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The Adaptive Fingerprint Localization in
Dynamic Environment

Keliu Long , Chongwei Zheng , Kun Zhang , Member, IEEE, Chuan Tian, and Chong Shen

Abstract—Indoor localization service is an indispensable
part of modern intelligent life, among which Wi-Fi based fin-
gerprint localization system is popular in indoor positioning
researches due to its advantages of low cost and widely
deployment. However, Wi-Fi based localization system is
susceptible to dynamic environment, and fingerprint collec-
tion and updating are time-consuming and labor-intensive.
To address this problem, we propose a novel positioning
framework based on multiple transfer learning fusion using
Generalized Policy Iteration (GPI). Firstly, a 1-Dimension Con-
volutional Autoencoder (1-D CAE) is designed to extract
features from one-dimensional fingerprint data; similar to
Convolutional Neural Network (CNN), it can not only pay more
attention to the information of different dimensions of finger-
prints, but also compress redundant information and reduce
noise. After that, Domain Adversarial Neural Network (DANN)
and Passive Aggressive (PA) algorithm are fused to train
localization model based on unlabeled fingerprint of target
domain using the theory of GPI in offline stage. Finally,
the model is fine-tuned with unlabeled fingerprints and few
labeled fingerprints in daily online predictions to improve the performance of the localization system. Various evaluations
in five typical scenarios validate the effectiveness of proposed algorithm in dynamic environment, with low tendency,
easy recalibration, long-term stabilization high accuracy and so on.

Index Terms— Feature extracting, fingerprint localization, generalized policy iteration, indoor localization, transfer
learning.

I. INTRODUCTION

LOCATION-BASED services (LBS) have gained great
attentions in Internet of Things (IoT) and is becoming
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a research hotspot due to their basic requirements of intelli-
gent applications, high-precision, and stable LBS for indoor
applications [1]. In the outdoor positioning scenarios, the
Global Navigation Satellite Systems (GNSS) can provide high-
accuracy and low-latency localization services, which is com-
mon in our daily life based on the Global Positioning System
(GPS). However, it is hard to use GNSS to get a satisfactory
positioning result in a confined space due to the obstruction
of line-of-sight that buildings cause on electromagnetic signal
propagation [2]. In order to obtain indoor high-quality LBS,
various technologies have been explored and applied in various
indoor scenes, such as Ultra-Wideband (UWB) [3], Inertial
Measurement Unit (IMU) [4], geomagnetism [5], Bluetooth
[6], [7], Wi-Fi [8]–[10] and so on [11].

Theoretically, the UWB-based localization system has
high positioning accuracy because of low-latency and anti-
interference UWB signal, which estimates the target location
using trilateral calculation. However, in practical application,
the UWB localization system will be subject to Non-Line-
of-Sight (NLoS) interference in harsh environment, resulting
in large positioning error [12]. Hence, UWB anchors need
to be added to meet the needs of accuracy positioning in
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NLoS environment. Unfortunately, the cost of UWB system
is considerably expensive, which limits application of UWB
system in large-scale fields. In recent years. Micro-Electro-
Mechanical System (MEMS) has made great progress, thus,
the Inertial Measurement Unit (IMU)-based Inertial Naviga-
tion System (INS) is widely used in localization and navigation
with low cost and power consumption [13]. The IMU is a
self-constraint system, thus, it can estimate location through
embedded accelerometer and gyroscope without any external
information. However, due to the limited accuracy of commer-
cial IMU and the characteristic of self-constraint system, the
INS can only provide reliable localization results in a short
time [14]. In pedestrian positioning scene, the IMU-based
Pedestrian Dead Reckoning (PDR) algorithm is also adopted
to locate people, however, the inaccurate estimations of step
length and heading angle limit the accuracy of PDR algorithm
[15]. As for geomagnetism, it will be strongly disturbed in the
indoor environment with metal instruments, consequently, the
geomagnetism cannot provide stable location-specific informa-
tion. Compared with the formerly mentioned technologies, the
Wi-Fi technology has its unique advantages.

Wi-Fi technology is widely researched in localization fields,
it can be used for positioning in two ways: model-based
ranging [16] and fingerprint matching [17]. Specifically, the
model-based ranging method applies the path loss function
to calculate distance from different bases (at least 3 bases in
2D plane or 4 bases in 3D space), and then drawing circles
with radius with the calculated distance as the radius to get
the intersection as the estimated location. Different from the
model-based ranging method, the fingerprint matching method
is divided into two stages: offline stage and online stage. In the
offline stage, the signal features (fingerprints) and correspond-
ing locations (labels) are collected in pre-positioning space and
stored in a database. In the online stage, the newly collected
fingerprints are compared with fingerprints stored in database
to estimate location using various algorithms. Intuitively, the
model-based ranging way is easier to implement than the
laborious fingerprint matching method. However, in practice,
compared with the fingerprint matching way, the model-based
ranging way has larger localization errors and more drastic
fluctuations due to its poor adaptability in the complex NLoS
environment.

The fingerprint matching method not as negatively impacted
by NLoS as the accuracy of fingerprint-based localization
system mainly depends on the granularity of reference points
in the database, the fingerprint matching technology, and
the state of environment. As for the construction of ref-
erence points, it is a time-consuming and labor-extensive
task. Many fingerprint matching technologies that have been
designed to achieve indoor localization, such as K -nearest
neighbors (KNN), weighted KNN (WKNN) [18], centroid
algorithm, deep learning [19] etc. Among these technolo-
gies, Convolutional Neural Network (CNN) and CNN-based
hybrid network based are widely used in various fingerprint
matching tasks [20], because CNN can extract robust spa-
tial features through convolutional manipulation in adjacent
receptive fields. Besides, the fingerprint signal is location
specific and the subcarriers of fingerprint is correlated [21],

which is suitable for processing with CNN. Although CNN
can theoretically provide high-accuracy fingerprint matching
results, its performance will be greatly limited in real-world
dynamic environments. These such algorithms, however, are
typically degraded in dynamic environments which influences
the localization, such as furniture layout, human movement,
states of door or window (opening or closing) [22] and
so on. In a word, it is a challenge to maintain stable and
reliable location results in dynamic environment with Wi-Fi
localization systems. Therefore, we can improve the accuracy
of indoor positioning results through optimizing fingerprint
database, matching technology, and environment modeling.
In fact, the above three optimization schemes can be resolved
by refreshing labeled fingerprints in database. Unfortunately,
the collection of labeled fingerprints is also a time-consuming
and laborious work, which limits the application range of
fingerprint-based positioning system.

As stated above, the cost of refreshing labeled Wi-Fi signal
in a database is an obstacle for Wi-Fi based matching localiza-
tion system in dynamic scenes. In order to eliminate this situ-
ation, various techniques are proposed to improve stabilization
of fingerprint positioning system. Domain Adaptation (DA) in
Transfer Learning (TL) is popular in solving fingerprint adap-
tation in dynamic environment [23]. The approach transfers
the features of source domain (the initial environment) and
target domain (the changed environment) into the same feature
space using supervised or semi-supervised learning. In doing
so, the previously invalid labeled fingerprints can be used in
the changed environment, which reduces the dependence on
labeled data in the changed environment. Although the DA
alleviates the reliance on labeled data, it still needs a certain
number of labeled fingerprints to calibrate the positioning sys-
tem, especially in large-scale field. The Domain-Adversarial
Neural Network (DANN) [24] can solve this problem, because
it’s an unsupervised DA neural network, i.e., only unlabeled
data is required in DA. However, the unsupervised learning
in DA is not completely suitable for positioning scenarios,
once the DA algorithm finishes training, the DA stops whereas
the change of environment is inevitable. Nonetheless, most
fingerprint DAs focuses on improving the performance of
the algorithm rather than tracking the dynamic environment
characteristics.

Most aforementioned DA researches are offline learning
algorithms where data is processed in batch form; however,
the fingerprint data is collected in chronological order and
the environment changes all the time, which will result in
inconsistency of data distributions in training data. Although
the unsupervised DANN can alleviate inconsistent distribu-
tion of data by collecting large amounts of unlabeled data
in the target domain, the DA between former distribution
and current distribution cannot be solved once and for all
due to unpredictable change of environment. The online DA
algorithm can calibrate the positioning system with a small
amount of sequential labeled data, which is consistent with
the labeled data collection, i.e., sequential processing way.
The Passive Aggressive (PA) method [25] is a kind of online
transfer learning algorithm that processes the received data in
sequential manner; it is proved to be an excellent lightweight
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online DA algorithm, where the hinge loss function is adopted
as an indicator to realize a classification or regression mission.
In addition, the PA algorithm can track the distribution change
of fingerprints, if the environment changes, the PA algorithm
will gradually forget the previous weights and learn new
weights.

In this paper, in order to solve the problem of difficult
acquisition of labeled data and inconsistent distribution of
collected fingerprints, the DANN is adopted to realize DA in
offline stage; in online stage, the PA algorithm tracks dynamic
characteristics of the environment and calibrates the entire
positioning system. The main contributions of this paper are
listed as follows:

• DANN and PA algorithm are used separately or jointly
in different stages of the positioning system. The DANN
can realize initial DA with unlabeled data, where the
unlabeled data is easier to obtain than labeled data and the
1D Convolutional Autoencoder (1D-CAE) is embedded
into DANN to extract input features; the PA algorithm
processes data in sequential manner for calibrating posi-
tioning system, which is consistent with the order of
labeled data collection.

• A uniform positioning framework based on online and
offline DA is constructed learning from the ideas of
Global Policy Iteration (GPI) [26], this means that
the DANN and PA algorithm are not simply cascaded
together but trained in a uniform framework. The pro-
posed framework is comprised of individual modules,
which means that the online and offline modules in this
framework can be replaced by other advanced algorithms
in various mission sets.

• Various experiments are conducted to verify the validity
of the proposed framework; the results show that the
proposed method can give long-term stability and high-
accuracy positioning services.

The remainder of the paper is organized as follows:
Section 2 reviews the positioning and DA related works.
Section 3 introduces online and offline learning used in this
paper. In Section 4, the proposed framework and algorithm of
adaptive positioning are described in detail. Section 5 presents
the evaluation experiments of the adaptive localization method.
Section 6 gives the conclusions of our work.

II. RELATED WORK

A. Traditional Positioning Technologies
Zhao et al. [27] used crowdsourcing and multi-source fusion

to reduce laborious radio map construction, where the PDR
and EKF-based multi-source fusion algorithm are used to
improve the accuracy and robustness of localization results.
Li et al. [28] proposed unsupervised wireless positioning
system based on Deep Reinforce Learning (DRL) frame
and Received Signal Strengths (RSS), where the localization
process is modeled as a Markov Decision Process (MDP),
it has good performance in the 100m level spatial scale. Simi-
larly, the DRL based on Wi-Fi signals is also adopted to bisect
localization space and calculate location with flexible localiza-
tion resolution in reference [29], it has reduced the searching

complexity and realized pseudo 3D localization (multi-floor
positioning). In reference [22], the spatial-temporal focusing
effect of retransmitting time-reversal signals, namely time-
reversal resonating strength (TRRS), is used to realize high-
resolution positioning, moreover, the Autoencoder (AE) is
trained to record current features of environment; after that,
the trained AE calibrates the newly received signals, and the
location is calculated by retransmitting signals. Although this
works has considered the effects of dynamic environment on
positioning accuracy, it will be limited by dramatically in a
dynamically changing environment. The TRRS is also utilized
in reference [30] under NLoS scene, where the frequency
and spatial diversities are exploited for centimeter-accuracy
positioning in relatively stable environment. Zhao et al. [31]
used Convolutional Autoencoder (CAE) to extract features of
raw received signal strength indication (RSSI), and then the
classification neural network is cascaded with CAE to estimate
the position. A hybrid fusion positioning scheme is proposed
based on the complementarity between Wi-Fi and pedestrian
dead reckoning (PDR) in reference [32], where the Machine
Learning (ML) is utilized to remove the outliers of received
signal strength (RSS); it also reveals that Wi-Fi signals have
clustering characteristics, i.e., most of the received Wi-Fi
strengths concentrate around the true value with a threshold.

In the traditional fingerprint localization system, the local-
ization system is affected by the multipath effect which seri-
ously reduce the stability of positioning system. Thus, Song
et al. designed a positioning system based on dual-channel
convolutional neural network, named DuLoc, to estimate loca-
tion using CSI [20]. In reference [33], a CNN-LSTM hybrid
model is proposed to provide stable localization results using
both temporal information (sliding window processing) and
spatial information (converting sequence to picture) of CSI
signals, and the positioning accuracy is about 2.5 meters.
Different from most works, the reference [34] concentrates
on constructing robust positioning characteristics, where the
phase differences and amplitude differences of CSI are used
to construct three gray images, after that, the three grayscale
images are fused into one RGB image for CNN identification
and positioning. In reference [35], the depth-wise separable
convolution is used to simplify CSI-based localization model,
which can reduce latency and improve performance of the
system. The CSI of Multiple-input multiple-output (MIMO) is
also investigated in [36]–[38], the main contribution of these
works is to construct suitable CNN-based neural structures and
composite source fingerprints, which can extract deep features
of CSI signals and provide high-precision positioning results
in limited dynamic environment. Wang et al. innovatively
proposed the use of angle of arrival (AoA) for indoor posi-
tioning, where the AoA is estimated by CSI signal of 5G Wi-
Fi. Specifically, the images constructed with estimated AoA
are used for Deep Convolutional Neural Network (DCNN)
training in offline stage. In the online stage, the real-time CSI
AoA images are used to predict all location probabilities. After
that, the target location is estimated through weighted average
of the R largest outputs [39].

The above-mentioned research works show that the tra-
ditional ML methods are widely used in positioning sys-
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tem with supervised learning, it can be treated as a static
characteristic learning in which the parameters of network
are fixed after finishing training; consequently, the traditional
ML under supervised learning is not suitable for dynamic
environment positioning. Therefore, various methods are pro-
posed to improve the performance of positioning system in
changing environment including sensor fusion and DA. There
are already some positioning systems based on DA. The theory
of domain adaption suggests that, for effective domain transfer
goal, the features extracted from source domain and target
domain should be hard to distinguish.

B. Domain Adaptation in Fingerprint Localization
Building a mapping between source domain and target

domain is known as DA when there is a shift (change) in
domain distribution. After that, the classifier or regression
relationship learned for the source domain is also suitable
for the target domain. The mapping in DA can be realized
in the situation that target domain data with few labels or
without any labels, so that the DA can be divided into two
types: unsupervised DA and semi-supervised DA. Zhang et
al. proposed an improved TrAdaBoost to realize CSI phase
fingerprint adaptation given labelled source data and target
data, and the One-vs-Rest algorithm and One-Hot coding were
also used to enhance the robustness of positioning results [40].
Lin et al. designed an online transfer learning framework based
on Long Short-Term networks (LSTM) feature extraction for
time-varying distribution DA. The approach combined the
proposed transfer learning model with the ensemble approach
to avoid overfitting and unfitting problems. In reference [23],
the DA in localization based one-dimension Convolutional
Neural Network (1D-CNN) is realized with Semantic Align-
ment (SA), moreover, a domain selection model is also trained
to change pattern of system, and thus the localization results
are more reliable. In reference [41], features squeezing and
Class Alignment (CA) Loss are utilized to maximize the
distance between different classes in positioning system.

It can be seen that the above solutions mostly perform semi-
supervised or supervised DA, while fewer methods perform
completely unsupervised DA in Wi-Fi fingerprint localization
systems, moreover, the online transfer learning and offline
transfer learning are used separately in these works. Although
it can achieve high-precision positioning in the early stage
under the premise that the target domain has sufficient labelled
data, it has two limitations: the offline adaptation results cannot
work well in dynamic environment, and the labelled data are
relatively few or none. Furthermore, the online DA will discard
source domain information, which only depends on the current
input data, while the offline DA ignores the change of the
dynamic environment resulting in instability of localization
system.

C. CSI and RSSI Fingerprints
The Wi-Fi based fingerprint positioning system are mainly

divided into two schemes: RSSI based and CSI based. In the
last decade, the RSSI-based indoor positioning system is very
popular in industry or academia due to its lost cost, easy

access. There are two ways to use RSSI for positioning:
ranging calculation and fingerprint matching. In ranging calcu-
lation, Log-normal Distance Path Loss (LDPL) model is used
to calculate distances from interesting place to Wi-Fi devices,
after that, the estimation algorithm (e.g. trilateration algorithm)
uses the ranging results to estimate the location. For example,
Bo Yang et al. proposed a trilateration algorithm based on
value theory for RSSI-based indoor localization [42]. It should
be noted that at least 3 or 4 ranging results are required in
2D plane or 3D space. The disadvantages of ranging and
positioning based on RSSI are that the ranging model is easy
to be disturbed by dynamic environment (multipath effect),
and the model parameters are difficult to obtain (massive
data fitting). RSSI based fingerprint matching is consisted of
offline fingerprint collection and online fingerprint matching;
with the development of deep learning, fingerprint positioning
technology based on RSSI has gradually become a research
hotspot. For example, Li et al. proposed a RSSI-based local-
ization system which has long-term stable performance, the
key technique used is that three classification modules are
utilized to vote for pseudo labels for system training based
on DANN; at the same time, the authors also applied output
smearing to maintain the diversity among three modules [43].
In reference [44], three CNN networks are used as encoders to
preprocess RSSI fingerprint data, so that fingerprint features
with the same label are closer, while fingerprint features with
different labels are farther apart, which has high positioning
accuracy and performs better than the general schemes in a
long-time scale. Although these studies have shown that the
positioning system based on RSSI fingerprints can achieve
long-term high-precision localization, this is mainly due to
the powerful feature extraction ability of the designed network
and a certain number of Wi-Fi devices. Essentially, RSSI is
a coarse-grained positioning signal which is the result of the
superposition of a series of multipath signals and is vulnerable
to multipath effect.

With the improvement and addition of the local area net-
work (LAN) technical standards (EEE 802.11a/g/n proto-
col), CSI can be obtained from commercial Wi-Fi devices
[45], where it has fine-grained descriptions of transmission
channel. Therefore, in recent years, CSI has been widely
used in the field of indoor positioning [46]. The essence
of CSI is the accurate description of the channel, which
can provide amplitude and phase of subcarrier. Therefore,
from the perspective of information, more detailed description
means more information, thus CSI has greater potential to
obtain robust location-specific features [47]. Moreover, the
RSSI-based localization system needs large number of Wi-Fi
devices to extract robust location-specific information, which
may increase positioning cost. At the same time, it hard to keep
all device in valid reception range according to overlapping
area of all Wi-Fi devices. Therefore, the CSI of Wi-Fi signal
is utilized for positioning in this paper, and a more detailed
comparison of CSI and RSSI can be found in reference [47].

In order to fully use the advantages of online and offline
DA and explore the characteristics of fingerprint positioning,
a joint positioning framework based on online and offline
transfer is proposed to realize high-accuracy localization and
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TABLE I
NOTATIONS USED IN THIS PAPER

long-term robustness. More specifically, the DANN is used
to realize fingerprint DA with unlabeled target-domain data
in the offline stage, it should be noted that the DANN can
also process labelled data if available. In addition, the PA
algorithm is adopted to calibrate fingerprint positioning system
with few sequential labeled data in online stage. The DANN,
PA algorithm and proposed positioning framework will be
discussed in later sections.

III. PRELIMINARIES

A. CSI Fingerprint
Channel State Information (CSI) is the characteristic of

transmission link, it gives fine-grained description about chan-
nel states including amplitude and phase information. The
transmission model in frequency domain can be expressed as

Y = H X + N (1)

where X and Y are respectively transmitted signal and
received signal, N is corresponding Gaussian noise, H denotes
CSI function which is a plural:

H = |H | ei � H , (2)

Fig. 1. The phases and amplitudes of same subcarrier in same place
before and after processing.

where |H | is the amplitude and � H denotes the phase.
However, due to noise interference and frequency bias and
drift, the received raw phases are random. Therefore, the raw
phase cannot be directly used to estimate location. According
to reference [48], the relatively stable phase of each subcarrier
after linear transformation can be represented by

φ̃i = φ̂i − ki − b, (3)

where φ̃i and φ̂i are the processed phase and the raw received
phase of i -th subcarrier, respectively. k and b can be expressed
as

k = φ̂L − φ̂1

L − 1
, (4)

b = 1

L

L�
i=1

φ̂i , (5)

where L is the total number of subcarriers. The Fig. 1
compares the phases and amplitudes of same subcarrier in
same place before and after transformation, it shows that
the processed phases are more distinguishable and stable
compared with the raw phases, and thus the processed phases
are more location-specific. The fluctuations in phase and
amplitude are caused by the dynamic characteristics of the
environment.

B. DA Problem Statement
The fingerprint-based localization system needs to refresh

its fingerprint database once the environmental changes includ-
ing scene changes, changes in environmental parameters (tem-
perature, humidity, state of window or door), pedestrian inter-
ference, etc. As shown in Fig. 2, the CSI varies with time,
and thus, the former CSI should be adapted into new domain
to improve the stability and reliability of positioning system.
The former CSI fingerprint domain is called source domain,
and the current CSI fingerprint domain is the target domain.

Suppose D is the joint distribution domain over X × Y ,
where X is the input feature space (fingerprints), Y denote the
label space (location coordinates). Then a domain is defined
as D = {X, Y, P(X, Y )}, where P(·) is the joint distribution
function, X ∈ X , Y ∈ Y .
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Fig. 2. The received CSI of same place in different time.

In unsupervised task, the labelled source data S and unla-
beled target data T can be respectively represented as

S = {xi , yi }ni=1 ∼ (DS)n, DS = {X S, YS, P(X S , YS)}, (6)

T = {xi }n+m
i=n+1 ∼ (DX

T )m, DT = {XT , YT , P(XT , YT )}, (7)

where the labelled source data S = {xi , yi }ni=1 are sampled
from source domain DS , the target data are sampled from DX

T
(the marginal distribution of target domain DT over X). The
superscripts n and m are the sample number of source domain
and target domain, respectively.

In the localization system, we have obtained the prediction
function f (·) (classification or regression) with the source data
S in the initial stage:

YS = f (X Si). (8)

The aim of DA is to improve the prediction ability of func-
tion f (·) using unlabeled data T in target domain DT , thus the

aim of DA is min
(x,y)∼DT

[−
n+m�

i=n+1
yi log( f (xi))] in classification

task or min
(x,y)∼DT

(
n+m�

i=n+1
| f (x)− y|2) in regression task, while

the labels of DT are missing.
1) Offline Optimization: In DANN, the aim of DA is also

can be represented as optimizing the function f (·) with low
target risk [24]:

RDT = Pr
(x,y)∼DT

( f (x) �= y), (9)

RDT = | f (x)− y|/|y|, (x, y) ∼ DT . (10)

And then,

RDT (C) ≤ RDs (C)+ dH (DX
S , DX

T )+ γ, (11)

dH (DX
S , DX

T ) = 2 sup
C∈H

���Prx∼DX
S
[C(x) = 1]

− Pr
x∼DX

T

[C(x) = 1]
����� , (12)

where dH is H -divergence to qualitatively describe the differ-
ence between source domain and target domain; the hypothesis
class H is a set comprised of binary classifiers C(x)→ {0, 1},
and γ is the error of the optimal classifier. In practical
applications, the calculation condition of H -divergence is too

harsh, and as such, it can instead be approximated by Proxy
A-distance:

d̂A = 2(1− 2ε), (13)

where the generalization error ε is given by discriminating
source data and target data. Therefore, in order get low risk
RDT in the target domain (high-accuracy estimated positioning
results), we need to reduce H -divergence while maintaining
low source domain risk, i.e., increase the domain discrimi-
nation error (fooling the discriminator) through data feature
mapping or extracting, and keeping high-accuracy predicted
results in the source data.

From the previous summary, it can be seen that the Domain-
Adversarial Neural Networks (DANN) is comprised of three
parts:

• a feature representation part extracts features from both
the source domain and the target domain,

• the label predictor (classification or regression) is used in
all stages including training and testing, and lastly a

• domain classifier is used to judge whether the feature
comes from the source domain or the target domain.

In the training stage, the label predictor is optimized through
minimizing its loss on training samples, while the feature
representation part is optimized for the purpose of maximizing
the loss of domain classifier and minimizing the loss of label
predictor which can extract the domain-invariant features.

Many DA methods match the corresponding labels of the
source data and the target data by reducing the dimensionality
feature expressions in the two domains (source and target).
This means that the source domain has the same or more
categories (labels) than the target domain. In other words,
most works only consider that the difference on feature
distribution P(X) between source domain and target domain
(i.e., P(X S) �= P(X T )), rather than the difference of joint
distribution of feature and label on X × Y (i.e., P(X S , Y S) �=
P(X T , Y T )). In fingerprint-based localization systems, these
DA methods could only be used in same area (i.e., P(X S) �=
P(X S), DY

T ⊆ DY
S ). However, the DANN training structure

provides another possibility, that is, the target data domain
can have more categories (labels) than the source data domain
(i.e., P(X S) �= P(X S), DY

T ⊇ DY
S ), similar to the idea of label

embedding. Therefore, the DANN-based DA can considerably
reduce the dependence on the labelled data in target domain
(the labelled data in target domain could be also used in DANN
training when they are available).

2) Online Optimization: Although the offline transfer learn-
ing works well in fingerprint DA, the method is a
time-consuming process and cannot capture the dynamic
characteristics of the environment. Besides, offline transfer
learning does not match the form of data collection, i.e., offline
transfer learning is batch data used for training at the same
time, while the data are chronologically collected. Therefore,
it is necessary to embed the online transfer learning into a
positioning algorithm framework for tracking the dynamic
features of the environment. The online transfer learning is
designed to deal with the situation that the target data is
generated one by one (or in a sequential manner), because
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of inefficient fingerprint collecting (lasting several minutes on
a collecting point). In practice, it’s hard to get large amounts
of labelled data in the target domain (waiting for fingerprint
refreshing section or newly different space).

Since the Passive Aggressive (PA) algorithm processes the
received data in a sequential manner, it has the ability of
tracking the distribution change of data. If data is drawn
from same distribution (stable environment), the PA algorithm
will keep optimizing (data is disturbed by unavoidable noise)
with minor modification, when data is drawn from different
distributions, the PA algorithm will slowly forget former
weights and gradually learn a new distribution.

In the online transfer learning, the estimation function is
trained with single instance in a sequential manner, thus
the estimate functions used in classification and regression
missions can be respectively represented as

h(i)(x) = arg max
j=1,...K

(w(i)
j · x), (14)

g(i)(x) = w(i) · x, (15)

where the discriminative function h(i)(·) predicts label of input
x in the i -th round learning, w(i)

j is the weight vector for
calculating the probability (score) of class j ; the regression
function g(i)(·) directly estimate output value. Suppose input
instance x ⊂ R

D is D-dimensional feature, the weight vector
is 1×D dimension in classification task and n×D dimension
in regression task, where n is related with a specific mission.

In a classification mission, the classification loss is repre-
sented with hinge loss function:

l(w(i)) = max

�
0, 1−

�
w(i)

yi
· xi −max

j �=yi
w(i)

j · xi

��
, (16)

where the term w(i)
yi · xi −max

j �=yi
w(i)

j · xi denotes the minimum

distance (margin) from right class yi to any other class j .
This shows that the weight will be not updated when the loss
function is zero, i.e., w(i)

yi · xi − max
j �=yi

w(i)
j · xi ≥ 1. Hence the

weight update is realized by solving an optimization function
of the form:

w(i+1) = arg min
w j

1

2

K�
j=1

			w j − w(i)
j

			2
s.t . l(w(i)) = 0.

(17)

However, in a practical application, it’s hard to exactly solve
the optimize function due to the inevitable noise in training
data. Hence the slack variable was added into the former
constraints to get other two optimization functions: PA-I and
PA-II [25].

In this paper, the PA-I is adopted to learn environment
characteristics as follows:

w(i+1) = arg min
w j

1

2

K�
j=1

			w j − w(i)
j

			2 + Cξ ,

s.t . l(w(i)) ≥ 1− ξ, ξ ≥ 0, (18)

where positive C is the hyper-parameter, the larger the C , the
more aggressive the PA-I algorithm. According to reference

[49], the closed-form PA-I update using support classes for
multiclass mission is

w(i+1)
j = w(i)

j − ο j


1− �{ j=yi }

�
xi +�{ j=yi }

�
j �=yi

ο j xi , (19)

ο j = �xi�−2 max

×
�
0, l j−max


�
u∈S

lu

|S| +
C

|S| �xi�2 ,
�
u∈S

lu

|S| + 1

��
,

(20)

where j is class label, �{ j=yi } denotes indicator function, the

term l j is defined as l j = max
�
0, 1−

�
w(i)

y j · xi − w(i)
j · xi

��
,

S P denotes the support vectors which is determined by

k−1�
j=1

lσ( j ) < min

�
(k + 1)C

�xi�2
− lσ(k), klσ(k)

�
, (21)

where σ(k) is the k-th class in the descending order of l j ,
j = 1, . . . , K .

In regression mission, the prediction loss is expressed as

l(w( j )) = max
�

0,
���y j − g( j )(x j )

���− ε
�

= max
�

0,
���y j − w( j ) · x j

���− ε
�

. (22)

Hence the corresponding weight update rule is

w(i+1) = w(i) + max


0,

����yi − w(i) · xi
��− ε

���
�xi�2 + 1

2C

, (23)

As is stated above, the mechanisms (update rule, data form,
etc.) between offline DANN and online PA are different from
each other. Building a bridge between offline learning and
online learning can achieve better fingerprint domain transfer
and environment characteristic tracking. Besides, the combina-
tion of DANN and PA fully conforms to the characteristics of
fingerprint positioning, i.e., the initial stage is unlabeled data
and the positioning stage is few labelled data with sequential
manner.

IV. ADAPTIVE WI-FI BASED LOCALIZATION

A. 1D-CAE Feature Extractor
In the positioning system, the received raw location-specific

fingerprints are multi-dimensional and noise-contaminated due
to inherent characteristics of Wi-Fi signals, and the outliers
will degrade the performance of positioning system. Therefore,
the autoencoder is usually used to denoise and compress
signals, because the autoencoder can extract the deep char-
acteristics of input signals under unsupervised learning.

After finishing training, the learned features should be
domain-invariant and prediction-discriminative. In addition,
due to 1D feature of fingerprint, the experiments in reference
[23] show that 1D-CNN outperforms 2D-CNN and DNN in
Wi-Fi fingerprint signal processing. Therefore, in order to
integrate merits of AE and 1D-CNN, the 1D-Covolutional
Autoencoder (1D-CAE) shown in Fig. 3 is designed to refine
the signal and get reliable and robust characteristics. Thus,
it abstracts not only space information between subchannels
of signal but also deeper feature representations, which will
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Fig. 3. The structure of 1D-CAE, which is suitable for processing 1D
data. The multiple 1D intermediate layers (green and yellow) are results
of different 1D convolutional kernels.

facilitate the extraction of domain-invariant and prediction-
discriminative features. Furthermore, it can denoise the raw
input signal after unsupervised learning. 1D-CAE has two
parts including encoder and decoder. In encoding process
(black dash line), 1D kernels are used to process 1D fingerprint
data similar to 2D-CNN where the convolutional and pooling
kernels are two-dimensional. In the unpooling manipulation
of encoder part (red dash-dot line), the nearest interpolation
method is adopted to restore the loss information of the pre-
vious max pooling stage. The deconvolution can be expressed
as

I = f (k1
∗O1 + . . .+ wkn

∗Okn ), (24)

where I is the input of current layer, ki and Oi are respectively
the i -th convolutional kernel and the output of the last layer,
the subscript kn denotes the number of kernels.

B. The Adaptive Fingerprint Transfer
As is stated above, offline and online transfer learning have

different working mechanism. More specifically, offline weight
update needs batch data, while online weight update only
uses a single sampling instance. Therefore, it’s a challenge
to combine and coordinate the two transfer learning ways in
a uniform framework. In this paper, inspired by the General
Policy Iteration (GPI) in Dynamic Programming (DP) [26]
where the GPI strategy is used to train the model based
on Markov Decision Process (MDP). In DP training, the
GPI strategy is designed to realize policy estimation and
policy improvement, which are the mutual basis of self-value
calculation.

Similar to the DP training, the online update and offline
update are also based on mutual optimization results, i.e., the
feature extraction (offline) and the label prediction (online) in
DA are similar to the strategy improvement and the policy
estimation in GPI, respectively. Thus, the whole transfer
learning can be divided into two stages: offline stage (training
with GPI strategy) and positioning stage (online learning and
prediction).

In offline learning, the DANN is used to realize DA using
labeled data of source domain and unlabeled data of target

Fig. 4. The training flowchart of proposed framework.

domain, it coincides with fingerprint adaptation of a position-
ing system where only the old labeled fingerprints and newly
collected unlabeled fingerprints are available.

In online learning, the PA algorithm is applied to fine-tune
model, where the data is sent to training model in sequential
manner. This characteristic of PA algorithm is compatible with
the fingerprint recalibration of a localization system where the
labeled fingerprints are collected one by one.

As shown in Fig. 4, the feature extraction part obviously
involves both online learning and offline learning. Hence the
GPI is applied to coordinate the relationship between DANN
training and PA algorithm, the whole training sequence is
described as follows:

• The data collection includes off-the-shelf labeled data
in source domain and unlabeled data collected in target
domain, it reflects that there is no laborious labeling
process.

• Labeled data (source domain) and unlabeled data (target
domain) are sent to feature extracting part for getting
domain-invariant and prediction-discriminative features.
After that, the GPI is used to adjust offline learning
and online learning. Specifically, the weights of clas-
sification remain unchanged in offline learning stage
(training domain discriminator and feature extractor), and
the parameters of feature extracting cell are frozen for
online learning of classification. Note that the labeled data
in source domain is used in online learning.

• After reaching a preset accuracy (or threshold), the sys-
tem fully switches to online learning with few labeled
data in target domain. In this stage, the positioning system
provides localization service and receives new labeled
data (online learning) for calibrating the system. There-
fore, this system has potential ability for anti-interference
and adaptation in a dynamic environment. Once the
positioning environment changes dramatically or the posi-
tioning error exceeds a given threshold, the whole system
will return to the first step and retrain again.
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As mentioned above, it can be seen that the whole sys-
tem keeps continual training after offline learning, hence
the proposed system has the potential for long-term stabil-
ity compared with other single DA methods, moreover, the
DA is embodied in feature representation, so that the final
estimation (classification or regression) can give more reliable
results based on the extracted features which are invariant and
discriminative to the change of domain.

The transfer function of the feature extractor, domain dis-
criminator and predictor (classification or regression), can be
respectively expressed as T f (·; θ f ), Td(·; θd) and Tp(·; θp); the
parameter θ are a neural network weight and bias in our work.
The predictor loss and domain discriminator loss under i -th
input are respectively denoted by li

p(θ f , θp) and li
d(θ f , θd).

li
p(θ f , θp) = l p(Tp(T f (xi ; θ f ); θp), yi ), (25)

li
d(θ f , θd) = ld (Td(T f (xi ; θ f ); θd), di ), (26)

vector xi is 1D input feature, where yi and di are correspond-
ing classification label and domain label.

According to reference [24], the offline DANN optimizing
aims are

However, the classification optimizing mechanism of offline
learning is different from that of online learning; thus, the
former DANN classification optimizing equation θ̂p can be
replaced with l(w):

In order to fuse offline learning and online learning within a
uniform framework, the GPI strategy is applied between offline
learning and online learning, such that

Hence, in offline stage, the parameters updated by gradient
descent are:

θd ← θd − μλ
∂li

d

∂θd
, (33)

θ f ← θ f − μ



∂li

p

∂θ f
− λ

∂li
d

∂θ f

�
. (34)

In online stage, the parameters are updated by PA algorithm:
w j ← w j − ο j



1−�{ j=yi }

�
xi +�{ j=yi }

�
j �=yi

ο j xi , (35)

where l(w(i)) = li
p(θ̂ f , θp), i.e., the parameter θp denotes the

weight matrix w.
We give the structure of the network and algorithm in Fig. 5

and Table II, respectively, where it should be noted that there
is a gradient reversal layer between feature extraction layer
and domain classifier in Fig. 5, the gradient reversal layer
reverses the gradient (multiplying a negative scalar) in the error
backpropagation and keep the input unchanged in the forward
propagation. Thresholds Tth and Eth in Table II represent
the time threshold and error threshold of online learning,
respectively. Online learning is not suitable for long-term
positioning, and is only used for model tuning in a slightly
changing environment. Hence the time threshold Tth and error
threshold Eth are needed to change online learning mode to
offline learning mode for keeping positioning accuracy. The
determination of Tth and Eth needs to be set according to the
specific environment and positioning requirements: the more

TABLE II
THE TRAINING ALGORITHM

complex the environment, the smaller the Tth ; the higher the
positioning accuracy requirement, the smaller the Eth .

V. EXPERIMENT EVALUATIONS

In this section, we will firstly give the basic experiment
environment and condition of data preprocessing. Then, series
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Fig. 5. The structure of the localization framework.

of experiment are conducted to verify the effectiveness and
robustness of our proposed algorithm.

A. Experiment Preparation
To verify the superiority of proposed algorithm, various

experiments are conducted in five scenes, as shown in Fig. 6
including an office room (E1), a small-size office room (E2),
a hybrid experiment room (E3), a meeting room (E4) and

a semi-open corridor (E5). In Fig. 6, the layout of the true
environment means the stable furnishings and decorations that
remain unchanged (location and state) in all experiments.
In each experiment, an ASUS laptop equipped with 5300 NIC
is used as signal receiver (on a table with a height of 0.83m),
where the CSI tool [50] is running under Ubuntu 14.0 oper-
ating system to capture signals; Xiaomi R4CM router (on a
table with a height of 0.75m) with 2.4GHz frequency band
and power of 5W is used as the transmitter to send signals to
receiver. The sampling frequency is 5 Hz which means that
the interval of adjacent package is 200ms. Each point of fin-
gerprint collection in source domain is sampled for 5 minutes
(labeled), and each point of fingerprint collection in the target
domain is sampled for half a minute (unlabeled). The format
of received CSI in each package is 2 (transmitting antenna)×3
(receiving antenna)×30 (subcarrier). All experimental data are
processed on a computer with an Intel Core i5-10400F CPU,
16 GB RAM and NVIDIA GeForce RTX 2060. The ranging
device used in all tests is DELIXI DB50 laser rangefinder.

As listed in Table III, five scenes with different conditions
are designed to conduct a series of experiments. In scene E1,
the state of source domain is closing door (E1_S), and the state
of target domain is opening windows and adding baffle (E1_T),
it is designed to evaluate the adaptive ability of proposed
method in minor change environment. The difference between
source domain (E2_S) and target domain (E2_T) in E2 is
whether there is the pedestrian (two pedestrians) and baffle

θ̂d = arg max
θd

�
1

n

n�
i=1
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p(θ̂ f , θ̂p)− λ



1

n
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i=1
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Fig. 6. The left column is the environment layout, and the right column is
the real environment. From top to bottom are E1, E2, E3, E4 and E5. The
red quadrangle is the location of the transmitter and the blue triangle is
the location of the receiver. The red dots are reference points. The black
crosses are test points.

interference (a whiteboard). Specifically, in the target domain
of E2, one student stands almost motionless, the other one
wanders randomly, and the whiteboard is placed between the
signal receiver and the transmitter. The purposed of E2 design
is to test the localization performance of proposed method in
true pedestrian interference environment. To model different
environment fingerprint transfer, the source domain and target
domain in E3 use different Wi-Fi devices and anchor positions,
i.e. the Wi-Fi device is changed into TP-LINK AC1200 router
with 2.4GHz frequency band and power of 7.65W and placed
on the ground (same plane coordinates) in target domain.
The testbed E4 is a small meeting room constructed with
tempered glass different from traditional concrete wall, and

TABLE III
THE CONDITIONS OF SOURCE DOMAIN AND TARGET DOMAIN

we collected the CSI fingerprints in E4 before and after two
people blocking transmitter and receiver (E4_S and E4_T),
which is realistic scenario in daily life. We also collected
fingerprint information of corridor (E5) under three pedestrian
interference (wandering randomly) and changing the location
of metal cabinets, taking corridor as testbed is necessary
because it is a part of indoor space and it is neglected in
most studies. Besides, the corridor is a semi-open space (as
shown in Fig. 6) different from standard room, which is very
representative. Thus corridor (E5) is chosen as testbed in
our research. The dynamic interference variables of corridor
are mostly pedestrian interference, movement of furniture or
facilities (such as metal fire cabinet), etc. Therefore, we mainly
consider the interference of people and metal fire cabinet in
corridor.

For fingerprint collection, we firstly collect an appropriate
number of labeled fingerprints at the reference points on each
test platform to build the source database (five minutes per
point). After that, we change the condition of environment
according to Table III, and then we collect the unlabeled
fingerprints and the labeled fingerprints at the reference points
and test points (half a minute for each point), respectively.
At last, the collected fingerprints (labeled data in source
domain and unlabeled data target domain) are sent to train our
proposed model. After finishing training, the performance of
the algorithm is verified using the labeled fingerprints collected
at the test points. The label of fingerprint adopts the nearest
principle, i.e., the fingerprint collection points are classified as
their nearest reference point.

B. Basic Performance Test
In this part, we will verify the superiority of proposed

algorithm by comparing with several benchmark methods in
three scenes (E1-3), the target domain consists of unlabeled
fingerprints, while the source domain consists of labeled data.
All the tests are performed using unlabeled target data unless
otherwise stated.

We firstly give the training processes of proposed algo-
rithm, including classification accuracy and loss of test in E1.
As shown in Fig. 7, in the early training stage, the classi-
fication accuracy in target domain fluctuates sharply and the
classification accuracy in source domain is unstable. However,
once the accuracy of target classification is stable, the source
domain classification will remain stable for a long time; this
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TABLE IV
THE COMPARISONS OF POSITIONING PERFORMANCE WITH BASIC METHODS

Fig. 7. The classification accuracy of proposed algorithm in source
domain and target domain of E1.

Fig. 8. The losses of proposed algorithm in E1. (a) The loss of domain
adversarial stage of proposed algorithm; (b) The loss in classification
training stage.

feature can be adopted as a training stop indicator, because we
cannot get classification accuracy of target domain with only
unlabeled data in training stage. Fig. 8 depicts the change of
loss in different training stages, it shows that all losses will
gradually stabilize as the accuracy of the classification in the
target domain reaches the maximum value. The changes of
loss and accuracy in E2 and E3 DA is like that of E1, thus
they are omitted in latter tests.

The Fig. 9 shows that the features from both source domain
and target domain will be mapped into same feature space
using proposed algorithm, thus better prediction results will
be achieved after mapping.

The proposed algorithm is compared with several bench-
mark methods, including DANN, PA (C=1), Support Vec-
tor Machine (SVM, C=1, decision_function_shape=’ovr’,
kernel=’rbf’), KNN (k=5), DANN-PA cascading (Same con-
figuration as DANN and PA). The DANN-PA cascading strat-
egy is direct combination of two algorithm where the PA uses
the features provided by DANN to predict location, which is
similar with loose coupling in sensor fusion. However, in our

Fig. 9. The features of source domain and target domain provided by 1D-
CAE, each curve presents features of one location. (a) 1D-CAE output
features before training; (b) 1D-CAE output features after training.

proposed algorithm, the PA algorithm is embedded in DANN,
and the GPI strategy is used for adversarial training between
two algorithms. The localization results in E1 are shown in
Fig. 10 (confusion matrix) and the corresponding statistical
data are listed in Table IV.

As shown in Fig. 10, the proposed algorithm has better
localization results compared with other benchmark methods.
Though our proposed algorithm is related with DANN and
PA, the proposed algorithm outperforms DANN and PA in
positioning application. The proposed algorithm fully exploits
DANN and PA, where the abilities of feature adaptation and
classification are considerably improved with the help of GPI.
The experiment results show that the proposed algorithm is not
simply cascading DANN with PA. Different from DANN-PA
cascading strategy, the proposed algorithm is not sequentially
using two basic algorithms, but fusing PA into DANN training
with GPI strategy, as shown in algorithm 1. Fig. 10 (b) and (c)
show that cascading method of DANN and PA may reduce the
positioning accuracy compared with single scheme. Fig. 10
also indicates that traditional non-DA methods (Fig. 10 (d)-
(f)) do not perform as well as DA methods (Fig. 10 (a)-(c)) in
dynamic environment. To quantitatively evaluate localization
performance, the basic performance indicators are calculated,
including classification accuracy, mean positioning errors and
Standard deviation (Std) of positioning errors, as listed in
Table IV. The localization error is represented by the distance
from the actual position to the geometric center of the predic-
tion area, i.e., the positioning mean error is the average of the
distance between the predicted grid center points (reference
points) and the actual locations. The Standard Deviation (Std)
is used to reflect the stability of the positioning system.
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Fig. 10. Prediction results with different methods in E1. Source domain
is E1_S, target domain is E1_T.

As shown in Fig. 10-12 and Table IV, due to the inter-
ference of pedestrian and baffle, the features of fingerprint
vary with time periodically, thus, the localization system needs
offline feature transfer (eliminate baffle effect and mitigate
pedestrian effect) and online fine tuning. Compared with
E1, the interference in E2 consists of stable change (baffle),
dynamic change (pedestrian walking). Therefore, the tradi-
tional positioning method without DA cannot provide accurate
results. Though, DANN provide offline feature transfer, it can-
not realize online fine-tuning; PA adjusts positioning network
using online learning, but it is hard to completely eliminate
baffle and pedestrian effects; the DANN-PA cascading strategy
cannot solve these problems, because DANN and PA algorithm
are utilized separately to realize feature transfer without any
cooperation, which may lead to mutual restraint between
DANN and PA algorithm. As shown in Fig. 12, the fingerprints
are fully changed in E3_T, hence the traditional classification
methods give chaotic results (Fig. 12 (e) and (f)). In contrast,
the adaptive methods have better predicted results. As listed
in Table IV, the proposed algorithm has the highest accuracy,
small mean error and Std.

C. Comparison Existing Works
The proposed adaption algorithm is compared with several

state-of-the-art indoor positioning works: Zheng et al. adopt
the phase autoencoder (P-AE) and the amplitude autoencoder
(A-AE) to calibrate real-time CSI measurements [22], thus
AE can realize feature transforming i.e., mapping target and

Fig. 11. Prediction results with different methods in E2. Source domain
is E2_S, target domain is E2_T.

source features into common feature space. The AdapLoc
[23] based on semantic alignment is proposed to realize
DA in dynamic environment, it should be noted that the
AdapLoc is designed for regression mission in original work,
thus we replace the last regression layer of AdapLoc with
classification layer in this comparison. Similarly, a modified
TrAdaBoost is proposed to improve positioning performance
in dynamic environment [40]. The proposed algorithm is also
compared with two deep feature extraction schemes with good
performance in indoor positioning: Wang et al. designed a
deep residual sharing neural network (ResNet) to extract deep
and stable characteristics of CSI fingerprint through bi-modal
CSI tensor [51]. Liu et al. constructed a deep neural network
consisted of local connection (LC) and full connection layers
to extract robust feature expressions of CSI fingerprints [52].

1) Basic Performance Comparison: The performances of
the mentioned works tested in five environments (E1-E5)
are shown in Fig. 13-17 and listed in Table V. It shows
that all the methods have good performance in E1 (except
LC), because the change of E1 is relatively stable; but for
LC, the baffle hinders its ability to extract adjacent channel
features, i.e. it may be limited by Non-Line-of-Sight (NLoS).
The target environment of E2 is harsh and slightly fluctuant
due to stationary baffle and wandering people, thus, the
localization results are worse compared with E1. In E3, the
location and type of Wi-Fi devices are changed, which reduce
the fingerprint correlation between source environment and
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TABLE V
THE COMPARISONS OF POSITIONING PERFORMANCE WITH RECENT WORKS

Fig. 12. Prediction results with different methods in E3. Source domain
is E3_S, target domain is E3_T.

target environment, consequently, the positioning results of
all methods are poor. Compared with E1-E3, the testbeds E4
and E5 have less classification categories. Hence, the non-
adaptation methods ResNet and LC has better localization
results. Although schemes ResNet and LC have higher accu-
racy in relatively static environments (e.g., E5), they cannot
have the same performance in complex dynamic environments.
Because the essential ability of schemes ResNet and LC is
powerful feature extraction, it can extract robust features in

a mild environment with acceptable environmental ranges.
Once the environment changes drastically, it is hard to find
common robust features between source domain and target
domain only by enhancing the feature extraction capability of
the localization system.

Figures 13-17 and Table V indicate that all listed works
have better positioning results with slight environmental
change (E1), while dynamic interference (E2) and uncorrelated
change (E3) are irregular which is hard to be completely
eliminated. Besides, the experiments in E4 and E5 verify
that the traditional deep learning-based positioning system
is only suitable for the relatively stable environment with
few positioning categories. All experimental results show that
our proposed method has best performance compared with
listed similar works, the essence of our method is deeper
characteristics extraction and fusion of online and offline
transfer.

In order to more intuitively show the performance of various
algorithms, the Cumulative Distribution Function (CDF) of
classification accuracy is adopted to compare the positioning
results. As shown in Fig. 18, the CDF of our scheme is always
on the far right and rises the fastest, that is, our scheme has
the highest positioning accuracy.

2) Comparison in Incrementally Changing Environment: To
quantitively compare the performance between different meth-
ods under different degrees of interference, we incremen-
tally add interference factor in each target domain, and the
corresponding fingerprints are collected for DA and location
estimation. In this comparison test, testbed E5 is chosen
as test environment and the number of people is set as
interference variable. Then we can get the performance of
various approaches under different numbers of people. In order
to control other variable interference, this test is conducted in
same day.

The comparison results are shown in Fig. 19, it can be
seen that our proposed scheme is more stable and has higher
accuracy compared with other schemes, and if the labeled
data accounts for 1/10, the prediction accuracy will reach
100%. In this comparison, the KNN acts as a no-adaptation
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Fig. 13. Classification results in E1.

Fig. 14. Classification results in E2.

benchmark method. The accuracy decline of KNN is not
obvious after reaching 3 persons, this may be because this
type of interference has nearly reached its limit, i.e., some
signal transmission paths (Line of Sight) are almost completely
closed after 3 persons.

D. Data Number Effect
Intuitively, the performance of transfer learning is related

with environment type, number of fingerprints, fingerprint col-
lection interval, localization granularity (classification interval)

Fig. 15. Classification results in E3.

and so on. The effect of environment type on feature transfer
is hard to qualitatively described. Hence, we will only discuss
localization performance under different fingerprint number,
fingerprint intervals and classification number.

1) Fingerprint Number Effect: To quantitatively explore the
relationship between the sample number of target domain
and the positioning accuracy, several tests are conducted
under different ratio between the source fingerprints and the
target domain fingerprints. In this test, the number of source
fingerprint is constant.

Table VI is the variation of the positioning accuracy with
the ratio of the target fingerprint to the source fingerprint,
it shows that the proposed method can achieve high positioning
accuracy with less unlabeled fingerprints, thus it can alleviate
fingerprint collection problem when the environment changes.
As listed in Table VI, though increasing fingerprint number
in target source can improve positioning performance, the
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Fig. 16. Classification results in E4.

Fig. 17. Classification results in E5.

classification accuracy cannot infinitely increase with the num-
ber of fingerprints. Conversely, large number of fingerprints
may reduce the accuracy and increase training cost due to
noise interference in collected data.

Fig. 18. The CDF of prediction accuracy of each algorithm.

2) Fingerprint Interval Effect: Fingerprint interval has intrin-
sic effect on localization performance. To test the effect of fin-
gerprint interval, we change the fingerprint interval while the
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Fig. 19. Classification results in incrementally changing environment.

TABLE VI
THE LOCALIZATION CLASSIFICATION ACCURACY UNDER DIFFERENT

TARGET /SOURCE FINGERPRINT RATIO

TABLE VII
THE RELATIONSHIP BETWEEN ACCURACY AND FINGERPRINT

INTERVAL

TABLE VIII
THE CLASSIFICATION ACCURACY UNDER DIFFERENT RATIO OF

LABELED DATA IN TARGET DOMAIN

locations of fingerprint collection points are equally distributed
in the interesting area, and the interval between classification
points is constant.

As is listed in Table VII, the classification accuracy does
not always increase as the interval decreases due to noise
interference. The noise will exceed the difference between the
fingerprint of adjacent points when fingerprint interval is small
enough, hence proper fingerprint collection interval needs to
be determined before fingerprint collection.

3) Classification Interval Effect: To qualitatively test local-
ization performance under different classification numbers,
the localization granularity (classification interval) is used to
represent the change of classification number, because the
more classification categories, the smaller the granularity.
In this test, the target/source fingerprint number ratio is 1 and
test scenario is E1.

As shown in Fig. 20, the classification accuracy increases
as the granularity increases; conversely, the offline train-
ing time decreases as the granularity increases. It reveals
that position-specific fingerprint is harder to judge as the
granularity decreases, once the granularity is decreased to a
certain extent, the signal noise will annihilate the fingerprint

Fig. 20. The effects of interval on classification accuracy and training
time.

TABLE IX
1D-CAE WITH DIFFERENT OUTPUT FEATURE DIMENSION

TABLE X
1D-CAE WITH DIFFERENT LAYER NUMBER

TABLE XI
ONLINE REAL-TIME PERFORMANCE

difference between adjacent positions, which will result in
classification error and longtime training.

4) Hybrid Database With Labeled Data and Unlabeled Data:
To simplify the discussion, we set the total number of target
fingerprints to be the same as the source domain and get the
localization results under different ratio between labeled data
and unlabeled data in target domain. The test results are listed
in Table VIII, it reveals that only a small amount of labeled
data can considerably improve the accuracy of classification,
which means that our scheme can reduce the time consuming
and labor cost in fingerprint collection.

E. Structure Effect and Real-Time Performance
Feature extraction is the basis of transfer learning, which

nearly determines the efficiency of feature transfer in offline
stage, moreover, the position estimation results mostly rely
on the feature extracted by 1D-CAE. Therefore, the effects of
parameter in 1D-CAE will be discussed in this part. After
that, the real-time performance of online localization and
recalibration is also tested. These tests are performed in E3.

As listed in Table IX, the best output dimension is 8 with
highest classification and less training time. Although deeper
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Fig. 21. The classification accuracy of three weeks.

layer number of neural networks can giver better localization
results accompanying, it comes with increased training time,
as shown in Table X. There is a tradeoff between layer number
and training time in application, because the increase of layer
will result in a lot of training time but little improvement in
performance. Therefore, the second scheme is best in Table X
by considering both training time and accuracy.

Since whole transfer network is mainly trained in offline
stage after the fingerprint features change, the offline training
may not have any effect on real-time performance. To evaluate
real-time performance of proposed method, the average online
calibrating time and average online prediction time are given
in Table XI after 100 tests.

The calibrating time is the cost of PA algorithm in online
fine-tuning, the predicting time consists of two parts: 1D-
CAE feature extraction and location prediction. As shown
in Table XI, the calibrating time and predicting time is con-
siderably low (around 60ms), which is suitable for real-time
localization.

F. Long Localization Performance
To evaluate the long-term performance of proposed localiza-

tion framework, the localization accuracy is tested respectively
in 9:00, 13:00 and 17:00 every day for three weeks. The test
scenario is selected as E3, and the other basic experiment
parameters are same with Section 5.2.

As shown in Fig. 21, the proposed localization framework
can provide stable positioning results over a long period of
time. Even though severe environmental changes reduce the
positioning accuracy, it can still give reliable results by adding
newly collected unlabeled fingerprints or a small number of
labeled fingerprints.

VI. CONCLUSION

In this article, a GPI strategy-based transfer learning frame-
work is proposed to solve localization problem in dynamic
environment with only unlabeled fingerprints or few labeled
fingerprints. In offline stage, 1-CAE is designed to extract deep
and related 1D features between different subcarriers; after
that, the GPI strategy-based adversarial training is used for the
fusion framework of DANN and PA algorithm, which can real-
ize DA between source domain and target domain using only
unlabeled data or few labeled data. In online stage, if there

are some fluctuations in localization results, a small amount
of labeled data can be collected to calibrate the positioning
system with a short training time (less than predicting time).
A series of experiments testified that the proposed method
outperforms traditional positioning methods. Compared with
most of the current works, our scheme still has the advantages
of accuracy and stability in dynamic environment positioning.
Furthermore, the proposed method reduces the labor cost and
time consumption in fingerprint collection, which is conducive
to the promotion of Wi-Fi positioning system.

The proposed positioning work can realize the feature
transfer of fingerprints relying on presetting error threshold,
but it is hard to intelligently track environmental changes and
identify the types of changes, which is also ignored by most
positioning studies. Our future work will focus on solving this
problem.
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