

(2r − 1)! ≤ 0,

where δ = 2ϕ
 > 0. So, if AF L2(x) is used, we have
V (t) ≥ 0 and V̇ (t) ≤ 0. In consideration of the Lyapunov
theory, it is thus summarized that, the error function e(t) of
the MZDL2 model (13) can converge to zero with time. That
is, the MZDL2 model (13) converges to the theoretical result
s∗(t) with time when solving WSN localization problem (4).
In other words, synthesized by the MZDL2 model (13), the
real-time position of the unknown node converges to the
theoretical position globally.

V. SIMULATION RESULTS AND VALIDATION

In this section, first of all, the AOA-based and TDOA-
based localization simulations are performed to demonstrate
the effectiveness of the MZDL1 model (11) and the MZDL2
model (13) for solving the WSN localization problem (4).
Then, these two modified ZND models are applied to under-
water sensor node localization on a testbed to illustrate the
potential applicability of these models in UAN. Finally, a com-
parison of the MZDL2 model (13) with the multidimensional
Kalman Filter algorithm is performed.

A. AOA-Based WSN Localization
In this section, we perform computer simulations on

AOA-based WSN localization by separately utilizing the
MZDL1 model (11) and the MZDL2 model (13). For sim-
plicity, a 2D topology with a range of 20 m × 20 m is
explored, where the unknown node moves along a lemnis-
cate path, and 10 anchor nodes are randomly deployed and
fixed. There are six subgraphs in Fig. 1, with subgraphs (a),
(b-2), and (c) generated from the MZDL1 model (11) and
subgraphs (d), (e-2), and (f) generated from the MZDL2
model (13). Meanwhile, the comparative results synthesized
by the conventional ZND model with the linear AF are given
in subgraphs (b-1) and (e-1).

To be specific, in Fig. 1(a) and (d), the anchor nodes
are denoted by diamonds, the actual lemniscate path of the
unknown node moving is described by the black solid line,
and the estimate track of unknown node moving is depicted
by the pink circle marker. As it is clear, the two trajectories
are almost coincident. The residual errors �e(t)�2 synthe-
sized by modified models we proposed compared with the
conventional ZND model with the linear AF are presented
in Fig. 1(b) and (e). It is worth noting that residual errors
�e(t)�2 using the modified ZND model (11) and model (13)
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Fig. 2. Validation results of TDOA-based WSN localization synthesized by MZDL1 model (11) and MZDL2 model (13) with the initial position of
unknown node randomly initialized, where ϕ = 1; κ1 = 1; τ = 0.2; κ2 = 6; σ = 10; � = 0.5; θ = 2.

converge much faster than that using the conventional ZND
model with the linear AF. Figure 1(c) and (f) describe the
position estimation errors ep(t) = s(t) − s∗(t) = [epX, epY]T,
from which we can see that both epX and epY converge to 0 m
quickly. For most WSN applications, the localization accuracy
of these two models is already sufficient.

Overall, the proposed ZND models (11) and (13) are suc-
cessfully applied to the moving position estimation in AOA-
based WSN localization, with satisfactory verification results.

B. TDOA-Based WSN Localization
In this section, computer simulations on TDOA-based WSN

localization are carried out, and the validation results obtained
by the MZDL1 model (11) are depicted in Fig. 2(a), (b-2),
and (c), and the validation results corresponding to the
MZDL2 model (13) are described in Fig. 2(d), (e-2), (f).
Meanwhile, the comparative results synthesized by the con-
ventional ZND model with the linear AF are given in
subgraphs (b-1) and (e-1).

Specifically, as visualized in Fig. 2(a) and (d), 10 anchor
nodes denoted by diamonds are randomly deployed and fixed
in a 3D topology with a range of 20 m × 20 m × 100 m, and
the unknown node moves along a spiral path denoted by the
black solid line. It can be found that the pink circles-marked
estimation tracks generated by MZDL1 model (11) and the
MZDL2 model (13) are almost coincident with the actual
paths of the unknown node. As presented in Fig. 2(b) and (e),
residual errors �e(t)�2 using the modified ZND model (11) and
model (13) converge much faster than that using the conven-
tional ZND model with the linear AF. As for Fig. 2(c) and (f),
the validation results of these two models with the position
estimation error ep(t) = [epX, epY, epZ]T being the order of
10−3 m manifest the abilities of the proposed models to deal
with the TDOA-based WSN localization problem.

As a conclusion, the simulations conducted on the real-time
position estimation in TDOA-based WSN localization problem
verify the dynamic robustness and accuracy of the proposed
MZDL1 model (11) and MZDL2 model (13).

C. Application to UAN Testbed
Underwater acoustic network, also termed underwater

WSN, is a special and challenging WSN where the sensor
nodes are deployed underwater and communicate through
acoustic signals. Due to the advantage of acoustic waves
propagating over long distances underwater, UAN finds wide
applications in marine scientific exploration, marine engi-
neering construction, and seabed mineral resources survey
[39], [40]. Most of them depend on the position information of
sensor nodes. Therefore, localization is a key and fundamental
technology in UAN. In the last few years, we have man-
aged to build a UAN testbed assembled Micro-ANP protocol
stack [41], [42] and conduct many trials on Qinghai Lake to
monitor the water quality by means of underwater acoustic
communication. In this section, some geographic coordinates
(i.e., spherical coordinates of ground point positions expressed
in latitude and longitude) marking the positions of underwater
sensor nodes of the testbed are utilized to simulate the AOA-
based localization synthesized by the MZDL1 model (11)
and the MZDL2 model (13). The validation results prove the
potential practicability of these two models.

As shown in Fig. 3, the testbed is mainly composed of
one industrial router, five sets of nodes, and one remote
server. Each set of node consists primarily of a C15 CTD
sensor, AquaSeNT OFDM acoustic modem, and Raspberry
PI3 control board. Moreover, some physical parameters and
technical specifications of the UAN testbed are displayed in
TABLE II. The “Testbed Deployment” in Fig. 3 contains some
working shootings which show how we build the testbed.
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Fig. 3. The system diagram of UAN testbed built on Qinghai Lake.

TABLE II
TECHNICAL SPECIFICATIONS OF THE UAN TESTBED

TABLE III
THE GEOGRAPHIC COORDINATES OF FIVE SENSOR NODES

Incidentally, the depth difference among nodes is negligible
in this experiment, the speed of water flow is also not taken
into account so that the nodes are deemed to be static.

Afterwards, the AOA-based UAN localization experiments
are conducted, and the verification results are illustrated
in Fig. 4. Figure 4(a) and (c) present the unknown node
U1 marked by a cyan star and the evolutionary track of
s(t) marked by red circles, while Fig. 4(b) and (d) show the
convergence of position estimation error ep(t). Nodes from
A1 to A4 are anchor nodes equipped with GPS modules, and
their geographic coordinates are listed in TABLE III. Node
U1 is the unknown node with the geographic coordinate to
be solved. The actual position of the unknown node can be
properly estimated by the modified ZND models (i.e., (11)
and (13)). It can be stated that the MZDL1 model (11) and
the MZDL2 model (13) are also valid for addressing the static
problem of AOA-based UAN localization on the testbed.

On account of high difficulty and cost, most research is
mainly based on theoretical analysis and network simulators.
The validation results about the UAN testbed in this section

illustrate the potential applicabilities of the proposed ZND
models for solving UAN localization problem and, more
importantly, provide a basis for further implementation of the
modified ZND models to UANs.

D. Comparison With the Kalman Filter
In this section, we perform a comparison of vehicle location

between the MZDL2 model (13) with the multidimensional
Kalman Filter algorithm in the following example. Parameters
and definitions employed in the multidimensional Kalman
Filter algorithm are listed in TABLE I in Introduction. The
comparative results are displayed in Fig. 5.

In this example, the vehicle equipped with a sensor can
obtain the coordinates information by communicating with
the surrounding sensor nodes. Besides, we assume that the
vehicle moves with a constant acceleration. Then, Kalman
Filter equations in matrix are derived as

x̂k+1,k = F x̂k,k + Buk

Pk+1,k = F Pk,k FT + Q

Gk+1 = Pk+1,k H T(H Pk+1,k H T + R)−1

x̂k+1,k+1 = x̂k+1,k + Gk+1(zk+1 − H x̂k+1,k)

Pk+1,k+1 = (I − Gk+1)Pk+1,k ,

where uk, x̂k,k, F and B are respectively defined by

uk = 	a, x̂k,k =

⎡
⎢⎢⎣

xk

vx
k

yk

v
y
k

⎤
⎥⎥⎦ ,

F =

⎡
⎢⎢⎣

1 �T 0 0
0 1 0 0
0 0 1 �T
0 0 0 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

�T 2

2
0

�T 2

2
0

⎤
⎥⎥⎥⎥⎥⎦ .

As shown in Fig. 5(a) and (c), the true value of the vehicle
position is denoted by the green line, and the estimate value
is painted by the pink line with circles or triangles. It can be
found that the pink triangles-marked estimate value generated
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Fig. 4. Validation results of AOA-based UAN localization synthesized by MZDL1 model (11) and MZDL2 model (13) with the initial state randomly
set, where ϕ = 4; κ1 = 2; τ = 0.9; κ2 = 2; σ = 1; � = 0.5; θ = 2.

Fig. 5. Comparative results synthesized by the KF algorithm and the modified ZND model (using MZDL2) in the example of vehicle location.

by the modified ZND model (using the MZDL2 model (13))
is more coincident with the true value than that by the KF
algorithm. As presented in Fig. 5(b) and (d), the estimated

error by the modified ZND model (13) is lower than that by
the KF algorithm. In addition, it converges faster and more
smoothly than the latter. Thus, it can be concluded that the
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modified ZND model (13) has the advantages in stability,
locating accuracy, as well as convergent speed compared with
the KF algorithm.

VI. CONCLUSIONS

In this paper, the applicability of the ZND methodology
has been explored and extended to the WSN and the UAN.
Two modified ZND models (i.e., the MZDL1 model and the
MZDL2 model) have been proposed to deal with the WSN
localization problem. Besides, the convergence properties of
these two models have been rigorously analyzed in detail.
In simulations, the two proposed models have been success-
fully employed in range-based WSN localization from AOA
and TDOA measurements to demonstrate their effectiveness
in the terms of high accuracy and dynamic robustness to
the environment. Furthermore, the application to underwater
sensor node localization of the UAN testbed has illustrated the
feasibilities of the modified ZND models for solving the UAN
localization problem, and more importantly, it has provided a
basis for further implementation of the modified ZND models
to UANs.

APPENDIX

It is deduced from the definition of ri (t) that

r2
i (t) = xi

2 + yi
2 + zi

2 − 2xi x(t) − 2yi y(t) − 2zi z(t)

+ x2(t) + y2(t) + z2(t),

and when i = 1,

r2
1 (t) = x1

2 + y1
2 + z1

2 − 2x1x(t) − 2y1y(t) − 2z1z(t)

+ x2(t) + y2(t) + z2(t).

Let Qi = xi
2 + yi

2 + zi
2, the above two equations can be

rewritten as:
r2

i (t) = Qi − 2xi x(t) − 2yi y(t) − 2zi z(t) + x2(t) + y2(t)

+ z2(t), (14)

r2
1 (t) = Q1 − 2x1x(t) − 2y1y(t) − 2z1z(t) + x2(t) + y2(t)

+ z2(t). (15)

Considering the definition ri1(t) = ri (t) − r1(t), subtracting
(15) from (14) results in

left = r2
i (t) − r2

1 (t)

= (ri (t) − r1(t))
2 + 2ri (t)r1(t) − 2r2

1 (t)

= r2
i1(t) + 2r1(t)(ri (t) − r1(t))

= r2
i1(t) + 2r1(t)ri1(t),

and

right = Qi − Q1 − 2xi1x(t) − 2yi1 y(t) − 2zi1z(t),

where xi1 = xi − x1, yi1 = yi − y1, and zi1 = zi − z1. Then,
combing left and right leads to

xi1x(t) + yi1 y(t) + zi1z(t) + r1(t)ri1(t)

= 1

2
(Qi − Q1 − r2

i1(t)).

Considering the definition ri1(t) = v�Ti1(t), as a result,
it yields the following equation:⎡
⎢⎢⎢⎣

x21 y21 z21 v�T21(t)
x31 y31 z31 v�T31(t)
...

...
...

...
xm1 ym1 zm1 v�Tm1(t)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(t)
y(t)
z(t)
r1(t)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

(Q2 − Q1 − (v�T21(t))2)/2
(Q3 − Q1 − (v�T31(t))2)/2

...

(Qm − Q1 − (v�Tm1(t))2)/2

⎤
⎥⎥⎥⎦ .
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