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Low-Cost Formaldehyde Sensor Evaluation and
Calibration in a Controlled Environment
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Tuomas Hieta, Sasu Tarkoma , Senior Member, IEEE, and Tuukka Petäjä

Abstract—Formaldehyde is a carcinogenic indoor air pol-
lutant emitted from common wood-based materials. Low-cost
sensing of formaldehyde is difficult due to inaccuracies in
measuring low concentrations and susceptibility of sensors
to changing indoor environmental conditions. Currently gas
sensors are calibrated by manufacturers using simplistic
models which fail to capture their complex behaviour.We eval-
uated different low-cost gas sensors to ascertain a suitable
component to create a mobile sensing node and built a cali-
bration algorithm to correct it. We compared the performance
of 2 electrochemicalsensors and 3 metal oxide sensors in a controlled chamber against a photo-acoustic reference device.
In the chamber the formaldehyde concentrations, temperature and humidity were varied to assess the sensors in diverse
environments. Pre-calibration, the electrochemical sensors (mean absolute error (MAE) = 70.8 ppb) outperformed the best
performing metal oxide sensor (MAE = 335 ppb). A two-stage calibration model was built, using linear regression followed
by random forest, where the residual of the first stage acted as a input for the second. Post-calibration, the metal oxide
sensors (MAE = 154 ppb) improved compared to their electrochemical counterparts (MAE = 78.8 ppb). Nevertheless, the
uncalibrated electrochemical sensor showed overall superior performance hence was selected for the mobile sensing
node.

Index Terms— Air quality monitoring, formaldehyde detection, metal oxide semiconductor, electrochemical sensors,
machine learning, gas sensors.

I. INTRODUCTION

THE World Health Organisation (WHO) has designated
indoor air pollution to be the leading cause for 4.3 million

premature deaths per year [1]. Today, majority of people
are spending more than 90 percent of their time in indoor
environments [1] and health problems and diseases associated
with poor indoor air quality (IAQ) can cause a variety of
adverse health effects to them [2]. Additionally, over the past
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two years there have been numerous lockdowns and ‘work
from home’ recommendations issued due to the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic.
This has resulted in an increase in time spent by people
indoors [3]. Thus there is a need to better assess major
indoor pollutants in home environments and develop methods
of sensing it to avoid health degradation due to indoor air
quality issues [4]. Low-cost gas sensors (<100e) embedded in
a mobile sensing node could be a great cost effective method of
sensing personal exposure to these pollutants. However, low-
cost gas sensors often give inaccurate results and are equipped
with a built-in calibration algorithm which fail to capture the
complexity of their behaviour [5], [6]. If calibrated properly
they can be a great resource in measuring personal exposure to
pollutants in indoor environments and cities [7], [8]. The data
from a network of these mobile sensing nodes can equip the
governments and private sector with vital information needed
to introduce targeted pragmatic measures to solve this complex
problem.

Some volatile organic compound (VOC) are considered to
be indoor air pollutants and are highly hazardous to human
health, even when present in small concentrations [9] [10].
Formaldehyde is a volatile organic compound which is an
omnipresent indoor air pollutant. It is emitted mostly from
common wood-based home materials e.g. furniture, coatings,
insulation and flooring materials, where it is used in the
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adhesives. It has been found that short term exposures towards
formaldehyde causes eye and nose irritation [7], [11] and
on medium and sustained long term exposure it can also
cause asthma [12], [13] and nasopharyngeal cancer [14], [15].
It has been designated as a category 1B carcinogen by
the European Union [16]. Lack of affordable and accurate
options for mobile formaldehyde sensing make it important
to carefully study them in order to make them available to
the general public [17]. Formaldehyde is difficult to measure
using low-cost devices because they start harming humans
even when present in small concentrations [18], detecting
which have been known to be challenging for low-cost gas
sensors [19], [20]. Furthermore formaldehyde emissions are
often triggered by changing environmental conditions which
has been shown to be a leading cause of errors in low-cost
gas sensors [7], [21]. Therefore understanding of this com-
plex phenomenon of sensor interaction with formaldehyde in
varying environmental conditions is an important topic which
needs to be researched in order to build an affordable and
accurate mobile sensing unit.

The main goal of this study is to evaluate the efficacy of
the promising low-cost formaldehyde sensors to be embed-
ded in a mobile sensing node. The evaluation of individual
low-cost sensor is done in a controlled environment chamber
by comparing them against an accurate reference device in
varying environmental conditions and varying concentrations
of formaldehyde. The evaluation of the sensors is done in two
phases: firstly, pre-calibration wherein we evaluate the sensor’s
inherent capabilities and effectiveness of its built-in calibra-
tion algorithm and secondly, post-calibration after building
a two-stage machine learning calibration model to correct
its data-stream. By doing this our objective is to gauge two
important parameters: the level of errors innately present in
the sensors and the ease with which they can be modelled
and calibrated. The sensors will be subjected to differing
concentrations of only formaldehyde therefore their selectivity
or performance in presence of other cross-sensitive gases is
beyond the scope of this paper.

A secondary goal of the study is to compile and open source
the comparative sensor data to serve as a high quality training
data-set for building of machine learning models [22]. Gas
sensor data-sets are often created in ambient conditions which
make the models fail on deployment in extreme conditions.
The use of the controlled environment chamber enables us
tackle this challenge by mapping the sensor performance
against the entire state space of the environmental variables
creating a more complete data-set for model training. There
have been some previous studies where gas sensor evaluation
was done via environmental chamber [23]–[26]. However
these studies were mostly focused on common outdoor pol-
lutants and particulate matter and did not use the chamber as
a source for generating diverse training data for aiding model
building.

A. Formaldehyde Emission Regulations and
Environmental Factors

Understanding concentrations of formaldehyde considered
to be dangerous is key to understanding the range in which

TABLE I
PERMISSIBLE FORMALDEHYDE EXPOSURE LIMITS OF DIFFERENT

COUNTRIES EXPRESSED IN TIME WEIGHTED AVERAGE

FOR 8 HOURS (TWA) AND SHORT TERM EXPOSURE LIMITS

OF 15 MINUTES (STEL) [27]

Fig. 1. Ranges of concentration of Formaldehyde as per time weighted
averages (TWA) mentioned in table I along with formaldehyde concen-
trations measured after emission from common activities.

optimal sensor performance is needed. In regulations around
the world, two limiting parameters for formaldehyde exposure
are specified: time weighted average for 8 hours (TWA) and
short term exposure limits for 15 minutes (STEL). Values
have been converted to parts per billion from parts per
million for consistency throughout the paper. Table I lists the
different formaldehyde exposure limits set in different coun-
tries [27]. Fig. 1 maps these legislated exposure limits against
formaldehyde concentrations measured in ambient conditions
at homes [28], mobile homes [29] and during some common
activities like smoking [30] and oven cleaning [31]. Amongst
these, the highest ambient formaldehyde concentration of
800 ppb is measured in mobile homes due to their enclosed
structure and high use of pressed wood products [29].

Closed indoor environments are places where build up of
harmful volatile gases can occur easily hence understand-
ing these environments are essential for accurately detecting
formaldehyde. Formaldehyde emission in indoor environments
is dependant on environmental parameters like relative humid-
ity and temperature. Relative humidity (RH) is one of the
main environmental factors affecting the emission behaviours
of formaldehyde from building materials. In one of the early
studies measuring this correlation, a doubling of emission rate
of formaldehyde from a particleboard was observed when
RH increased from 30 % to 70 % at constant tempera-
ture [32]. Similarly recent studies also displayed similar results
with medium density fiberboard, another common wood-based
products found at home [33]. In addition to these results,
it was also found that in the temperature range of 14 to 35◦ C
formaldehyde emissions doubled for every 7◦ C increase
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Fig. 2. Psychometric chart used for designing Heating, ventilation, and
air conditioning (HVAC) systems showing region of interest of indoor
environment conditions.

[32], [34]. Therefore studying the sensor performance in vary-
ing conditions like at higher temperature and humidity is of
great importance as that is when formaldehyde emissions peak.
Psychometric chart is often used for designing indoor heating,
ventilation, and air conditioning (HVAC) systems. In Fig. 2
the ‘comfort zone’ denotes the range of optimal indoor envi-
ronmental parameters defined by different European union
countries as their national recommendations [35]. For this
study, after taking into account open ventilation systems and
varying indoor environments around the world we have used
a larger range of environmental conditions as the boundary
conditions which is denoted as ‘region of interest’ in Fig. 2.
The initial boundary for our region of interest are seen to
be slightly higher in Fig. 2 due to the higher recommended
ambient temperature in Finland [35]

B. Measuring Technologies
Currently the most accurate way of measuring formalde-

hyde is batch sampling followed by off-site analysis using
either chromatography or spectroscopy [36]. This procedure
is expensive, time consuming and cannot be done in real
time [36]. One of the newer development in technology is the
use of infrared spectroscopy for accurate real-time detection of
formaldehyde [37]. This will be the principle of operation of
the reference device used in our study [38]. However, current
infrared spectroscopy devices are also highly expensive and
bulky to act as a compact mobile gas sensing node.

In our study, low-cost sensors measuring gas concentration
using electrochemical sensing and a metal oxide film are stud-
ied. Electrochemical (EC) and metal oxide (MOS) sensors are
the two most common sensing principles used in low-cost gas
sensors. This is primarily because both have good sensitivity,
fast response time, portable size and with slightly different
configuration can be optimized for a different gas. However
each of these sensing techniques have their advantages and
disadvantages:

1) Electrochemical (EC) Sensor: EC sensors sense gas con-
centrations based on current measurements between electrodes
in an electrolytic cell. The main benefits of EC sensors are
their resistance to environmental changes and low power draw
due to lack of need of an electric heater. However their

operating range is narrower than in MOS sensors. A combi-
nation of low humidity and high temperature is particularly
problematic to EC sensors, as it can dry out the sensor’s
electrolyte and break the sensor [39]. The EC sensors also
tend to degrade faster than MOS sensors over time, especially
when in contact with high concentrations of pollutants [40].

2) Metal Oxide (MOS) Sensor: These sensors sense gas by
measuring the change in resistance of metal oxide sensing ele-
ment which reacts to the target gas on heating up to 300–500◦
C. MOS sensors have several advantages, such as low-cost and
compact size. The biggest disadvantage of MOS sensors is
their accuracy and tendency to drift [41]. Additionally, higher
humidity results in higher sensor error [42]. Heating elements
in MOS sensors make them highly power inefficient which
needs to be considered especially while designing a mobile
device.

These sensors have improved over the past few years with
respect to their underlying material science [43], [44] and sig-
nal processing [45], [46]. However calibration using machine
learning when done effectively has also shown encouraging
results [47], [48].

II. METHODS AND MATERIALS

This section describes the sensors and the apparatus used for
data generation along with the calibration algorithm used for
modelling the low-cost sensor errors. The experimental setup
and its components used for generation of the comparative data
of the low-cost sensors and reference device are described in
section II-A, II-B and II-C. The sampling strategy used to
generate the data from entire range of independent variables
is detailed in section II-D, followed by the specifics of the
machine learning calibration algorithm used to calibrate the
data-stream in section II-E.

A. Low-Cost Sensors
There were three different models of low-cost gas sen-

sors used in the experiments: two MOS sensors i.e. Bosch
BME680, Sensiron SGP30 and one EC sensor i.e. Winzen
ZE08-CH2O. In the data acquisition unit there were two units
of the Bosch BME680, two units of Winzen ZE08-CH2O and
one unit of Sensiron SGP30 (due to fixed I2C address limita-
tion). The BME680 and SGP30 are micro-electromechanical
system (MEMS) based MOS sensors for detecting TVOC
(Total Volatile Organic Compounds) whereas the ZE08-CH2O
is an EC sensor designed for measuring formaldehyde. More
established and tested metal-oxide TVOC sensors were chosen
for the experiments after poor results shown in preliminary
testing by a number of low-cost metal-oxide (MOS) sensors
marketed as formaldehyde sensors. Lack of high number of
units of individual sensors is a limitation of this study which
must be taken into account while interpreting the results.

B. Reference Device
To act as a reference and to get accurate formaldehyde

concentration values throughout the experiments the Gasera
One Formaldehyde device is used [49]. This unit senses
the gas concentration by a combination of photo-acoustic
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TABLE II
LOW-COST GAS SENSORS USED IN THE STUDY

TABLE III
REFERENCE DEVICE: GASERA ONE FORMALDEHYDE SPECIFICATIONS

infrared spectroscopy and an ultra-sensitive cantilever sensor.
The sample gas is essentially stored in a photo-acoustic
measuring chamber wherein it is excited using a mid-IR light
of frequency corresponding to the resonant frequency of the
formaldehyde molecule. The emitted energy is converted to an
equivalent electrical signal using the ultra-sensitive cantilever
sensor. Hence it is a highly accurate and selective device for
measuring formaldehyde (see Table III) [49].

C. Experimental Setup
Environmental chambers are used to study the complex

interactions between sensors and their surroundings in a
controlled manner. These chambers can be an asset as they
can give us an overview of sensor performance in many
diverse environments representing their potential environment
of deployment. They are also a great source of generating
sensor training data synthetically in a situation where enough

Fig. 3. Schematic of the entire test setup.

high quality training data might not be present. Our current
experimental setup was designed to serve both the above men-
tioned goals. The entire experimental setup can be essentially
divided into three parts: the control chamber, environmental
control unit and data-logging unit.

1) Control Chamber: To ensure safety against poisonous
formaldehyde fumes the entire experimental setup was built
inside a fume-hood. The fume hood had a maximum exhaust
airflow of 225 m/s which also represents the rate at which
air intake takes place from the lab environment. The lab
environment did not have any formaldehyde sources based on
ambient condition measurements by the reference device and
had a ventilation factor of 3-5 which represents the number
of time the air in the room is changed per hour. A 52L
polypropylene box served as the control chamber inside which
the varying combinations of environmental parameters and
gas concentrations were created. The use of polypropylene
as a material was due to ease of access, sufficient resis-
tance to formaldehyde and formic acid and its experimental
non-interference due to its inability to emit formaldehyde. The
control chamber has two 10 mm openings at the top to provide
ventilation needed to reach equilibrium. These openings are
equipped with manually actuated pneumatic shut-off valves.
The control chambers also contains two 10 mm openings at
the bottom of the side faces for entry of the formaldehyde gas
and humid air as seen in Fig. 3.

2) Environmental Control Unit: The control of the humidity
and temperature was carried out by the environmental control
unit. It consisted of an Arduino Uno, that controlled a printed
circuit board (PCB) heated bed and a 3L portable humidifier.
This module is given a feedback through an Adafruit BME280
temperature humidity sensing module, which is placed inside
the control chamber. Based on the feedback, the control
of the heated bed and humidifier was carried out using an
on-off control via an Arduino shield consisting of multiple
mechanical relay units. The reference device is present outside
the control chamber as seen in Fig. 3 and 4, it draws in
a sample every minute for measurement. A Raspberry pi is
used to log down the readings of the reference unit. This
Raspberry pi also controls the gas concentration in the control
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Fig. 4. Image of the actual setup.

chamber by using the reference unit data as a feedback and
a DC fan as an actuator. The DC fan is connected to a
separate, smaller 1.5L polypropylene box as seen in Fig. 3
labelled as ‘Gas concentration control’, where a beaker of
formalin is kept whose constant evaporation acts a source of
formaldehyde fumes. The intake of formaldehyde gas into the
control chamber is done by opening the gas valve and actuating
the fan at a fixed speed using a simple on-off controller
in order to achieve the desired concentrations mentioned in
the sampling strategy (in section II-D). The discharge of
the formaldehyde is done gradually via the outlets shown in
Fig. II-C to get maximum comparative data points for the
entire concentration range of interest.

3) Data Logging Unit: A data logging unit is suspended from
the centre of the top face of the control chamber. This data
logging unit consists of an Arduino Mega which has all the
low-cost sensors attached to it. It is also provided with a real
time clock module and an SD card module for logging of the
data with corresponding timestamps. The data is taken out at
the end of every experiment and stored in a work station for
analysis.

D. Sampling Strategy for Experimental Data
A machine learning model’s performance is highly depen-

dent on quality of training data fed into it. In order to perform
well in all possible indoor environments post deployment,
some data depicting sensor performance in these environments
is needed. As stated in section I, the secondary goal of the
research was to generate a high-quality training data-set of
sensor performance over the entire range of temperature, rela-
tive humidity and formaldehyde concentration. The sampling
strategy was designed to help achieve this goal. Five sets
of experiments were carried out, wherein one or two of the
independent variables were varied to understand their effect
on sensor performance. The nature of variation and range of
the independent variables is as mentioned below:

1) Formaldehyde Concentration: After understanding
the common governmental regulations against VOCs and
formaldehyde a range of 0-800 ppb was chosen. This range
comprises of prescribed limits of gas exposure and commonly
experienced formaldehyde concentrations as described in
Fig. 1. During the experiments the concentration in the

TABLE IV
SUMMARY OF EXPERIMENTS CONDUCTED IN THE

CONTROLLED CHAMBER

chamber was oscillated from minimum to maximum value of
this range to get a uniform distribution of data-points in the
entire range. The intake of formaldehyde is done in a much
more rapid rate using the fan at a constant speed to avoid
stagnation at an intermediate steady state. The discharge is
done at a slower pace to get sufficient comparative data points
for the entire concentration range. This process is repeated
for the time period of the experiment once the concentration
comes back to the lower limit specified for the particular
experiment in Table IV.

2) Temperature: VOCs are dominant and harmful primarily
in indoor environments. Therefore the temperature range of
22 − 50◦ C was chosen. This represents the range of tempera-
ture experienced in indoor environments in a number of places
in the world (as seen in Fig. 2). To explore the behaviour of the
sensors in this temperature range, the temperature was changed
in two ways: step-wise and random. For step-wise change:
the temperature was increased or decreased in step manner
wherein after each increment of 1◦ C a period of constant
temperature of 4500 seconds was maintained. For random:
a random target temperature in the specified temperature
range was chosen which was reached and maintained for
1800 seconds following which a new target temperature was
chosen. Due to the actuation being done by an on-off controller
this period of constant temperature shows oscillations about
the target value. For every constant temperature step, the
concentration was varied from 0-800 ppb in order to get
an average effect of the changing temperature on the entire
concentration range.

3) Relative Humidity: The relative humidity level was varied
from extremely low values of 8% up to the highest amount
of 85% in accordance with the conditions shown in Fig. 2.
Variation of the humidity was done primarily in the form
of steps wherein every increment is of 5% RH followed
by a period of 4500 seconds of steady state. Similar to the
temperature measurements here too an on-off controller was
used hence oscillations about target humidity value can be
seen. Additionally, for every constant relative humidity step
the concentration was varied from 0-800 ppb in order to get
an average effect of the changing relative humidity on the
entire concentration range.

4) Cross Correlation: There were some interdependence
observed in the independent variables especially between
temperature and formaldehyde emissions from the formalin
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container due to environment dependent adsorption proper-
ties of formaldehyde on surfaces because of its high dipole
moment [50]–[52]. Due to these interdependencies there was
some correspondence between the variation of these ‘inde-
pendent variables’ which have to be taken into account while
evaluating the data.

E. Data Calibration Algorithm
This section describes the data pre-processing and machine

learning algorithm we use in the second phase of our evalua-
tion to measure the ease of modelling of errors in the different
sensors. The calibration algorithm will be created over the
data output from the built-in sensor calibration algorithm with
a goal of improving its performance. In this study, a single
calibration model is presented which is a potential limitation
as it prevents us to see the effect of varying algorithms of
differing methodologies on sensor calibration.

Before pre-processing of the data-set, the various exper-
iments are compiled into three data-sets based on the pri-
mary controlled target variable i.e. concentration, temperature
and humidity. Followed by that, pre-processing of the entire
data-set is carried out, which comprises of synchronizing the
time series resolutions, standardizing the data set such that
every feature has a mean of zero and a standard deviation of
1 and transforming the data set into a normal distribution using
its quantile information. The pre-processed data was fed into
the calibration model.

The model used for calibration is a two-stage model. The
first stage of the model made use of a linear regression
layer. Based on the residuals from the first stage, we then
implemented random forest regression as the second stage.
In the end, we presented the accuracy of the calibration model
as a whole. The two-stage model has been previously used for
air quality sensing of PM2.5 [53]. The need for a two-stage
regression model is explained by the limitations of random
forest regression [54]. Theoretically, the linear regression layer
not only captures linear relationship between the reference sen-
sor and the individual low-cost sensors, but also help address
the generalization problem that random forest algorithms fail
to accomplish when dealing with regression tasks [53]. The
random forest layer is expected to capture the nonlinear
association between the input and output variables [54]. The
data set was then divided such that the first 70% of the
data was used as a training set and the remaining 30% as
a testing set. The training procedures were carried out with a
walk-forward time series cross validation [55] which has been
demonstrated to work well in time series data set.

III. EXPERIMENTAL DATA

During the data acquisition phase using the experimental
setup about 422 hours of comparative data of the collocated
reference and low-cost sensing devices were obtained. In these
experiments, three independent variables i.e. concentration,
temperature and humidity were varied based on the boundary
conditions mentioned in section II-D. The data-set is open
source and available to be used [22].

A. Experiments
The reference device was sampled per minute for its data.

The low-cost sensors data was initially sampled every 3 sec-
onds and later averaged to every minute to get rid of its
inherent variability. A total of 5 experiments were conducted
as listed in table IV. The ambient room temperature and
relative humidity in the experimental setup was was 22◦ C and
12% respectively. In the first two experiments, concentration
is the only variable which is varied over time. In the first
experiment the comparative sensor data is obtained for lower
concentration range whereas for the second one it is obtained
for a higher concentration range. Experiment sets 3 and
4 are where temperature is varied along with concentration.
The temperature variation is carried out in a step fashion in
experiment set 3 whereas in a random manner in experiment
set 4. The Experiment 5 is an experiment wherein the humidity
is increased in a step wise manner to see the effect on sensor
performance. Snippets of the time series data generated from
the experiments are presented in Fig. 5 for reference.

Conversion of Bosch sensor data from resistance to ppb was
done by an open source code [56] because of the closed source
nature of the BSEC library, its inability to work with Arduino
Mega and lack of ppm value output.

IV. RESULTS

In this section we will present the results obtained from the
two phases of evaluation: pre-calibration and post-calibration.
During the pre-calibration analysis in section IV-A we analyse
the data output of the sensors from its built in calibration
algorithm. The error or difference between the value of the
reference device and the low-cost sensor is the main metric
analyzed. In the results from post-calibration phase presented
in section IV-B we examine the change in errors in the
low-cost sensor after implementing our machine learning
calibration algorithm over the pre-existing data stream. The
results of the pre-calibration phase give us an idea of the
inherent errors in the different sensors and the post-calibration
results give us an idea of the ease with which these errors
can be modelled and corrected. Hence presenting a complete
evaluation of the low-cost sensing units.

A. Pre-Calibration Results
The main characteristic observed during the analysis of the

data was error, which is basically the difference between the
reading of the reference device and the low-cost sensor at
a particular time step when placed in identical conditions.
This parameter gives us a good estimate about the compar-
ative performance of the low-cost sensor with respect to the
reference device. Its magnitude tells us about the value by
which the low-cost sensor differs from the reference. The sign
of the error tells us if it underestimates or overestimates the
concentration of formaldehyde.

Throughout the analysis the error of the reference device
with respect to the changing environmental conditions is
assumed to be zero. The insights and preliminary analysis
based on this characteristic are listed below:

1) On comparing the data of the multiple units of ZE08-
CH2O and BME680 sensor: the ZE08-CH2O sensors
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Fig. 5. Time series snippets of sensor readings for some experiments
mentioned in table IV following the sampling strategy of section II-D,
A: High concentration experiments B: Step temperature experiments C:
Step humidity experiments.

Fig. 6. ZE08-CH2O sensor unit comparison.

showed very good correspondence between the read-
ings (Fig. 6) by showing a high Pearson correlation
coefficient (r) of 0.99 under constant temperature and
humidity. Whereas there was a significant but relatively
constant offset seen in the measurements of the two
BME680 sensors, as seen in the Fig. 7. The r for the
BME680 for the corresponding dataset was also slightly
lower at 0.85.

Fig. 7. BME680 sensor unit comparison.

Fig. 8. Response of low-cost sensors on gradually raising the concen-
tration of formaldehyde from 10-125 ppb (snippet of experiment 1: low
concentration experiment).

Fig. 9. Sensor error for different concentration ranges, values averaged
for every 10 ppb (solid line), shaded area represents standard devia-
tion (SD).

2) Fig. 8 shows a part of the time series of the experiment 1
as mentioned in table IV. Here the concentration of
formaldehyde is maintained at a low level and very
slowly increased from 10-125 ppb. The sensors SGP30
and ZE08-CH2O respond well to changes at these low
concentrations of formaldehyde, showing their effec-
tiveness and low limit of detection. This can be seen
in Fig. 8 where the ZE08-CH2O demonstrates a r of
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0.99 and the SGP30 shows 0.88. They also respond very
promptly to the rise and fall of the gas concentration
showing their high sensitivity and response, however as
per our observations, the BME680 sensor is unable to
detect changes of concentration at such low concentra-
tions. The similarity in time series profiles of the ZE08-
CH2O, SGP30 and the reference device also show their
quick recovery rate as they are able to follow the change
in gas concentration as adeptly as the reference device.

3) On comparing the behaviour of the sensors over the
entire concentration range of 0-800 ppb we can see how
their performance varies with different concentration
ranges: at low concentration (0-100 ppb), the ZE08-
CH2O outperforms the other two sensors by showing
a very low mean error (ME) of −17.49 ppb when com-
pared to the SGP30 (ME = 118.29 ppb) and BME680
(ME = 1055.84 ppb). Whereas, in the dangerous range
(100-500 ppb), the SGP30 shows a considerably superior
performance to the ZE08-CH2O (The SGP30 shows
a lower mean error of 6.97 ppb when compared to
−130.04 ppb of ZE08-CH2O but a higher variability).
At high concentrations (500-800 ppb), all the sensors
show comparatively high error. The BME680’s decreas-
ing error also becomes comparable to the other error
shown by the other two sensors.

4) All the sensors show a certain degree of sensitivity
to changing temperature but the metal oxide sen-
sors (MOS) especially the SGP30 show maximum devi-
ation at higher temperatures (>45◦ C) where the mean
error (ME) is on an average as high as 433 ppb. However
in the range of temperature usually observed indoors
i.e. from 20-40◦ C, the performance and magnitude of
error of both the SGP30 (ME = 140.55 ppb) and ZE08-
CH2O (ME = −137.16 ppb) sensors are very similar,
even though we see them showing the opposite signs
(as seen in Fig. 10). The raw BME680 sensor readings
show the highest error and variability amongst all three
for any given temperature range.

5) The performance of the EC sensors (ZE08-CH2O)
stands out when we look at the comparative performance
of the sensors with respect to humidity. Over the entire
range of humidity they show a consistently low mean
error of −29.43 ppb (as seen in Fig. 11). The BME680
sensors also show low mean error and variance at higher
humidity (above 45% RH) of 48.33 ppb. However the
SGP30 shows extremely high sensitivity to humidity and
shows an increasing trend of errors as the mean error
below 40% RH is 375.39 ppb but above 40 % RH it
reaches as high as 2526.65 ppb.

B. Post-Calibration Results
For evaluation of the post calibration performance mean

absolute error (MAE) and standard deviation (SD) is the metric
used. MAE helps us evaluate the individual performance of
sensors in experiments and also their overall performance by
preventing the occurrence of inaccurately optimistic results
due to cancelling out of errors with opposite signs. SD helps

Fig. 10. Sensor error (difference between sensor reading and reference
device) for different temperatures, values averaged for every 1◦ C (solid
line), shaded area represents SD.

Fig. 11. Sensor error for different values of relative humidity, values
averaged for every 5% RH (solid line), shaded area represents SD.

TABLE V
SENSOR PERFORMANCE PRE-CALIBRATION FOR TEST DATA-SET

us see if the model is able to reduce the variation present in
the sensor errors.

Table V presents the sensor’s average performance
pre-calibration for different experiments and table VI shows
the performance on the test data set after calibrating using
the machine learning model described in section II-E.
Additionally, we use target diagrams (Fig. 12) to assess
the model’s effect on the bias and the variance of the
measurements. The bias is simply defined as the difference
between the mean of the output values and the mean of the
input reference value as seen in equation 2, while the variance
was demonstrated by root-mean-square deviation (RMSD),
which can be calculated as follows:

RM SD = 1

σre f

√√√√ 1

N

N∑
i=1

[(yi − xi )2] (1)
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TABLE VI
SENSOR PERFORMANCE POST-CALIBRATION FOR TEST DATA-SET

Fig. 12. Target diagrams for analyzing change in bias and RMSD post-
calibration.

Bias = 1

σre f

(∑
y

N
−

∑
x

N

)
(2)

where x , y represent low-cost sensor and reference values
respectively and xi , yi represent their i th measurement. N
is the total number of observations and σre f is the standard
deviation of the reference measurements. Both the metrics are
normalized by σre f (the standard deviation of the reference
values). The closer the points are to the origin, the better the
calibration models perform.

From the target diagrams (Fig. 12) and table V and VI we
can see that after calibration the mean absolute error and the
bias is highly reduced all across the board except in the case
of the humidity experiment of sensor ZE08-CH2O (doubling

of MAE from 41.17 ppb to 82.30 ppb). This could possibly
be due to the already low error exhibited by the ZE08-CH2O
sensor for humidity which at their current state are difficult
to model. The MOS sensors show a very high reduction in
both RMSD and bias all throughout the three experiments
(in Fig. 12) which does show that even though their error is
high they are easy to model. SGP30 benefits the most from
the calibration as seen in table V and VI, it shows a very
high reduction in its errors especially with respect to humidity
(89% reduction in MAE from 1305.15 ppb to 141.50 ppb )
bringing it at par with the other sensors. BME680 also shows
a high level of reduction in its errors in all experiments post
calibration (49% reduction in average MAE from 335.56 ppb
to 171.37 ppb). The reduction in SD of the sensors errors is
mainly in regions with high sensor variation like the humidity
experiment of SGP30. However, RMSD (Fig. 12) is highly
reduced all across the board apart from some exceptional cases
like the BME680 sensor 2 and humidity experiment of the
ZE08-CH2O.

On comparing the overall performance throughout the dif-
ferent experiments the uncalibrated ZE08-CH2O (MAE =
70.86 ppb) shows the best performance when compared to
the calibrated SGP30 (MAE = 154.54 ppb) and BME680
(MAE = 171.37 ppb) sensors and even the calibrated
ZE08-CH2O (MAE = 78.81 ppb).

V. DISCUSSION

Main objective defined for this paper was to evaluate the
efficacy of low-cost formaldehyde sensors for creation of
a mobile sensing node. There were two types of sensors
under consideration: an EC sensor (ZE08-CH2O) and two
MOS sensors (BME680 and SGP30). The study began with
a detailed study of regulations and indoor environment con-
ditions to define the boundary conditions by understanding
at what indoor environmental conditions and concentrations
formaldehyde is dangerous. The evaluation of these sensors
was done by looking at their performance against a reference
device in varying conditions created in a controlled environ-
ment. An additional machine learning calibration algorithm
was also created to test the ease of modelling of the sensor’s
errors.

The results of low-cost sensor performance from both the
phases of evaluation were promising. All the sensors exhibited
a good level of accuracy in certain parts of the entire domain
of the variables of interest. The raw data analysis showed
that the EC sensors being evaluated (ZE08-CH2O) performed
better when low concentration of formaldehyde are present in
accordance to some previous research [57], [58]. Additionally
it also exhibited a high level of resilience to changing envi-
ronmental conditions, especially to varying humidity which
is critical component triggering formaldehyde emission. The
SGP30 metal oxide sensor does show promising results in
moderate concentration of formaldehyde and is fairly resilient
to changes in temperature. However as per our experiments it
also displays a high level of susceptibility to relative humidity
over 40%. The BME680 metal oxide sensor demonstrates
comparable results to other sensors at higher concentration
of formaldehyde and humidity but shows poor results overall
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which has been seen in a previous paper as well [59]. This
posits that certain sensors might be more suitable for certain
use cases depending on the possible environmental conditions
and formaldehyde concentrations the sensor would be exposed
to. In our particular use case, the mobile sensing node was
being designed to be deployed in an indoor environment to
detect possible exposure of a person to dangerous concen-
trations of formaldehyde. For this particular scenario both
SGP30, ZE08-CH2O are suitable based on their raw data
results.

Post calibration of the data stream we can see that the
performance of both the metal oxide sensors (SGP30 and
BME680) showed a very high improvement. This character-
istic has been observed in some previous studies [60], [61].
However, the improvement in the performance of ZE08-CH2O
sensor was minimal. These results also show that the EC
sensor being evaluated does perform better by itself in the
absence of any calibration algorithm as seen particularly in
varying humidity experiments. This is probably because its
errors are difficult to be modelled with our current modelling
algorithm. Overall the uncalibrated ZE08-CH2O performs the
best. Therefore even though the EC sensor is difficult to
model its good performance and innate resistance to environ-
mental conditions due to most likely due to its underlying
EC sensing principle makes it the leading choice. Therefore
after considering the overall performance of all the sensors
the ZE08-CH2O was chosen for building the mobile sensing
node. However, one interesting result worth mentioning is that
the SGP30 also does show considerably good resistance to
temperature and humidity post calibration. It also performs
well in the concentration range of formaldehyde deemed
dangerous (100-500 ppb) as per its raw data results. The
fact that it has a much smaller form factor compared to the
ZE08-CH2O makes it a choice worth considering for a mobile
sensing node where there are multiple gas sensors and a space
constraint.

VI. CONCLUSION

The study evaluated various low-cost sensors with differing
sensing principles for detection of formaldehyde in indoor
environment. The sensors being evaluated measured the gas
concentration via two techniques i.e. electrochemical sensing
and metal oxide film. The results indicated a domain spe-
cific behavior where the electrochemical sensors and metal
oxide sensors can be seen performing well in certain regions
of the domain of the independent variables (formaldehyde
concentration, humidity and temperature). The results showed
that the electrochemical sensors were possibly more robust
and resistant to fluctuations to the environmental parameters.
However the errors of the metal oxide sensors were easier
to model and calibrate. The study also demonstrated a new
way of evaluating sensors in a controlled environment where
their performance is evaluated by subjecting them to sampled
diverse environment representing their environment of deploy-
ment. This methodology can also serve as a very effective tool
for generation of synthetic training data for machine learning
sensor models. Furthermore, the diverse data-set generated
from this setup was made open-source in order to enable future

machine learning models to work well in all kinds of locations
of deployment with varying environmental conditions. There
are however some limitations to this methodology as the sensor
evaluation takes place only in the presence of the target gas
which excludes possible errors caused by cross-interfering
gases which are generally present in real world environments.
However, dealing with selectivity challenges is a problem
which might need to be dealt in a more comprehensive way
and can be a topic for future studies.

There were some more limitations to the studies mainly in
two fronts: hardware and modelling. On the hardware front a
higher number of units of each sensor might have helped yield
a more conclusive inference of the performance of the sensors
and their respective sensing principles. The lack of enough
sensing units was primarily due to to the global electronics
supply crunch occurring during the time of conduction of
the experiments. On the modelling front use of a number
of different models would help us understand if the ease of
modelling of the errors of the various sensors differs with
varying modelling techniques and algorithms. Additionally in
this study a diverse data set was used for training of the
machine learning model but there were no control data-sets
created to measure the actual advantage achieved by the
diverse data-set. Tackling some of these limitations might
become subjects for future work.
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