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Abstract—Current force sensors used to capture fingertip
interaction forces lack compliance to the fingertip tissue
resulting in the loss of touch sensation of the user. 3D printing
offers the possibility to create personalized soft sensing
structures. This work evaluates a 3D printed soft sensor that
measures normal and shear interactions forces based on the
deformations of the thumb and index fingertips of 7 subjects
using an instrumented object. Due to the use of (carbon
doped) thermoplastic materials, the signals provided by these
sensing structures suffer from nonlinearities. Therefore, two
compensation models, based on a neural network and recur-
rent neural network analogous to an electrical model are used
to compensate for the nonlinear effects. The performance of
the sensors was analysed using the normalized cross-correlation and the root-mean-square error. The output of the force
sensors are highly correlated with the applied shear and normal force components. When paired with compensation
models the correlation and error of the sensor output can be further improved. These results indicate that the proposed
flexible fingertip interaction force sensors have a high potential for future applications.

Index Terms— 3D printing, conductive, fingertip, flexible, force, interaction, neural network, piezo-resistive, recurrent,
shear force, soft.

I. INTRODUCTION

INFORMATION about the interaction forces between the
human fingertips and the external environment is important

for a variety of applications such as sports, haptic devices,
robotics and rehabilitation [1], [2]. In stroke rehabilitation
research, robotics and, more recently, kinematic measurements
are used to objectively quantify upper limb motor function [3].
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Adding information about normal and shear interaction forces
at the fingertips during grasping tasks to the kinematic mea-
sures, is expected to highly improve the clinical relevance of
these measurement systems, since these systems can provide
more insight in movement control and effectiveness, allowing
for further study on grasp control deficits in stroke subjects [4].

One approach to study the interaction grasping forces is by
means of sensorized objects. These devices consist of faces
built around the core of a force/torque transducer [5], [6] or
have a shell of multiple piezoresistive force sensors [7], [8].
Using a matrix of force sensors allows for freedom of sensor
placement and the recording of individual finger interaction
forces. Although these sensorized objects give a reliable
measure of the interaction forces, they are limited by the
number of grasping strategies that can be used to manipulate
the object and therefore do not represent a wide variety of
daily tasks with ordinary objects. The second approach is by
mounting force sensors on the fingertips. Such sensors have
been developed e.g. by Brookhuis et al [9] and demonstrated
by Kortier et al. [2] and Battaglia et al. [10]. Although, these
interaction force sensors provide detailed information and can
capture a wide range of grasping tasks, these sensors are not
ideal to use on the fingertips since they are not compliant to the
shape and stiffness of the fingertips resulting in poor sensor to
skin attachment and the loss of touch sensation of the user [2]
limiting the usefulness and reliability [4].
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Fig. 1. 3D printed finger sensor mounted on a fingertip.

The compliance of force sensors can be increased in var-
ious ways, including the use of flexible circuits, soft and
flexible packaging [11], the combination of soft and com-
pliant polymers with flexible conductors such as conductive
textiles [12], conductive liquids and inks [13]–[15] or by the
use of conductive flexible polymers [16], [17]. The emerg-
ing developments in 3D printing sensors and the increasing
availability of soft, flexible and conductive materials [18]–[20]
make this technology a suitable candidate for the development
of compliant fingertip sensors [14], [17]. The ability for local
manufacturing i.e. distributed manufacturing and the easy to
fabricate and customize sensors offered by 3D printing makes
this technology an ultimate candidate to fabricate personalized
sensing structures [19].

This work presents the evaluation of soft 3D printed finger-
tip sensors that use mechanical deformation of the soft tissue
around the fingertip bone (distal phalanx), during grasping
tasks. A preliminary version of this sensor was introduced
and investigated using a finite element model and mechanical
measurement setup in [17]. That work showed that the output
of these sensors is related to the design of the sensing structure
and to the position of the strain gauges. Hysteresis and
other nonlinearities in the sensor output are associated with
the used carbon infused thermoplastic polyurethane materials.
Moreover, the gauge factor of these materials is dependent on
the amount of strain, the strain rate and time.

This work introduces an adapted sensor design that allows
for an improved fit on fingertips and evaluates the sensor
for the first time on human fingertips using an instrumented
object as reference. Additionally, this works aims to improve
the signal quality of the 3D printed sensor with the use of
strategies that compensate for the nonlinear effects caused by
the material properties and geometry of the fingertip sensor.

II. SENSOR DESIGN

Figure 1 shows the design of the fingertip sensing structure.
This design is based on an earlier concept of the finger
sensor published by Wolterink et al. [17]. The presented sen-
sor concept uses the mechanical deformation of the finger
tissue around the bone of the fingertip (distal phalanx). This
deformation is sensed by a flexible strap with two embedded
strain gauges, wrapped around the fingertip [17]. To improve
the fit on human fingertips the sensing strap is designed in
an arch shaped geometry (Figure 2). The ends of the strap

TABLE I
MATERIAL PROPERTIES OF THE USED TPU MATERIAL

Fig. 2. Flexible strap of the 3D printed finger sensor with embedded
strain gauges. The three slots at the end can be used to change the
lenght of the strap. The strap has a thickness of 0.6 mm and the strain
gauge thickness is 0.20 mm.

mount to a mounting plate that fits on top of the nail and can
be changed in length according to the subjects finger size. The
strap has a width of 15 mm and a thickness of 0.6 mm and is
made from non-conductive TPU (NinjaFlex, Fenner Drives,
Manheim, PA, USA). The embedded strain gauges have a
thickness of 0.20 mm and are made of carbon doped conduc-
tive TPU (PI-ETPU, Palmiga Innovation, Jonstorp, Sweden).
The properties of both materials are listed in Table I. To allow
for easy electrical connection the ends of the strain gauges
have connection pads that reach out of the strap.

III. METHODS

A. Fabrication
The fingertip sensing structures were printed in one go using

a Diabase H-Series Hybrid (Diabase Engineering, USA) multi-
material FDM 3D printer. Control and printing settings were
handled by the slicer software (Simplify3D, Inc., USA). The
layer height of the structure was set to 100 µm, resulting in
a strain gauge with a thickness of two layers. Subsequently,
the structures were annealed overnight at 80 ◦C in an oven.
Electrical interfacing to the strain gauges was made by melting
a fine stranded copper wire into the connection pads. The
resistance measured between the contact pads of the strain
gauges is around 1.8 k�.

B. Setup
To validate the performance of the 3D printed fingertip

sensors during grasping tasks, two identical force sensors were
used. One sensor was placed on the thumb and the second
sensor was placed on the index finger of the subject. The
two strain gauges of each force sensor were read out using
voltage divider circuits with 2.2 k� resistors as shown in
Figure 3. Each channel represents one strain gauge and was
read out using the auxiliary inputs of a TMSi Saga amplifier
(TMSi, Oldenzaal, The Netherlands) with a sample frequency
of 1 kHz. The same amplifier was used to provide a voltage
of 5 V to the voltage divider circuit.
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Fig. 3. Readout circuit of one finger sensor, consisting of two strain
gauges. Each strain gauge is read out individually.

Fig. 4. The instrumented object used to obtain the reference interaction
forces at the fingertips of the thumb and index finger. Fn and Fx represent
the normal and shear reaction forces at the fingertips.

The reference force was provided by an instrumented
object shown in Figure 4. This object was composed of
two 6-axis force-torque (FT) sensors (K6D27 50N/1Nm,
ME-Meßsysteme GmbH, Hennigsdorf, Germany) mounted at
two opposite sides of a stainless steel disk. The FT sensors
were read out at a sample frequency of 150 Hz using two
synchronized amplifiers (GSV-8DS, ME-Meßsysteme GmbH,
Hennigsdorf, Germany). The metal bases of the force sensors,
where the fingertips interact with the object, were covered
by a 3D printed plastic disk with a diameter of 30 mm for
insulation purposes. The distance between the two interaction
interfaces was 75 mm. The total weight of the instrumented
object was 346 g. A synchronization pulse was provided
by a Xsens Awinda Docking Station (Xsens, Enschede, The
Netherlands) connected to a personal computer via a USB
connection. This pulse was captured by the Saga amplifier
and triggers the FT-sensor amplifiers that were all connected
to the same computer via a USB connection.

C. Protocol
Seven healthy adult (18+) volunteers participated in the

measurements that were approved by the faculty ethics com-
mittee, all participants gave written informed consent prior
to the start of the experiment. Two 3D printed force sensors
were placed on the right hand thumb and index finger of
the subjects. The subjects were instructed to perform five
recording sessions (tasks 1 to 5) of 3 minutes were the subjects

picked up and placed the instrumented object multiple times
between the sensorized thumb and index finger at the subject
preferred speed. During task 1, 2 and 4 the subjects were asked
to pick and place the object multiple times while performing
random rotating and shaking movements in random directions,
while the instrumented object was being pinched between their
thumb and index finger. Task 3 and 5 involved a controlled
movement where the subjects were instructed to only pick
up and place the object repeatedly for 3 minutes. Between
task 3 and 4 the sensors were doffed and re-donned on the
fingertips to study the repeatability of the sensors after doffing
and donning.

D. Data Preparation
All further data processing was performed offline using

Matlab (Mathworks Inc., Natick MA, USA). The raw data of
the FT sensors used in the instrumented object were converted
to the normal (Fn) and shear (Fx) force components using the
calibration matrix supplied by the manufacturer. To remove
any bias force the mean over the first second, which does not
contain any interaction forces, was subtracted of the whole
recording. The same procedures were repeated to remove
the bias voltage of each channel of the 3D printed fingertip
sensors. Next, both the forces from the instrumented object
and the voltage over the strain gauges of the fingertip sensors
were low-pass filtered at a cutoff frequency of 10 Hz, using
Matlab’s lowpass function, since human motion generally
takes place a lower movement rates [4]. Subsequently, the data
from the fingertip sensors was re-sampled at 150 Hz using
Matlab’s resample function to match the data of the FT
sensor. Finally, the recordings of each task were segmented to
remove the idle parts before and after each task.

To estimate the force output of the printed sensors, a linear
model was fitted using the data set of task 1 for each finger
and subject. The fit was performed using Matlab’s polyfit
function set to a first order polynomial. The normal force sen-
sor output (F̃n) was given by the sum of the two strain gauges.
The shear force (F̃x) was given by the difference between the
two strain gauges. These models were consequently used to
provide an estimate of the normal and shear force of the other
performed tasks.

E. Nonlinearity Compensation
3D printed resistive strain sensors fabricated using soft

polymer materials have shown to suffer from strong nonlinear
behaviour [17], [19]. To be able to use the finger sensor to
its full potential two independent compensation strategies are
applied: a neural network approach and a modified Power-Law
(mPL) model.

The first compensation strategy involves a dynamic neural
network (two-layer feed-forward network), where past values
are used to predict future values. These networks can be
trained by using a training set with a sufficient number
of samples of the two fingertip sensor strain gauges and a
target data set. The target dataset contains the applied normal
(Fn) and shear (Fx) force components of the FT sensor.
This network was trained using the Matlab neural network
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Fig. 5. Block diagram of the dynamic neural network. The input (x(t))
consisted of the 2 inputs from both strain gauges. The output (y(t)) are
the estimations of both the shear and normal force.

Fig. 6. Block diagram of the mPL model.

time series toolbox (ntstool) with a nonlinear input-output
function [23]

The second compensation model is based on the work of
Schouten and Kosmas et al. [24], [25] and is referred to as the
modified Power-Law (mPL) model. The mPL model estimates
the hysteresis and creep behaviours using a recurrent neural
network that is analogous to a the forward Euler simulation of
an electrical circuit. This network also consists of two layers,
see Figure 6. The first layer uses a hyperbolic sine f (x) =
PS

(
e

x
PT − e

−x
PT

)
as activation function. The output layer uses a

4th order polynomial g(x) = g0 +g1x . . . gm xm . Both weights
and the parameters of both activation functions are included in
the optimization. The used fitting method is based on Matlab’s
optimization algorithm for obtaining a function’s global min-
imum [26]. The global problem is defined as multiple local
optimization problems by means of GlobalSearch, with
the algorithm’s default configuration [27] and the fmincon
method configured with an interior-point algorithm [28] as
described by Kosmas et al. [25].

1) Model Training and Validation: Two types of training and
validation were performed, to investigate if a generic inter
subject model for the sensor is sufficient or whether each
subject needs an individual model (intra subject model). Inter
subject models are based on a model trained on the task 1 data
set of subject 1 and were validated using all tasks of all
subjects. Intra subject models involve models trained on task
1 of each individual subject and are only validated by the tasks
performed by the same individual subject. For both the thumb
and the index finger sensor a separate compensation model
was trained to avoid for potential differences in sensor size
or printing inaccuracies. In all situations the forces obtained
form the FT sensors were used as target data.

The Matlab neural network time series toolbox (ntstool)
with a nonlinear input-output was used to train the neural
networks. The input data consisted of 2 input signals, each
representing one strain gauge of the sensor. Fn and Fx of
the FT sensor represent the two elements of the target data.

TABLE II
INITIAL PARAMETERS OF THE MPL MODEL

The network consists of 10 hidden neurons and 50 delays. This
number is found as a good balance between training time and
performance.

Two separate modified Power-Law (mPL) compensation
models were trained, the first model estimates the normal force
Fn using the sum of the two strain gauges as input. The second
model estimates the shear force Fx using the differential signal
between the two strain gauges. The weights w0, w1, bias
Vb, weights PT and PS of the hyperbolic sine function [25],
along with the coefficients g0 . . . gm , were estimated using
the experimental data for training and validation. The initial
parameters before fitting are shown in Table II. To speed up
the training the data was down-sampled by a factor 2, which
resulted in a time step �t of 13.3 ms.

F. Statistiscs
The correlation between the output of the models and

the validation data was determined by the normalized cross-
correlation (NCC). Since the model input and validation data
are synchronized, the NCC values were taken at zero lag
for further analysis. The error between the model output and
validation data was calculated using the root-mean-square
error (RMSE). The Wilcoxon signed rank test was used
to determine whether the NCC and RMSE values between
tasks, validated using the compensation models differ or not.
This measure was furthermore used to validate differences in
performance between the applied compensation models. The
Wilcoxon signed rank test was chosen due to the expected
non-normal distributed data and small sample size.

IV. RESULTS

All seven participants completed the experimental protocol.
The performance data of the second random movement (task 2)
of subject 5 was discarded due to a malfunction in the syn-
chronization between the finger sensors and the instrumented
object. The finger sensor straps of the thumb were to their
maximum size (3) for subjects 1,2,3,6 and to medium (2)
for subjects 4,5,7, the straps for the index finger were set to
medium length (2) for all subjects.

Figure 7 shows parts of the training and validation data
recorded at the thumb, the graphs on the left represent normal
forces and the graphs at the right represent the shear forces.
The low pass filtered output of the strain gauges of task 3
performed by subject 7 is shown in Figure 7a,b. The same
fragment is shown again in the bottom graphs (e,f) after the
compensation models trained on task 1 of subject 1 (c,d), are
applied.
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Fig. 7. Time domain data recorded from the instrumented object and
fingertip sensors at the thumb. Left figures represent normal forces, right
figures shear forces. The compensation models are trained on task 1 of
subject 1 (c,d). The non-compensated data (a,b) and validation (e,f) are
taken from subject 7, task 3.

Fig. 8. Time domain data with a close up of the same fragments as
shown in Figure 7 including the output provided by a linear fit performed
on task 1.

Figure 8 shows the output of a linear fit performed on
task 1 of each subject for the normal force (Fz). This fit is
determined by the sum of both strain gauges (Ch1 + Ch2).
In the shear force (Fx) situation this fit is made using the
difference between the two strain gauges (Ch1 - Ch2).

Since no significant difference (P < 0.05) in normalized
cross-correlation (NCC) at zero lag at the training sets of the
thumb and index finger for both the neural net and the modified
Power-Law model (mPL) were found, the performance of
the thumb and index finger were grouped in further analysis
to double the number of measurements. Each finger sensor

Fig. 9. Box plots of the normalized cross-correlation (NCC) at zero lag
for both normal and shear force data. Results from the linear fit on the
non compensated data of task 1 (Linear fit) and both models, the neural
network (Neural) and modified Power-Law (mPL) model are shown. ‘Inter’
refers to one general model trained on task 1 of subject 1 and applied
on all tasks of all subjects. ‘Intra’ refers to a network trained for each
individual subject on task 1. Outliers are represented by the open dots.

(thumb and index) is still compensated with the compensation
model for that sensor.

Figure 9 shows the box plots of the NCC at zero lag for
both normal force (Fz) and the shear force (Fx) data obtained
from each task of the non compensated data (Linear fit) and
analysed using a neural network (Neural Inter/Neural Intra)
or the modfied Power-Law model (mPL Inter/mPL Intra). The
suffix ‘inter’ refers to models trained on subject 1 task 1 and
applied on all subjects, suffix ‘intra’ refers to models trained
on each individual subject on task 1.

Figure 9 shows the box plots of the NCC at zero lag for
both normal force (Fz) and the shear force (Fx) data obtained
from each task of the non compensated data (Linear fit) and
analysed using a neural network (Neural Inter/Neural Intra)
or the modfied Power-Law model (mPL Inter/mPL Intra). The
suffix ‘inter’ refers to models trained on subject 1 task 1 and
applied on all subjects, suffix ‘intra’ refers to models trained
on each individual subject on task 1.

The significance of the differences between the data pre-
sented in Figure 9 is shown in Figures 11 to 13 (Appendix).
Figure 11 shows the significance of the differences of the
NCC between the linear fit and the compensation models.
Figure 12 shows the significance of the differences between
compensation models using the same analysis method and
Figure 13 shows this significance of the differences between
the performed tasks.

Figure 10 shows the root-mean-square error (RMSE) for
both normal force (Fz) and the shear force (Fx). The graph
clearly shows an order of magnitude lower RMSE for
the sensor output compensated with the mPL models with
respect to the linear fit and the output compensated using



11504 IEEE SENSORS JOURNAL, VOL. 22, NO. 12, JUNE 15, 2022

Fig. 10. Box plots of the root-mean-square error (RMSE) for both normal
and shear force data. Results from the linear fit on the non compensated
data of task 1 (Linear fit) and both models, the neural network (Neural)
and modified Power-Law (mPL) model are shown. ‘Inter’ refers to one
general model trained on task 1 of subject 1 and applied on all tasks of
all subject. ‘Intra’ refers to a network trained for each individual subject
on task 1. Outliers are represented by the open dots.

a neural network. The corresponding P-values of the dif-
ferences between the linear fit and the models are shown
in Figure 14 in Appendix . Figure 15 in Appendix shows
the statistical power between the compensation models and
Figure 16 between the tasks.

V. DISCUSSION

A. Nonlinearity Compensation
The time domain data shown in Figures 7 and 8 indicate

a high correlation between the target data provided by the
instrumented object and the sensor output. As shown by
Figure 9 the use of compensation models further increases the
correlation of the printed fingertip sensors with the reference
force, this effect was mostly significant for the mPL models
as shown in Figure 11.

Although, the linear fit shows a high correlation with the
reference signal, Figure 8 shows a large offset between the
reference force and output of the linear fit. This offset is
mainly caused by three factors: lower amplitude, drift and
relaxation time. The last effect is strongly visible at the
situation where the applied force rapidly decreases and is a
typical behaviour for the used conductive polymer composite
materials [17], [20], [29]. The relaxation time and drift are
largely eliminated with the use of the neural networks and
mPL models. As shown in Figure 10 the used mPL models
provide a significant (p ≤ 0.01) lower root-mean-square
error (RMSE) and therefore these models seem to be the best
compensation strategy for this sensor and experiment.

Notwithstanding the fact that the performed analysis allows
to make a comparison between the performance of neural
networks with respect to the mPL model, no conclusions

should be drawn regarding the performance of these type
of models. Both compensation models used in this work are
preliminary versions using a limited number of parameters and
provide many opportunities for improvements.

The mPL model with a single cell is only able to capture
hysteresis behaviour described with local memory, since the
model’s global memory arises as a collective property from
the multiple capacitor states when the number of cells is
expanded (ncell > 1) [30]. Whether the hysteresis exhibited
by the sensors can be described with local or global memory
is yet to be evaluated. To evaluate this in a more systematic
way, a generated system input on the finger sensor using a
mechanical setup, such as performed on a previous design
shown in [17] is needed.

In case of the neural network, care needs to be taken with
increasing the number of neurons since the models fitted on
normal force data seem to suffer from overfitting. In terms of
training speed the neural network needed a computation time
of around 4 to 6 minutes to reach satisfying training results.
The mPL model used in this work reached this point usually
around one minute. These model fitting times are obtained
using a third generation (2.6 GHz Dual-Core) Intel Core i5,
and highly vary depending on the used amount of training
data, parameters, fitting iterations and hardware performance.

B. Normal Force Performance
As shown in Figure 9 and 12 the training data (task 1)

in the normal force direction, is higher correlated when the
models are trained for each individual subject (intra subject).
The same effect can be seen in Figure 10 and 15, where
intra subject models show a lower RMSE. This suggests that
the compensation models are optimized to individual users.
However, in the validation tasks (task 2 to 5) this effect
becomes less prominent and significant.

The inter mPL model shows a significantly higher median
NCC value on all tasks compared to the neural network for
the normal force data. Furthermore, the RMSE of the mPL
model is an order of magnitude lower. This all shows that for
estimation using a generic sensor model, the mPL model is
in this situation, the best option to obtain the normal force
component of the 3D printed finger sensors.

C. Shear Force Performance
In the shear force direction the mPL models show a larger

spreading in the NCC values compared to the neural network.
This might be due to the higher number of parameters and
the ability to train the neural networks using the two separate
inputs provided by the strain gauges of the finger sensor,
whereas the input for the mPL model is only the difference
between the two strain gauges. However, differential measure-
ments were taken since these can highly increase the linearity
of the response for 3D printed piezoresistive sensors [31].
The RMSE in Figure 15 shows an opposite trend; the median
RMSE of the mPL results is an order of magnitude lower
compared to the linear fit and neural networks and in the same
range as the RMSE of the normal force. However, most of the
signal power is in the normal component, as shown in Figure 7
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where the amplitude of the normal force components is around
one order of magnitude higher with respect to the shear force
components. Therefore, the relative errors in the shear force
situation are an order of magnitude higher with respect to the
normal force situation. This could result in lower NCC values
in some occasions in the shear force components, resulting in
a higher variation and spread in NCC values.

D. Influence of Re-Donning
In the situation where re-donning the 3D printed sensors

affects the performance of the sensors one might expect a
lower NCC and a larger RMSE in the tasks performed after
re-donning the sensors. If only one compensation model is
used for multiple subjects, the sensors are re-donned between
subsequent subjects and could therefore be a factor reducing
the performance. However, the results do not provide an evi-
dent conclusion on the effect of re-donning the force sensors.

Figures 12 and 15 do not show a consequent strong sta-
tistical power (p ≤ 0.05) of differences between the inter
and intra subject fitted compensation models. Figures 13 and
Figure 16 do show small significant differences in some
situations between the tasks before and after re-donning
(task 2-4 and 3-5), indicating possible performance change
caused by re-donning of the sensors. However, the con-
trolled movements before and after re-donning the sensors
(task 3 and 5) show a significant decrease of the RMSE after
re-donning for the linear fit and mPL model trained intra
subject. For these reasons, the effect of re-donning is not
evident and in case a general inter subject fitted compensation
model is used, no notable negative effects of re-donning are
expected.

E. Limitations
The current setup does not record the temperature of the

fingertip sensors. Previous studies have shown a temperature
coefficient of resistance (TCR) of the used carbon doped con-
ductive TPU to be around 0.002 ◦C−1 in the used temperature
range of this application [32]. Due to the expected relative
slow change in temperature, the effects might occur as drift in
the normal force estimation. The effect of temperature will not
be of influence on the shear force since this signal is mainly
based on the difference between the two strain gauges.

Besides the used thermoplastic material in the finger sensor,
the human fingertip tissue is also a highly nonlinear mate-
rial with characteristics comparable to viscoelastic materials
[33], [34]. Since the skin tissue is part of the sensing structure
these characteristics will be present in the raw sensors output,
but potentially are compensated by the presented compensation
models.

Despite the possibility offered by 3D printing to develop
custom sized sensors fitted to each individual subject’s fin-
gertip circumference, this preliminary study uses a strap-like
structure to change the size of the fingertip sensor. Since
this strap only has three discrete length configurations, the
initial strain of this sensor around the subjects fingertip might
vary. However, analysis between the inter and intra trained
compensation models shows no clear evidence this effect
negatively affects the NCC and/or RMSE.

The used instrumented object only contained two 6-axis
force-torque sensors, allowing the current experimental setup
to only validate pinch grasps, whereas in all day grasping
activities the complexity of grasps usually involves more
fingertips. Furthermore, in many all day human grasping
activities more areas than only the fingertips, such as the
phalanges or the hand palm, are also involved by supporting
the object.

The contact area of the force sensors on the instrumented
object was relatively small. Although the subjects were
instructed to carefully place their complete fingertip on the
force sensor area, in some situations it could not be avoided
that the subjects only placed a part of their fingertip on the
object. Resulting in discrepancies between the force sensors
of the instrumented object and the finger sensors.

In some occasions, accidental fingertip interactions with
other objects such as the table or the subjects own fingers
occurred. These interaction recordings occur in the data sets
of the printed sensors and are absent in the validation data
provided by the instrumented object, reducing the NCC and
increasing the RMSE values since there is no correlating
validation signal.

It is assumed that the shear component of the 3D printed
finger sensor is perpendicular to the Fx-component of the
instrumented object. However, the angle between these two
components might vary with each grasp. In future research
these errors could be compensated by using small inertial
sensors placed on the fingertip nails such as described in
[3], [4], to estimate the orientation of the shear component
with respect tot the instrumented object or gravity.

Since the subjects are asked to lift an object, the performed
tasks have a large coupling between shear and normal force
component due to the inherent functioning of the 3D printed
sensor. This coupling could lead to an unwanted trained
correlation in the neural networks. To avoid this issue the
subjects are asked to shake and rotate the object during the
training tasks to generate decoupled forces. However, applying
forces to a fixed reference sensor could help to increase the
amount of decoupled data.

The soft fingertip sensors are capable of detecting the
shear force component; Figure 8 clearly shows the increase in
shear force component when the instrumented object is lifted.
These signals are of high value for the development of grasp
detection algorithms that are of relevance for assessment of
upper limb impairments [4]. One of the potential applications
of these sensing structures is the study of grasp control deficits
in stroke patients. In these situations measuring the relative
change in grasping force will already be a valuable addition.
Therefore, the sometimes relativity large absolute error of
the force as measured by the fingertip force sensors, is not
necessarily a limitation.

This study has demonstrated a working concept of a soft
3D printed piezoresistive fingertip force sensor. Although the
signal output of these sensors is far from perfect relative
to commercially available solutions, the compliance of the
sensors to the fingertip makes these sensors useful for clinical
and all day use. Furthermore, 3D printing of force sensing
structures offers benefits over commercial sensors since the
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Fig. 11. P-value between the linear fit and the compensation models as
shown in Figure 9.

Fig. 12. P-value showing the significant differences in NCC values at
zero lag as shown in Figure 9 between compensation models at each
task.

Fig. 13. P-value showing the significant differences between the NCC
value at zero lag of the performed tasks in Figure 9. Task 1 is the training
data in all situations.

Fig. 14. P-value between the linear fit and the compensation models as
shown in Figure 10.

fabrication technology allows for easy customization. This
study does not investigate the users touch sensation, although
it is expected that the use of compliant materials to the
finger tissue and the open structure at the fingertips allows
for improved touch sensation compared to currently available
stiff sensors. These benefits highly increase the potential for
adoption of this sensing technology.

VI. CONCLUSION

This work demonstrates the potential of 3D printed flexible
fingertip force sensors to be used in practical applications.

Fig. 15. P-value showing the significant differences in RMSE as shown
in Figure 10 between compensation models at each task.

Fig. 16. P-value showing the significant differences between the RMSE
of the performed tasks in Figure 10. Task 1 is the training data in all
situations.

The correlation and the error between the output of the force
sensors and the applied shear and normal force components
can be highly improved with the use of models that compen-
sate the nonlinear characteristics of the used sensors.

The signal quality of the fingertip sensors might be
improved in the future since the used compensations models
are relatively simple and are still in an early development
phase. Nevertheless, the current state of these sensors might
already be sufficient for elementary grasp detection applica-
tions that use the relative change in force. 3D printed fingertip
sensors provide many benefits over commercial sensors due
to their compliance and the ability for the users to keep their
touch sensation.

APPENDIX

See Figs. 11–16.
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