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Shape Estimation Using Location-Unknown
Distance Sensors: Iterative-Closest-

Point-Based Approach
Hiroki Ikeuchi and Hiroshi Saito , Fellow, IEEE

Abstract—We discuss the shape estimation of moving
target objects using distributed ranging sensors. Due to the
inability to carefully design sensor locations or assign global
positioning systems (GPS) to inexpensive sensors, it is often
necessary to assume that the sensor locations and target
object locations are unknown. Although methods have been
developed that can be applied in such situations, the sensing
results are assumed to include no noise and cannot be applied
to practical situations in which sensing noise exists. We pro-
pose a method of estimating the whole shape of a moving
target object in the presence of sensing noise. Our method
analyzes continuous reports on the measured distance of
a target object from distributed sensors and determines the
sensing directions of sensors using a novel algorithm, which we developed inspired by the iterative closest point (ICP)
algorithm. On the basis of the obtained sensing directions, the whole shape of the object can be estimated. We conducted
extensive numerical simulations and an experiment using actual laser sensors to demonstrate the effectiveness and
feasibility of our method.

Index Terms— Distance sensor, distributed sensor, iterative closest point, random placement, shape estimation, sensor
network, unknown location.

I. INTRODUCTION

IT IS essential to collect information from a large number of
distributed sensors and draw new insights from them. With

the development of wireless communication technologies, such
as low-power wide-area networks (LPWANs) [1]–[5], wide-
area and long-distance communication is possible with low
power consumption and low cost. In such a communication
environment, sensors and Internet-of-Things (IoT) devices
deployed like the scattering of dust [6] continuously trans-
mit acquired data, which enables the controller to conduct
integrated data analysis and extract useful information. Each
sensor has only a simple function and does not necessarily
have high performance [7]–[10]. However, by integrating
sensors’ reports, it is possible to extract the global properties
of a target as collective knowledge, which cannot be obtained
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from local information alone. This type of sensing paradigm
is in line with the smart city concept that has been expanding
and expected to further develop.

We focus on the shape estimation of a moving target object
using distributed sensors. Shape estimation by using sensors is
one of the fundamental problems in wireless sensor networks
and is important as a practical approach in constrained envi-
ronments. For example, suppose we want to detect a particular
type of vehicle entering a certain surveillance area on the
basis of its shape. From the viewpoint of personal-information
protection, it is sometimes necessary to avoid installing
cameras that would enable the identification of human faces.
In such cases, it is effective to place sensors that acquire
only limited information rather than images, and use the
shape estimated from such information to identify intruders.
The availability of sensor-location information can also be an
important constraint. With current methods, it is often assumed
that sensor-location information is known or, if not known,
can be identified by additional measurement mechanisms.
In practice, however, this incurs very high labor costs to
precisely design the locations of numerous sensors one by one
and accurately place them in the designed locations. Even if
it is possible to design the sensor location on a map, it may
not be possible to place the sensor there due to various rea-
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sons, such as geographical constraints or structural problems.
In places where access is restricted, such as battlefields, it is
difficult to implement additional measurement mechanisms
and it may only be possible to scatter sensors from the air.
For sensors with only simple measurement functions, global
positioning systems (GPS) may not be able to be installed due
to power-consumption limitations. In addition, if participatory
sensing is considered, it may not be possible to obtain location
information from the viewpoint of location privacy. Therefore,
the following fundamental question arises: is it possible to esti-
mate the shape of an object when sensor-location information
is not available?

Our goal is to clarify the theoretical possibilities and lim-
itations of shape estimation in situations where only limited
information is available. Specifically, we consider a situation
in which sensors are randomly placed and their positions
are unknown. We also assume that the sensors have only a
distance-measurement function. In reality, there may be cases
in which more information can be accessed, but our prob-
lem formulation takes into account the worst-case conditions
among various realistic situations. Therefore, the basic findings
of estimability that we discuss will be useful not only for
theoretical interests but also for thinking about more realistic
problems.

In our previous studies, we showed from the theoretical
perspective that shape estimation is possible for a wide class
of objects, such as polygons and simple closed curves, even
in an environment where position information is not available
[11], [12]. With the methods proposed in these studies, an ideal
situation is assumed in which the sensing data are not affected
by noise. However, in reality, sensing data will always contain
noise, and it is essential to present a formulation and estima-
tion method that takes into account the existence of noise.

Taking the above problem into account, this research aims
to reveal the possibility of shape estimation in the presence of
noise in sensing data, in other words, a method that enables
shape estimation when some or all of the following conditions
are satisfied:
• Installation of a camera is not allowed from the viewpoint

of personal information protection.
• For location privacy or power consumption, GPS cannot

be installed on the sensor, and the location is unknown.
• Each sensor cannot handle large amount of data such as

images due to the communication-bandwidth limitation
and has only a ranging function.

• The measured value of the sensor contains random noise.
We propose a shape-estimation method that is robust against

the sensing noise of distributed distance sensors. Similarly
to our previous studies, sensor location is unknown and we
do not use any side information or additional measurement
mechanisms. With our previous method, we calculate the
curvature at a single point of the target shape, which is quite
sensitive to sensing noise. The proposed method avoids this
process and takes an approach of, roughly speaking, searching
a partial shape consistent with multiple sensing results by
focusing on the outline of the shape instead of the curvature.
Our method is based on an algorithm we developed, which
is a variant of the iterative closest point (ICP) algorithm

[13]–[15] commonly used for object recognition, to estimate
the sensing direction of each sensor. To evaluate the effec-
tiveness of the proposed method, which we call the ICP-
based method, we conducted extensive numerical simulations
to determine the impact of various parameters on the estimates
as well as robustness against several types of noise. We also
conducted an experiment using actual laser sensors, demon-
strating that the ICP-based method works well in practical
situations. The validation results of this method indicate that
object-shape estimation is theoretically and practically feasible
even when the sensor-location information is unknown and
there is realistic noise in the sensing data.

The rest of this paper is organized as follows. In Section II,
we introduce related work on shape estimation using sensors.
In Section III, we define the mathematical model for dis-
cussing shape estimation. In Section IV, we briefly describe
our previous method and issues with it, the technical details of
which are presented in the Appendix, and then explain the ICP-
based method. We present numerical examples of simulations
in Section V and an experiment using actual laser sensors in
Section VI. We conclude this paper in Section VII.

II. RELATED WORK

A. Sensor Localization and Location-Aware
Shape Estimation

Shape estimation is one of the most fundamental problems
in sensor networks and has been extensively investigated.
To estimate the shape of a target object using sensing data
from distributed sensors, most research first attempted to
determine the sensor location because it was believed that
“the information gathered by such sensor nodes, in general,
will be useless without determining the locations of these
nodes” [16] or “the measurement data are meaningless without
knowing the location from where the data are obtained” [17].
Thus, to solve the sensor localization problem [18], [19],
they assumed having additional mechanisms or side infor-
mation, such as locations of anchor sensors, angle-of-arrival
measurements, training data and period, and distance-related
measurements [20]–[26]

Since it is no longer difficult to estimate the shape of an
object under the condition that the sensor-location information
can be obtained or controlled, many studies focused on the
efficiency and optimality of shape estimation. Wu et al. [27]
proposed a method for capturing the whole shape of an
object by combining many photos in which only a part of
the object is visible. They aimed at efficient shape estimation
by selecting photos on the basis of metadata including the
position and orientation of the camera from the viewpoint
of information-transmission constraints. Abraham et al. [28]
proposed a method of controlling the dynamic trajectory of
binary sensors to efficiently estimate the overall shape of
multiple objects. The method is based on the theory of ergodic
search and actively searches for the region that is most likely
to return useful measurements.

Such approaches that rely on sensor localization and
location-aware methods are effective because they are
expected to provide highly accurate shape estimation. How-
ever, shape estimation becomes impossible in situations where
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additional measurement mechanisms or location information
are not available, or where location privacy of the sensor is
required.

B. Shape Estimation Without Location Information
We have studied the theoretical possibility of estimating the

shape of an object while preserving the location privacy of
sensors and and developed specific estimation methods. These
studies can be roughly classified into two categories: those
using binary sensors, which have a disk-shaped sensing area
and return a binary value of 1/0 when detected or not detected,
and those using distance sensors, which measure the shortest
distance to an object or the distance in a specific direction.
For binary sensors, a small number of parameters, such as the
area and perimeter of the object, can be estimated [29]–[31],
and several additional parameters can be estimated using a
composite sensor consisting of multiple binary sensors lined
up on a grid [32], [33]. However, it was also found that
binary sensors alone could not obtain the entire shape of
the object. On the other hand, when using distance sensors,
it is possible to estimate the shape of polygonal objects
[11], [34] and objects with smooth closed curves [12]. These
studies showed that it is possible to achieve fairly accurate
shape estimation using only distance sensors while preserving
location privacy. However, since the method in [12] relies on
curvature calculation, it can only be applied when the sensing
noise is negligible. In the present study, we argue that shape
estimation is possible even in the presence of realistic sensing
noise while preserving location privacy.

III. MODEL

In this section, we formulate the model to be considered in
shape estimation. Most of the model and the problem settings
are the same as in our previous study [12], but with the present
formulation, noise is assumed present in the sensing data,
as described below. A single target object T enters and exits
a monitored area � ⊂ R

2, and its shape is time-invariant.
It moves at a constant known speed v > 0 along an unknown
reference directional line. In the remainder of this paper,
we use this directional line as the x-axis and its direction as
the reference direction. (We do not need to know the reference
direction. This is used only to define direction.) The term
T (t) ⊂ R

2 denotes the set occupied by T at time t . The T is
also defined as a region enclosed by a simple closed curve ∂T .
We do not know T ’s shape, size, or location. We call a point
the y coordinate of which is the minimum (maximum) value
in T , the bottom (top) of T . Each point on ∂T is represented
by an arc-length parameter s. The s of the bottom is set
to s = 0 and increases along ∂T in the counter-clockwise
direction. Let ξ(s) ∈ [0, 2π) be the angle formed by the
reference direction and tangent vector at s. We call the region
below (above) a given line that is parallel to the x-axis and
crosses T , the ‘lower half-plane L’ (‘upper half-plane U ’).
The ξ(s) is only used in the Appendix. The above definitions
are illustrated in Figure 1.

There are ns directional distance sensors deployed in �.
Each sensor can continuously measure the distance to an object

Fig. 1. Illustration of model.

lying in the sensing direction within the maximum range
rmax > 0. For the i -th sensor (1 ≤ i ≤ ns ), let xi ∈ �
be its location, θi be its sensing direction, and ri (t) be the
measured distance to T at t . Assume that we do not know xi

or θi for any i . We do not impose any assumptions on their
distributions. We often remove the subscript and use x, θ , r(t),
and ξ to simplify notation. When the location of a sensor
is x = (x, y)T and its sensing direction from the reference
direction is θ , the sensing area S(x, θ) is {(x + s cos θ, y +
s sin θ)T | 0 ≤ ∀s ≤ rmax }, where the superscript T denotes
the transpose of the vector. The exact distance r̄(t) between
the sensor and object at t is given as follows.

r̄(t) =
{

min(x+s cos θ,y+s sin θ)T∈T (t) s, forS(x, θ) ∩ T (t) �=∅,
∅, forS(x, θ) ∩ T (t)=∅.

(1)

Specifically, r̄(t) = 0 if (x, y)T ∈ T (t). Here, ∅ denotes the
empty set. Ideally, we expect r(t) and r̄(t) to be equal, but
in actual sensors, the measured value contains noise δr(t).
Therefore, it can be modeled as r(t) = r̄(t) + δr(t). The
specific form of δr(t) is not specified here, but it is assumed
to be a noise caused by randomness such as white noise
rather than systematic error. In what follows, we only use
{ri (t)}Ni=1 (N ≤ ns) that satisfies ∀t (ri (t) > 0 or ri (t) �= ∅)
and ∃t (ri (t) �= ∅). That is, we do not use sensors that do not
detect T even once or that collide with T .

We define an operator H : {1, 2, . . . , N} → {L, U} as
H(i) = L (if i ∈ L) and H(i) = U (if i ∈ U), where
i ∈ L (i ∈ U) means the i -th sensor is in L (U). The operator
H(·) tells us the half-plane to which a given sensor belongs.
By definition, i ∈ H(i) for ∀i .

To summarize, the shape estimation problem we consider in
this paper is described as follows. After T has passed through
�, we have only v and a set of time-series data {ri (t)}i and
do not have any other information such as xi , θi , or the line
trajectory of T . Our goal is to estimate the shape of T by
analyzing {ri (t)}i .

Remark: The velocity v of T may be unknown, in which
case we need to assume the uniform distribution of {xi }i and
estimate v by using our previous method [11].

IV. SHAPE ESTIMATION METHOD

We now explain shape estimation in detail. Shape estimation
is carried out in two parts. First, we estimate all θs for all
sensors that detect T . We then estimate the whole shape of T
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using the estimated θs. Once θs are estimated, the second part
is rather easy to carry out as follows. We assume that we have
already obtained {θ̂i }i∈L (θ̂ indicates the estimated value of θ ).
Let t∗ ≡ argmint r̄(t) and the coordinate of the bottom (top)
be t (0, 0) ∈ ∂T . Then, as can be easily seen from Figure 2,
the following relation holds:(

X (t)
Y (t)

)
≡ (r̄(t)− r̄(t∗))

(
cos θ
sin θ

)

− v

(
t − t∗

0

)
∈ ∂T, (2)

where t ∈ {t | r̄(t) ∈ R, 0 < r̄(t) < rmax}. In accordance
with (2), we know the x and y coordinate t (X (t), Y (t)) of
each point of ∂T . Thus, we can depict the shape of T as
follows. For the lower-half plane, by using a chosen estimator
θ̂i1 (i1 ∈ L), we depict a partial shape of the lower part of
T by sweeping t in (2). If the depicted shape does not cover
the whole lower part, we use another estimator θ̂i2 (i2 ∈ L),
depict another shape, and connect them by focusing on the
bottom of T , which is a common point in two partial shapes.
We repeat this procedure until covering the whole lower part.
We do the same for sensors that have θ ∈ [π, 2π) (i.e., sensors
in U ) and obtain the shape of the upper part of T . Finally,
we properly connect the lower and upper parts of T (for
example, by focusing on points of ξ(s) = π/2, 3π/2) and
obtain the whole shape.

From the above discussion, we can attribute the shape
estimation problem to θ estimation. In this section, we explain
two types of θ -estimation methods. In Section IV-A, we briefly
review our previous curvature-based method [12]. This method
derives several curvature-related equations that θs must satisfy
and obtains θs by solving them. Although this method is
theoretically important in the sense that numerically exact θs
can be obtained, calculations of higher-order derivatives of r(t)
are required, which makes it difficult to apply it to practical
cases in which r(t) has some noise δr(t). To overcome this
difficulty, we designed the ICP-based method to estimate θs
in the presence of noise of r(t) by using an algorithm inspired
from the ICP algorithm [13]–[15]. The ICP-based method does
not require calculation r(t) derivatives and can be applied to
practical cases.

A. Difficulties With Curvature-Based θ Estimation
We review our previous curvature-based method [12] by

mainly focusing on θ estimation in a two-sensor case and
describe the reason this method is sensitive to sensing noise.
For detailed explanation of this method, see the Appendix and
our original paper [12]. Since this method does not take noise
into account, we consider r(t) = r̄(t). This method is based
on the following property of r(t):

t∗ = argmint r(t)⇔ s(t∗) is the bottom or top of T , (3)

where the t of argmin runs in the domain in which r(t) takes
a real value, not ∅. The property in (3) obviously follows from
Figure 2. Assume that we obtain two sensing results r1(t) and
r2(t) from two sensors. In accordance with (3), if H(1) =
H(2), then the point that sensor 1 detects at t∗1 = argmint r1(t)

Fig. 2. Derivation of (2). In this figure, instead of moving the object in
the positive x-direction, the sensor is moved in the negative x-direction.
The red dots represent the positions of the sensor at time t∗ and t, and the
red line segments extending from them represent the sensing distance.

and the point that sensor 2 detects at t∗2 = argmintr2(t) are the
same, namely, the bottom or top of T . When the bottom (top)
is smooth, we derive the following simultaneous equations
regarding the curvature and its derivative at the bottom (top):

r̈1(t
∗
1 ) sin θ1 = r̈2(t

∗
2 ) sin θ2, (4)

sin θ1(v
...
r 1(t

∗
1 )+ 3r̈1(t

∗
1 )2 cos θ1)

= sin θ2(v
...
r 2(t

∗
2 )+ 3r̈2(t

∗
2 )2 cos θ2). (5)

By solving these equations, we can obtain the numerically
exact θ1 and θ2 in theory. In real situations, however, r(t) is
discretized and has noise δr(t) at each t . Although we can
smoothen r(t) with regression methods, the calculated values
of the higher order derivatives such as r̈ and

...
r still have

non-negligible errors, making shape estimation practically
impossible.

B. ICP-Based θ Estimation
1) Ideas and Strategies: Since the ICP-based method

includes a mechanism to mitigate the effect of the measure-
ment noise as described later, we consider an equation in
which r̄ in the partial-shape equation (2) is directly replaced
with the measurement distance r . Now let us start by deriving
another expression for (2). We assume that sensors 1 and
2 belong to the same half-plane: H(1) = H(2). Let t∗i :=
arg mintri (t), t̃i := t − t∗i , r̃i (t̃i ) := ri (t) − ri (t∗i ) for
i = 1, 2. We can transform (2) to the following:(

Xi

Yi

)
=

(−1 cos θi

0 sin θi

) (
v t̃i
r̃i

)
=: A(θi )

(
v t̃i
r̃i

)
. (6)

Hereafter, we simply rewrite t̃i and r̃i as ti and ri , respectively.
We refer to the space in which T exists and the coordinate
(X, Y ) is given as the real space and the space to which
the sensing results (vti , ri ) belong as the measurement space
of sensor i . The ICP-based method first estimates pairwise θs
from two sensing results, and then, by repeating this procedure
for all pairs of θs, we obtain all θs. Thus, we first consider a
two-sensor case and discuss the estimates of θ1 and θ2.

Our strategy is based on the following simple intuition. If
θs are obtained correctly, the partial shapes reproduced from
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sensors belonging to the same half plane in accordance with
(6) should overlap over a wide range. Conversely, if we can
adjust θs so that the partial shapes obtained from (6) overlap
over a wide range, the obtained θs are likely to be correct.
Thus, the θ estimation problem comes down to “partial-shape
matching.” We carry out this process by using our variant of
the ICP algorithm.

The ICP algorithm [13]–[15] is widely used in many fields,
such as object recognition and robot sensing, to match two
point clouds, one of which is called the reference cloud and the
other the source cloud. In general, for each point belonging to
the source cloud, we first find the closest point in the reference
cloud and match them. The degree of matching of the reference
and source clouds is expressed as an objective function, which
is usually defined as a weighted summation of the distance
between the matched point pairs. We determine the optimal
parameters regarding translation and rotation, i.e., rigid-body
transformation of the source cloud by solving the minimization
problem of the given objective function. After transforming
the source clouds with the obtained parameters, we repeat the
above procedure from the closest-point-matching step until the
objective function sufficiently converges.

To apply the ICP algorithm to our problem, we may consider
two sensors’ sensing results as the reference and source clouds.
However, there are two challenges with our problem. One
is that since the sensing results do not belong to the real
space but measurement spaces, we need to consider another
transformation to match the sensing results instead of rigid-
body transformation. The other is that because two sensors
having different θs generally detect different parts of T , the
two partial shapes do not overlap completely even if θs are
estimated correctly. This makes it difficult to achieve the global
optimal solution. To overcome these challenges, we developed
a variant of the ICP algorithm. The first problem is solved
by finding a linear transformation that maps the measurement
space of a sensor to that of another sensor. The second is
addressed by gradually decreasing the threshold parameter d
that determines which point pairs are involved in the objective
function.

2) Algorithm: We first explain the algorithm for estimating
two sensors’ directions θ1 and θ2. This is summarized in
Algorithm 1. We assume having sensing results { pi }i =
{(vt i

1, r i
1)}i of sensor 1 and those {q j } j = {(vt j

2 , r j
2 )} j of

sensor 2. Thus far, we treated r(t) as a continuous function
of t , but in practice, sensors have finite time resolution of
sensing and provide discretized finite plots. The subscripts
i, j are indexes to distinguish each measured value of sensing
results (Note that they are not indexes to distinguish sensors).
We first determine the initial values of θ1 and θ2. It may be a
good idea to carry out grid search for the objective function
explained later and initialize θ1 and θ2. Next, we transform
each measured point q j to R(θ1, θ2)q j , where R(θ1, θ2) :=
A(θ1)

−1 A(θ2). Thereby, each measured point of sensor 2 is
mapped into the measurement space of sensor 1. Since this
is not rigid-body transformation (since {R(θ1, θ2)}θ1,θ2 does
not form a group under multiplication), we cannot multiply
q j by R(θ1, θ2) iteratively as is usually done with the original
ICP algorithm. We then find the closest point to R(θ1, θ2)q j

Algorithm 1 ICP-Based θ Estimation

Input { pi }i = {(vt i
1, r i

1)}i , {q j } j = {(vt j
2 , r j

2 )} j , θ ini
1 , θ ini

2 , ε,
d-decreasing-list
Output θ̂1, θ̂2

1: θ1, θ2 ← θ ini
1 , θ ini

2
2: m, M ← 105, 105

3: // Decreasing d gradually
4: for d in d-decreasing-list do
5: while m > ε do
6: // Nearest point matching
7: p̃ j ← arg min p∈{ pi }i ‖R(θ1, θ2)q j − p‖ for each j
8: // Minimization of objective function
9: (θ1, θ2)← arg minθ1,θ2

1
Ñ

∑
j :‖·‖≤d ‖R(θ1, θ2)q j − p̃ j‖

10: m ← M − 1
Ñ

∑
j :‖·‖≤d ‖R(θ1, θ2)q j − p̃ j‖

11: M ← 1
Ñ

∑
j :‖·‖≤d ‖R(θ1, θ2)q j − p̃ j‖

12: end while
13: end for
14: θ̂1, θ̂2 ← θ1, θ2

in the sensing results { pi }i = {(vt i
1, r i

1)}i of sensor 1 and
match them. We may use the Euclid distance as a metric of
“closest.” The matching process can be executed quickly by
using space-searching methods, such as kd-tree. After that,
we minimize the objective function, i.e., the error function
1
Ñ

∑
j :‖·‖≤d ‖R(θ1, θ2)q j − p̃ j‖ with respect to θ1 and θ2,

where p̃ j ∈ { pi }i is the closest point to R(θ1, θ2)q j and
the summation is carried out only with respect to j that
satisfies ‖R(θ1, θ2)q j − p̃ j‖ ≤ d (a given threshold) and Ñ is
the number of such js. The j not satisfying ‖R(θ1, θ2)q j −
p̃ j‖ ≤ d is not added to the sum because it is considered
a non-overlapping sensing area of sensors 1 and 2. Using
the obtained new θ1 and θ2, we iterate the above procedure
from the nearest point matching until the objective function
converges sufficiently.

How to set the threshold d with our algorithm is crucial
to achieve convergence to the optimal solution. In the first
half of iterations, since we need to make two outlines of
sensing results close fast, we set a large d and make a large
number of points contribute to the minimization. In the latter
half of iterations, however, two outlines of the sensing results
have similar forms and require fine tuning of θ1 and θ2.
Thus, we should set a small d and reject the contribution
of the matching pairs between distant points that may neg-
atively affect the convergence. Taking such consideration into
account, we gradually decrease d as the algorithm proceeds.

Remark: One may wonder why we carry out point matching
in the measurement space not in the real space. Of course,
we can formulate point matching and minimization problem
in the real space as follows. We map { pi }i and {q j } j to the real
space as A(θ1) pi and A(θ2)q j . We then find the closest pairs
and consider an objective function 1

Ñ

∑
k:‖·‖≤d ‖A(θ1) pik −

A(θ2)q jk‖, where A(θ1) pik and A(θ2)q jk are the closest to
each other in the real space. Although this seems equivalent
to Algorithm 1, we found that this formulation yields a
little worse performance than ours as a result of preliminary
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numerical calculations. This is probably because θ̂ tends to
fall into a suboptimal in which the points of sensing results
are arranged in a single line, i.e., θ ≈ 0 or π .

We now are in a position to discuss θ estimation
in a general case. The basic idea of θ estimation is
as follows. We obtain N − 1 sets of estimators of
θ1 by applying the above algorithm for 2(N − 1) pairs
(r1, r2), (r1, r3), . . . , (r1, rN ), (r2, r1), (r3, r1), . . . , (rN−1, r1)
and (rN , r1). If H(1) = H(i) (i ∈ {2, 3, . . . , N}), then
the derived set of estimators using {(r1, ri )}Ni=2 and
{(ri , r1)}Ni=2 pairs include the same (correct) value of
θ̂1. Otherwise, the pairs may not provide a solution or provide
meaningless values. Therefore, pairs (r1, ri ) providing the
same θ̂1 can be considered belonging to the same half-plane:
H(1) = H(i). Otherwise, r1 and ri are in a different
half-plane: H(1) �= H(i). Similarly, we apply this algorithm
to the pair (r j , rk), where j > 1,∀k ∈ H( j) to determine θ̂ j .
To alleviate the fluctuation stemming from sensing noise
and numerical error, we conduct the above procedure more
systematically as follows.

For i �= j , let θ̂i,1( j) and θ̂ j,2(i) be the θi and θ j determined
from our algorithm with (ri , r j ) input, respectively, and θ̂i,2( j)
and θ̂ j,1(i) be the θi and θ j determined from our algorithm
with (r j , ri ) input, respectively. Since Algorithm 1 is not a
symmetric operation with respect to { pi }i and {q j } j , θ̂i,1( j)
and θ̂i,2( j) (θ̂ j,1(i) and θ̂ j,2(i)) are not exactly equal due to
measurement and numerical errors. Also, if H(i) �= H( j), then
θ̂i,1( j) (θ̂i,2( j), θ̂ j,1(i), θ̂ j,2(i)) should be meaningless and
must be discarded. Therefore, in the following, we describe
systematically obtaining the estimate of θi , which is denoted
as θ̂i , from {θ̂i,1( j)} j �=i and {θ̂i,2( j)} j �=i . First, omit θ̂i,k such
that θ̂i,k � 0 or π because R(θi , θ j ) in our algorithm is
unstable around these values and solutions around 0 and π are
unreliable. We can also see from geometric considerations that
most sensors with the direction around 0 or π cannot detect
the target object (Note that we removed sensors that collide
with the target object in advance, as explained in Section III.)
Thus, this heuristic process does not negatively affect the
estimation results. Second, from set {θ̂i,k( j)} j �=i,k∈{1,2}, find a
subset Ei such that all the elements in it have approximately
the same value. In principle, {θ̂i,k( j)} j∈A(i),k∈{1,2} should be
almost the same values where A(i) = { j ∈ {1, 2, . . . , N}\{i} |
H(i) = H( j)}, whereas {θ̂i,k( j)} j∈A(i)c,k∈{1,2} take meaning-
less random values where A(i)c = { j ∈ {1, 2, . . . , N}\{i} |
H(i) �= H( j)}. Thus, we expect Ei to be {θ̂i,k( j)} j∈A(i),k∈{1,2}.
If the objective function does not sufficiently converge, we can
consider such sensors to belong to the latter subset A(i)c.
Finally, we obtain the estimates θ̂i as the median of Ei . The
median is generally more robust against outliers than the mean.

Remark: If the target object is linearly symmetric with
respect to the reference direction, then Ei obtained above is
almost equal to the set of all sensors. In other words, we cannot
divide the sensors into those belonging to the upper half-plane
and those belonging to the lower half-plane. Given this fact,
if the sensor set cannot be clearly classified into two sets,
we assume that the object is symmetrical and estimate the
object shape by determining the shape of the half-planes.

We do not know to which half-plane each sensor belongs,
but we can estimate the shape of the target object (under the
assumption that it is symmetric).

The remaining task is to describe the shape of the object on
the basis of (2) using the obtained θ̂i , but it is not necessary
to use all the sensing data if the whole shape of the target
is covered. Since the accuracy of shape estimation can be
considered higher if we use sensing data ri (t) with high θi

estimation accuracy, we use ri (t) in the order of increasing
quartile range of Ei to cover the whole target.

V. NUMERICAL SIMULATIONS

We conducted extensive numerical simulations to evaluate
the effectiveness of the ICP-based method, especially in the
presence of sensing noise.

A. Default Conditions and Simulation Method
In this section, we use the following conditions unless

explicitly mentioned otherwise. The � is a rectangular area
of 200 × 150, the longer edge of which is along the
x-axis, and T is moving on the centerline parallel to the
x-axis of � at v = 1. We set rmax = 100 and ns = 100.
The sensors, the θs of which are randomly distributed in
[0, 2π), are uniformly distributed in �. Sensors reported r(t)
at 	t = 0.05 intervals during the simulations. At each t , r(t)
includes the true distance to T , r̄(t), and a random value δr(t)
that obeys an independent and identically distributed Gaussian
noise with a mean of 0 and standard deviation σ of 0.05.
Before applying the ICP-based method, however, we smoothed
the sensing results around the minimum of r(t) by polynomial
regression. Specifically, we conducted polynomial regression
from three to seven degrees and used the degree that minimizes
the Akaike information criterion (AIC). We used two figures
as T , which are (A) an ellipse (Ellipse): major diameter of
30 and minor diameter of 15, and (B) gourd shape (Gourd),
as shown in Figure 3. Note that Gourd has a non-convex shape.
To present a realistic interpretation of these examples, we may
consider one unit of length to be 0.5 m and one unit of time to
be 0.5 s. We evaluated estimation accuracy, which is defined
as R2/P Q ∈ [0, 1], where P is the area of the actual target
shape, Q the area of the estimated shape, and R the area
of the intersection of the actual target and estimated shape.
To define the intersection uniquely, we overlaid the bottom
of the estimated shape with that of the actual shape. In the
θ -estimation algorithm, we set ε = 10−7 and d-decreasing-
list = [20, 10, 5, 3, 1]. We repeated each simulation five times
by changing random seeds and averaged their results.

B. Impact of σ

We first investigated the impact of noise on estimation accu-
racy. Figure 4 shows the relation between σ and estimation
accuracy derived from the ICP-based method (Proposed) and
curvature-based method (CB) [12]. The error bars show the
standard deviation of five trials. The accuracy of CB remained
high under σ < 10−7. As σ exceeded this value, however,
it started to drop, and over σ > 10−4, shape estimation was
almost impossible. The fragility against noise is attributed to
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Fig. 3. Gourd, a gourd-shaped object used in the simulation. Unlike
Ellipse, it has a non-convex shape. In the simulation, it moved in the
positive x-direction (to the right) while maintaining the orientation shown
in the figure.

the fluctuation in Al(i, j), which is defined in the Appendix,
and essentially caused by the higher-order derivatives of r(t),
as discussed in our previous study [12]. On the other hand, the
ICP-based method provided high estimation accuracy even in
the range of σ > 10−4. Since it does not rely on the curvature
of r(t) but the outline of shape, its noise resilience is higher
than that of CB. Figure 5 plots the estimated θs and their
errors for σ = 10−4, 0.05 and 0.5 The vertical axis shows
the estimated θs, the true values of which are given on the
horizontal axis. The figure shows a box plot of Ei , which
means that red signal indicates the median Q2/4, edges of
box indicate the lower quartile Q1/4 and upper quartile Q3/4,
and closed interval indicates

[max{Q1/4 − 1.5IQR, θ̂min}, min{Q3/4 + 1.5IQR, θ̂max}],
where IQR = Q3/4 − Q1/4. If θs are correctly estimated,
the red signals should line up on the blue dotted line. For
σ = 10−4, almost all θs were correctly estimated, and the
errors were quite small. For σ = 0.05, some θs had relatively
large fluctuation around the estimated values, which are still
along the blue dotted line. This is thanks to taking the median
of estimated {θ̂i,k( j)} as θ̂i . The errors became larger for σ =
0.5 and some estimated values deviated from the true ones.
However, for θ that has a small quartile range, the estimated
values represented with the red signals, i.e., the median θ̂i , are
roughly along the blue dotted line. As described in the previous
section, we used the sensors in order of increasing quartile
range of Ei , so we were able to achieve high accuracy in shape
estimation even with a large noise level such as σ = 0.5.

From these results, we can conclude that, in the presence
of realistic noise, the ICP-based method outperforms CB and
works well enough for shape estimation. In the following sim-
ulations, we imposed σ = 0.05 noise, which is unacceptable
with CB. We present the results of the ICP-based method only.

C. Impact of ns

As we can see in the previous results, the accuracy of
the estimated θs largely relies on the statistical processing of
{θ̂i,k( j)}. Thus, we should investigate the impact of ns on
shape and θ estimation. Figure 6 shows the shape-estimation
accuracy by varying ns from 25 to 200. We found that the
ICP-based method still provides a good result even for ns =
25. This is consistent with the θ -estimation shown in Figure 7,
which shows that the estimated values denoted with red signals

Fig. 4. Impact of σ on shape estimation.

Fig. 5. Impact of σ on θ estimation (Ellipse).

Fig. 6. Impact of ns on shape estimation.

Fig. 7. Impact of ns on θ estimation (Gourd).

line up on the blue dotted line. From this observation, even if
we make ns smaller than 25, θ estimation would be possible.
However, the number of sensors may be too small to sense
the whole target object; thus, shape estimation would fail.

D. Impact of v
We then investigated the relation between v and shape-

estimation accuracy. Figure 8 shows the results. For Ellipse,
the shape-estimation accuracy was quite robust against the
increase in v. The θ estimation was not much affected by the
change in v, as shown in Figure 9. However, we found that
the shape-estimation accuracy of Gourd gradually worsened
as v increased. The reason for this can be considered as
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Fig. 8. Impact of v on shape estimation.

Fig. 9. Impact of v on θ estimation (Ellipse).

follows. Since Gourd had a more complex shape than Ellipse,
it required more sensing points to represent the outline of
its shape. With the increase in v, however, the interval of
sensing points becomes wider and the number of sensing
points lessens. This leads to inaccurate point matching when
applying the ICP algorithm. For essentially the same reason,
we obtained similar results when changing the size of T .

E. Impact of v Inaccuracy
As another aspect of the impact of v, we should consider the

impact of v inaccuracy. Although we assume that v is constant
with the ICP-based method, a T , such as a car, may gradually
change v or road conditions may make fluctuate v. Thus,
considering five specific cases: (a)/(b) Acceleration, (c)/(d)
Deceleration, and (e) Noise of v, we investigated their impact
on estimation accuracy. Note that we applied the θ -estimation
algorithm assuming v to be 1.0 taking the position that we do
not know the change or fluctuation in v.

The settings of all cases are shown in Table I. For cases
(a)–(d), we set the initial v to vi and the acceleration rate
along the same axis as the velocity to a, in which case the
final v of T when T exited � is vf . Cases (a) and (b) are when
T accelerates slowly and quickly, respectively. Cases (c) and
(d) are when T decelerates slowly and quickly, respectively.
For case (e), we imposed Gaussian noise with a mean of 0 and
standard deviation (SD) of 0.05 on v = 1 at each t .

Figure 10 summarizes the results of shape-estimation accu-
racy, and Figure 11 shows those of θ estimation for Ellipse
in each case. Baseline shows the case in which T moves at
a constant velocity v = 1. When the acceleration rate was
small, the ICP-based method was robust, even when v was not
accurate. With the increase in the acceleration rate, accuracy
decreased although shape estimation was still possible. The
ICP-based method was also robust against noisy velocity
changes. These results indicate that the ICP-based method is

TABLE I
SIMULATION SETTINGS

Fig. 10. Estimation accuracy for inaccurate v.

Fig. 11. Impact of v inaccuracy on θ estimation (Ellipse).

robust with respect to random errors in v, but less accurate in
the presence of systematic errors in v.

F. Non-Straight Line Moving
Finally, we considered the case in which T moves in a

non-straight line. Although with the ICP-based method it is
assumed that T moves in a straight line, real routes of a T ,
such as a car, could move in a curve. We set v (along the
x axis) to 1.0, initial velocity along the y axis to 0, and
acceleration along the y axis to 0.0005. That is, T moved on
a parabola curve and its projection on the x axis moved with
a constant velocity. The head of T kept facing in the direction
of the tangent of the trajectory at each t . Note that we applied
the θ -estimation algorithm assuming the trajectory of T to be
straight and taking the position that we do not know the curve
of the trajectory.

The shape-estimation accuracies were 0.973 and 0.978 for
Ellipse and Gourd, respectively. Figure 12 shows the
θ -estimation accuracy for both target objects. As a whole,
we can conclude that the ICP-based method is also robust
against a gentle curve of a T ’s trajectory.

VI. EXPERIMENT

We conducted an experiment with an actual optical sensor
to evaluate the feasibility of the ICP-based method in practical
situations.
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Fig. 12. Impact of curved trajectory on θ estimation.

Fig. 13. Photograph of devices used in the experiment.

A. Experimental Settings
We used the commercial laser-ranging sensor module

VL53L0X developed by STMicroelectronics NV. It can mea-
sure distance with a few-millimeter error at an interval of about
	t = 0.025 s. We obtained the time-series data through the
open-source microcontroller board Arduino Uno R3, as shown
in Figure 13. We prepared the non-convex shaped object
shown in Figure 14a the size (in meters) of which is shown in
Figure 14b. Instead of distributing many sensors, we repeated
measurements using a single sensor. Specifically, we fixed the
sensor’s position and direction in accordance with random
numbers generated in advance and moved the target object
at a constant speed of about v = 0.1 m/s. By repeating this
procedure, we obtained {ri (t)}i . Note that the obtained data
here are equivalent to data obtained simultaneously with mul-
tiple sensors because the ICP-based method does not require
{ri (t)}i to be time-synchronized. We collected 30 sensing
results of r(t) and determined θs from them. As mentioned in
Section IV-B.2, we assumed the object to be symmetric.

Although the main purpose of this experiment is to clarify
whether object-shape estimation is possible even in the pres-
ence of naturally occurring sensing noise and fluctuations in
v, we can find the following concrete application aspects for
this experiment. The shape estimation using distance sensors
discussed in this paper does not require the precision of
identifying a human face but the granularity of classifying
what the category of the object is (e.g., human, family car,
truck). Therefore, in this experimental setup, we can consider
that we are discussing whether we can estimate the intrusion
of an object of the size of a wheelbarrow, for example,
by capturing its shape characteristics, such as convexity.

B. Results
Figure 15 plots the results of θ estimation. We found that

θs can be estimated rather well. Figure 16 shows the results

Fig. 14. Target object used in the experiment.

Fig. 15. Estimated θs and their uncertainty obtained from the
experiment.

Fig. 16. Actual shape (red area) and estimated shape (blue curves).

of shape estimation. The red area denotes the actual shape
of T , and the blue curves indicate the estimated shape of T .
When we depicted this shape, we used the linear symmetry
of T and overlaid the bottom (top) of the estimated shape
with that of the actual shape. Figures 16a and 16b show the
estimated shape using 5 and 15 sensors, respectively. The
5 or 15 sensors were chosen in order of increasing quartile
range Ei , as described in Section IV-B.2. Even though θs
were accurately estimated, {ri (t)}i were affected by sensing
noise and v noise. Thus, the estimated shape was reflected by
which sensors were used in estimating the shape. The shape
estimated with only 5 sensors were partially lacking, especially
around the head of T . When using 15 sensors, the whole
shape was almost covered. Although there were differences
in the estimated shapes at the front and rear of the object
depending on the sensor used, the concavity of the sides and
the convexity of the obtuse angle, which are the characteristics
of the shape, could be captured, indicating that the object can
be discriminated adequately.

VII. CONCLUSION

We proposed a method for estimating the shape of a
moving target object from the sensing results of distributed
distance sensors. We considered a situation in which we do
not have any prior knowledge on sensor location, direction,
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or distribution. Although our previous study showed that
shape estimation would be theoretically possible under such
an information-lacking condition, our curvature-based method
is too sensitive to sensing noise to be applied in practical
situations. The proposed method can be applied to such
realistic situations. It can successfully obtain the directions
of sensors through our variant of the ICP-based algorithm by
avoiding the calculation of higher order derivatives, which is
sensitive to noise. To evaluate the effectiveness of our method,
we conducted extensive numerical simulations, demonstrating
that it is quite robust against noise of sensing results and
velocity. Although it is assumed with our method that the
target object is moving on a straight line and its velocity
is constant, we found that it performs well even when the
assumption is not exactly satisfied. We also conducted an
experiment using an actual laser sensor, showing that shape
estimation almost succeeds in the presence of real noise.
Therefore, this study, in conjunction with our previous studies,
supports the hypothesis that shape estimation is theoretically
possible and also practical to some extent even without impos-
ing elaborate conditions of distributed sensors. We believe that
this study opens up a new direction in sensor network research,
such as research on what prior conditions and information
are necessary in making shape estimation possible or more
accurate.

The following are also worth addressing for further study.
(1) We need to develop a method applicable to multiple target
objects. (2) In realistic situations, there are obstacles in the
monitored area. If obstacles do not move, the proposed method
can be applied only using time-variant r(t). Therefore, it needs
to be extended to cases in which moving obstacles exist.
(3) The accuracy of the proposed method may be improved
by considering the noise characteristics of the sensors. For
example, since the variance of the measurement noise depends
on the angle of incidence of the laser to the target, it cannot be
assumed that all sensors share the same noise characteristics.
Therefore, weighting the measurements in accordance with the
estimated angle may lead to more accurate shape estimation.

APPENDIX

A. Curvature-Based θ Estimation
In Appendix, we assume that r(t) does not include noise,

i.e., r(t) = r̄(t). First, we introduce important relations in
preparation for the θ estimation. See our previous study [12]
for derivations and detailed discussion. By considering the
linear motion of the target object within an infinitesimal time
interval, we obtain the slope ξ(s), curvature κ(s) ≡ dξ/ds,
and its derivative dκ/ds using r(t) as follows:

tan ξ = ṙ sin θ

ṙ cos θ − v
, (7)

κ(s) = ±v

(1+ tan2 ξ)3/2

r̈ sin θ

(ṙ cos θ − v)3 , (8)

dκ

ds
= 1

(1+ tan2 ξ)3

×v sin θ
(
ṙ(

...
r ṙ−2

...
r v cos θ−3r̈2)+...

r v2+3r̈2v cos θ
)

(ṙ cos θ − v)|ṙ cos θ − v|5 .

(9)

where the dots over r (such as ṙ , r̈ ) denote the derivatives with
respect to t , and ± corresponds to cos ξ ≶ 0.

The following property of r(t) is also important:
t∗ = argmintr(t)⇔ s(t∗) is the bottom or top of T , (10)

where the t of argmin runs in the domain where r(t) takes a
real value, not ∅.

We then consider a two-sensor case before discussing θ
estimation in the general case. Assume that we obtain two
sensing results r1(t) and r2(t) from two sensors. In accordance
with (10), if H(1) = H(2), then the point that sensor 1 detects
at t∗1 = argmint r1(t) and the point that sensor 2 detects at
t∗2 = argmint r2(t) are the same, namely, the bottom or top
of T . When the bottom (top) is smooth, we can determine
θ1 and θ2 by solving the following simultaneous equations
obtained by substituting ṙ1(t∗1 ) = ṙ2(t∗2 ) = 0 into (8) and (9):

r̈1(t
∗
1 ) sin θ1 = r̈2(t

∗
2 ) sin θ2, (11)

sin θ1(v
...
r 1(t

∗
1 )+ 3r̈1(t

∗
1 )2 cos θ1)

= sin θ2(v
...
r 2(t

∗
2 )+ 3r̈2(t

∗
2 )2 cos θ2). (12)

We can derive similar expressions when the bottom (top) is
not smooth.

Now, we are in a position to discuss θ estimation in the
general case. Since this method relies on the calculation of
higher-order derivatives of r(t), the estimated θs tend to
fluctuate greatly. Thus, we need to alleviate the fluctuation
in solutions by the following statistical processing.

1) Estimating Values of {(11), (12)}: Assume that the bot-
tom (top) is smooth. Let A1(i, j) and A2(i, j) be the values
of (11) and (12) for a pair of sensors (i, j), respectively.
To be precise, obtain θ̂i and θ̂ j by solving (11) and (12) with
(ri (t∗i ), r j (t∗j )) and let A1(i, j) ≡ r̈i (t∗i ) sin θ̂i and A2(i, j) ≡
sin θ̂i (v

...
r i (t∗i )+ 3r̈i (t∗i )2 cos θ̂i ).

We first obtain A1(i, j) and A2(i, j) for all pairs of sensors
(i, j = 1, 2, . . . N) by solving (11) and (12). If there is
no noise or error, we have Al(i, j) ≡ C L

l (const .) for
∀i, j ∈ L (l = 1, 2) and Al(i, j) ≡ CU

l (const .) for
∀i, j ∈ U (l = 1, 2). Thus, we can find two distinct subsets
in {Al(i, j)}i, j . The {Al,1(i, j)}i, j∈L is a subset corresponding
to L, and {Al,2(i, j)}i, j∈U is the other subset corresponding
to U (l = 1, 2). All the elements in each have almost the
same values. If there seems to be fluctuations in Al(i, j)’s
because of noise or error, it is a good idea to apply a certain
classification tool to obtain two subsets.

We then obtain Âl,m defined as the median of
{Al,m(i, j)}i, j (l, m = 1, 2). The Âl,m can be considered
the estimated values of (11) and (12). Note that median is
more robust against outliers than mean.

2) Determining θ in Ascending Order of SEM: By solving
{(11), (12)}, we have already obtained θs. However, because
the values of {Al,m(i, j)}i, j fluctuate, the obtained θs also have
errors. Thus, we find θs in ascending order of the square error
from median (SEM) in the following manner.

For each m = 1, 2, determine (sufficiently
many) n sensor pairs (i, j) in ascending order of

( Â1,m − A1,m(i, j))2 + ( Â2,m − A2,m(i, j))2, which
means the SEM of {Al,m(i, j)}i, j . Let (ĩk, j̃k) be the
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k-th smallest SEM sensor pairs (1 ≤ k ≤ n) and {θ̂ (p, m)}p =
{θ̂ (ĩ1, m), θ̂ ( j̃1, m), θ̂ (ĩ2, m), θ̂ ( j̃2, m), . . . , θ̂ (ĩn, m), θ̂ ( j̃n, m)}
be their θs, where θ̂ (ĩk, m), θ̂ ( j̃k, m) are derived from
A1,m(ĩk, j̃k), A2,m(ĩk, j̃k)(1 ≤ k ≤ n). Because we believe
that θ̂ derived from a smaller SEM is more accurate, we use
θ̂ in order of {θ̂ (p, m)}p in estimating the whole shape of T .

REFERENCES

[1] LoRa Alliance. Accessed: Jan. 21, 2022. [Online]. Available: https://
www.lora-alliance.org/

[2] NarrowBand IOT. Accessed: Jan. 21, 2022. [Online]. Available:
https://www.3gpp.org/news-events/3gpp-news/1733-niot

[3] H. Saito, O. Kagami, M. Umehira, and Y. Kado, “Wide area ubiquitous
network: The network operator’s view of a sensor network,” IEEE
Commun. Mag., vol. 46, no. 12, pp. 112–120, Dec. 2008.

[4] M. Umehira, H. Saito, O. Kagami, T. Fujita, and Y. Fujino, “Concept
and feasibility study of wide area ubiquitous network for sensors
and actuators,” in Proc. IEEE 65th Veh. Technol. Conf. VTC-Spring,
Apr. 2007, pp. 165–169.

[5] Sigfox - The Global Communications Service Provider for the Inter-
net of Things (IoT). Accessed: Jan. 21, 2022. [Online]. Available:
https://www.sigfox.com/

[6] SMART DUST. Accessed: Jan. 21, 2022. [Online]. Available:
https://people.eecs.berkeley.edu/~ pister/SmartDust/

[7] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Commun. ACM, vol. 43, no. 5, pp. 51–58, 2000.

[8] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[9] B. W. Cook, S. Lanzisera, and K. S. Pister, “SoC issues for RF smart
dust,” Proc. IEEE, vol. 94, no. 6, pp. 1177–1196, Jun. 2006.

[10] C. Zhu, C. Zheng, L. Shu, and G. Han, “A survey on coverage and
connectivity issues in wireless sensor networks,” J. Netw. Comput. Appl.,
vol. 35, no. 2, pp. 619–632, Mar. 2012.

[11] H. Saito and H. Ikeuchi, “Estimating shape of target object moving
on unknown trajectory by using location-unknown distance sensors:
Theoretical framework,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.
(SMC), Oct. 2018, pp. 4118–4125.

[12] H. Ikeuchi and H. Saito, “Shape estimation using location-unknown
distance sensors: A curvature based approach,” in Proc. 15th Int. Conf.
Distrib. Comput. Sensor Syst. (DCOSS), May 2019, pp. 90–97.

[13] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 1991,
pp. 2724–2795.

[14] P. J. Besl and N. D. Mckay, “A method for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256,
Feb. 2002.

[15] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in Proc. 3rd Int. Conf. 3-D Digit. Imag. Modeling, May 2001,
pp. 145–152.

[16] A. A. Kannan, B. Fidan, and G. Mao, “Analysis of flip ambiguities for
robust sensor network localization,” IEEE Trans. Veh. Technol., vol. 59,
no. 4, pp. 2057–2070, May 2010.

[17] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network
localization techniques,” Comput. Netw., vol. 51, no. 10, pp. 2529–2553,
2007.

[18] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54–69,
Jul. 2005.

[19] A. K. Paul and T. Sato, “Localization in wireless sensor networks:
A survey on algorithms, measurement techniques, applications and
challenges,” J. Sens. Actuator Netw., vol. 6, no. 4, p. 24, 2017.

[20] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless
networks: Possibilities and fundamental limitations based on available
wireless network measurements,” IEEE Signal Process. Mag., vol. 22,
no. 4, pp. 41–53, Jul. 2005.

[21] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location: Challenges faced in developing techniques for accurate wireless
location information,” IEEE Signal Process. Mag., vol. 22, no. 4,
pp. 24–40, Jul. 2005.

[22] G. Han, J. Jiang, C. Zhang, T. Q. Duong, M. Guizani, and
G. K. Karagiannidis, “A survey on mobile anchor node assisted localiza-
tion in wireless sensor networks,” IEEE Commun. Surveys Tuts., vol. 18,
no. 3, pp. 2220–2243, 3rd Quart., 2016.

[23] J. C. Chen, R. E. Hudson, and K. Yao, “Maximum-likelihood source
localization and unknown sensor location estimation for wideband
signals in the near-field,” IEEE Trans. Signal Process., vol. 50, no. 8,
pp. 1843–1854, Aug. 2002.

[24] X. Nguyen, M. I. Jordan, and B. Sinopoli, “A kernel-based learning
approach to ad hoc sensor network localization,” ACM Trans. Sensor
Netw., vol. 1, no. 1, pp. 134–152, 2005.

[25] C.-H. Ou, “A localization scheme for wireless sensor networks using
mobile anchors with directional antennas,” IEEE Sensors J., vol. 11,
no. 7, pp. 1607–1616, Jul. 2011.

[26] Y. Ahmadi, N. Neda, and R. Ghazizadeh, “Range free localization in
wireless sensor networks for homogeneous and non-homogeneous envi-
ronment,” IEEE Sensors J., vol. 16, no. 22, pp. 8018–8026, Nov. 2016.

[27] Y. Wu, Y. Wang, and G. Cao, “Photo crowdsourcing for area coverage
in resource constrained environments,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., May 2017, pp. 1–9.

[28] I. Abraham, A. Prabhakar, M. J. Z. Hartmann, and T. D. Murphey,
“Ergodic exploration using binary sensing for nonparametric shape
estimation,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 827–834,
Apr. 2017.

[29] H. Saito and H. Honda, “Geometric analysis of estimability of target
object shape using location-unknown distance sensors,” IEEE Trans.
Control Netw. Syst., vol. 6, no. 1, pp. 94–103, Mar. 2019.

[30] H. Saito, S. Shimogawa, S. Shioda, and J. Harada, “Shape estimation
using networked binary sensors,” in Proc. IEEE INFOCOM 28th Conf.
Comput. Commun., Apr. 2009, pp. 2901–2905.

[31] H. Saito, “Local information, observable parameters, and global view,”
IEICE Trans. Commun., vol. E96.B, no. 12, pp. 3017–3027, 2013.

[32] H. Saito, S. Tanaka, and S. Shioda, “Stochastic geometric filter and its
application to shape estimation for target objects,” IEEE Trans. Signal
Process., vol. 59, no. 10, pp. 4971–4984, Oct. 2011.

[33] H. Saito, S. Shimogawa, S. Tanaka, and S. Shioda, “Estimating parame-
ters of multiple heterogeneous target objects using composite sensor
nodes,” IEEE Trans. Mobile Comput., vol. 11, no. 1, pp. 125–138,
Jan. 2012.

[34] H. Saito and T. Kimura, “Theoretical framework for estimating target-
object shape by using location-unknown mobile distance sensors,” IEEE
Trans. Mobile Comput., vol. 19, no. 5, pp. 1233–1246, May 2020.

Hiroki Ikeuchi received the B.S. and M.S.
degrees in physics from the University of Tokyo
in 2014 and 2016, respectively. He joined NTT
Laboratories, Musashino, Japan, in 2016. His
research interest includes wireless sensor net-
work and automation of network operation. He is
a member of IEICE and the Physical Society of
Japan (JPS). He received the Network Systems
Research Award (IEICE Technical Committee on
Network Systems) and the Young Researcher’s
Award (IEICE) in Japan, in 2021.

Hiroshi Saito (Fellow, IEEE) received the B.E.
degree in mathematical engineering in 1981, the
M.E. degree in control engineering in 1983, and
the Dr.Eng. degree in teletraffic engineering from
the University of Tokyo in 1992. He joined NTT
in 1983. Since 2018, he has been a Professor
with The University of Tokyo. His research inter-
ests include traffic technologies of communica-
tions systems, network architecture, and applied
mathematics in communications systems. He is
a Fellow of IEICE and ORSJ and a member of

IFIP WG 7.3. He received the Young Engineer Award from the Institute
of Electronics, Information and Communication Engineers (IEICE) in
1990, the Telecommunication Advancement Institute Award in 1995 and
2010, the Excellent Papers Award of the Operations Research Society of
Japan (ORSJ) in 1998, the ACM MSWiM Conference Best Paper Award
in 2016, and the Arne Jensen Lifetime Achievement Award in 2020.
He has served as an Editor and a Guest Editor of technical journals
such as Performance Evaluation, Computer Networks, IEEE JOURNAL
OF SELECTED AREAS IN COMMUNICATIONS, and IEICE Transactions on
Communications. He is the organizing Committee chairperson and the
Program Committee chairperson of several international conferences.
He is a TPC Member of more than 40 international conferences and the
Director of the Journals and Transactions of IEICE. More information can
be found at http://www9.plala.or.jp/hslab.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


