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Evaluation of Heartbeat Signal Extraction
Methods Using a 5.8 GHz Doppler Radar

System in a Real Application Scenario
C. Gouveia , Student Member, IEEE, D. Albuquerque, P. Pinho , Senior Member, IEEE, and J. Vieira

Abstract—Doppler-basedradar systems have been seen as
a promising tool to assess vital signs, since they are capa-
ble to monitor the respiratory and cardiac signal remotely,
by measuring the chest-wall displacement. However, due to
the spectral overlap of these signals, their proper separation
is a challenging task. In this paper, we demonstrate the
effectiveness of using Discrete Wavelet Transform in the car-
diac signal extraction, by comparing this method with other
approaches widely used in literature, namely a standalone
Band-Pass Filtering, the Ensembled Empirical Mode Decom-
position, the Continuous Wavelet Transform and the Wavelet
Packet Decomposition. The comparison metrics were defined taking into consideration the heart rate computation
accuracy, and also the peak detection consistency to further evaluate the Heart Rate Variability. The efficiency of those
methods is also tested considering real application scenarios, characterized by non-controlled monitoring environment
conditions and the ability to equally assess the vital signs of different subjects, regardless their physical stature.

Index Terms— Doppler radar, continuous wave, vital signs, bio-radar, cardiac signal, discrete wavelet transform, wavelet
packet decomposition, ensemble empirical mode decomposition, continuous wavelet transform.

I. INTRODUCTION

THE non-contact vital signs monitoring using radar sys-
tems, also known as Bio-Radar systems, have been

widely discussed in the research community. With this tech-
nology it is possible to keep track of the subjects’ health
condition, or even his/her psychological state remotely [1], [2],
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by assessing the cardiac and the respiratory signals.
The bio-radar system stands out from the conventional sen-
sors, such as the Electrocardiogram (ECG) and the Plethys-
mography, for being non-invasive, avoiding the direct contact
with the subject. Thus, it has demonstrated to be a promising
tool to revolutionize not only healthcare systems, but also the
human lifestyle in general.

The bio-radar implementation has been reported using dif-
ferent radar front-ends [3]. Its operation principle is based
on micro-Doppler radar, which uses electromagnetic waves
to measure the chest-wall displacement during the cardiopul-
monary activity [4]. For instance, Continuous-Wave (CW)
radars transmit continuously an electromagnetic wave towards
the subject’s chest-wall. Then, the resulting echo is received
and it consists on a phase modulated version of the transmitted
signal, since the thoracic motion changes slightly the traveled
path of the electromagnetic waves, as shown in Fig. 1. The
received signal is a single signal containing both respiratory
and cardiac components [4].

Despite its potential, the bio-radar implementation is not
trivial due to several challenges. Among them, one can high-
light the multipath environment or the signal interference due
to random body motion. In [5] a deep review is performed
concerning the random body motion and the self-motion
produced by the radar handling, where it is highlighted the
impact that the motion signals can have in the vital signs
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Fig. 1. CW bio-radar working principle.

accuracy. Even if the bio-signals are acquired in ideal and
stationary conditions, the proper separation of the respiratory
and cardiac signals is not trivial due to the spectral component
proximity, to the harmonic superposition and also to the
amplitude difference between both signals.

The first generation of bio-radars was proposed by
Lin et al. [6] during the 70s decade. At this stage, authors
could only detect the cardiac signal if the subject was in
apnea. Since then, the research community has evolved and
several solutions have been proposed to separate respiratory
and cardiac signals, without requiring the subject to hold his
breath [7]–[21].

Regarding the signal processing algorithms used for cardiac
signal extraction, typically a band-pass or high-pass filter
could be used as straightforward and direct approach to
extract the heartbeat signal. However, filtering is not the most
suitable technique, since the recovered cardiac signal might
be distorted and loses resolution [7]. Furthermore, the filter
performance is most likely compromised due to the respiratory
signal nature. In fact, the respiratory signal cannot be seen as
a monotone sinusoid, being rather an harmonic signal, with
frequency components overlapping the cardiac signal. Due to
this, it is not possible for a linear filter to completely separate
both signals [7].

Recovering correctly the intact cardiac waveform, might be
advantageous to identify certain health events. In addition to
the heart rate, more information can be retrieved from this
waveform, as the Heart Rate Variability (HRV). The HRV
represents the change in the time interval between successive
heartbeats [22]. HRV is a strong indicator of the cardiac vagal
tone, which is highly related to several psychophysiological
phenomena, such as our emotions, cognitive behaviors and it
plays an important role on our health condition [22]. In order
to compute the HRV parameters accurately, it is required
to assess the Interbeats Interval (IBI) correctly. Most of the
reported works focused in the HRV parameters via radar, apply
band-pass filtering to remove the respiratory component and
isolate the cardiac signal [11]–[13]. Additionally, in order to
improve IBI results, in [11] filter bank is used with different
center frequencies and in [13] the vital signs are acquired from
the back, avoiding the high amplitude of the thoracic motion
due to breathing. Despite the promising results obtained
in [11]–[13] and due to the filter limitations aforementioned,
there are different approaches that use methods based in signal
decomposition and multi-resolution analysis, that can preserve
the signal resolution.

In this work we compare the efficiency of different methods
used in the literature for cardiac signal extraction, mostly
using multi-resolution analysis and signal decomposition. The
tested methods were a simple Band-Pass Filtering (BPF) for
comparison purposes, the Ensemble Empirical Mode Decom-
position (EEMD), the Discrete Wavelet Transform (DWT), the
Wavelet Packet Decomposition (WPD) and the Continuous
Wavelet Transform (CWT). The most efficient method should
be capable to retrieve the cardiac waveform, leading to an
accurate heart rate computation and simultaneously enabling
the peak localization to further estimate the HRV parameters.

This method comparison is also performed considering
the application in real scenarios, which can be challenging
since it is usually performed in non-controlled environments
(without laboratory conditions) during long time periods, and it
encompasses inter-individual physical variability. In fact, each
individual’s physiological characteristics produces a varied
radar cross-section and hence different amplitude chest-wall
displacement [23]. Thus, for this work, a dataset was built
with the vital signs of four different subjects with smaller
and larger statures, and with a six-hour duration. The vital
signs were acquired while the subjects were visualizing videos.
These videos were used in our previous study [2], to induce
three different emotions: happiness, fear and neutral condition,
and thus achieve a higher variability on the heart rate, leading
to more robust results.

To briefly summarize, our main contributions with this
work, are the following:

• Carry out a method comparison to extract the cardiac
signal waveform, considering non-controlled monitoring
environments;

• Verify the cardiac peak location consistency and inspect
if it is possible to compute HRV parameters;

• Study the results accuracy impact, when using subjects
with different body statures.

This work is divided as the following: in Section II a
literature overview is presented, mainly focused on the dif-
ferent methods that we aim to test in this work. Then,
we present some highlights regarding the impact of operating
bio-radars in real application scenarios. Our system setup is
described in Section IV along with the procedure conducted
during the signal acquisition stage and the signal processing
algorithm implemented prior to the cardiac signal isolation.
The methods implementation is described in Section V, where
the considered evaluation metrics are also explained. Then, the
obtained results and their discussion is presented in Section VI
and leading to the conclusion in Section VII.

II. LITERATURE REVIEW ON MULTI-RESOLUTION

ANALYSIS AND SIGNAL DECOMPOSITION

A. Wavelet Transform
In [10], [15], [18]–[21], [24], the wavelet transform is

explored as an approach to extract the cardiac signal, since
it can provide a multi-resolution perspective. In other words,
long-time windows are applied to retrieve low frequency com-
ponents and short-time windows are used for high frequency
components.
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Wavelets are functions with specific mathematical require-
ments, that can decompose the original signal into a set of
signals [25]. For this purpose, a mother wavelet should be
firstly selected and then scaled (by stretching or shrinking
it) and compared with the input signal while shifting it over
time.

The signal decomposition using wavelets can be performed
using different analysis [26]. One can highlight the CWT,
DWT and the WPD. For instance, CWT is widely used in
time-frequency analysis and DWT is often used for denoise
purposes [26]. The main difference between both is the
scaling stage, since CWT provides a finer decomposition
and DWT performs a dyadic scaling leading to a sparse
decomposition.

Regarding DWT and WPD, both methods are similar to
multi-rate filter banks (which provides the dyadic scaling fea-
ture). For instance, in DWT the original signal is decomposed
in a certain number of scale levels [27]. On each scale level,
the signal is simultaneously low-pass and high-pass filtered,
being hereinafter downsampled by a factor of 2. The output
of the high-pass chain consists on the detail coefficients D(n)
and the low-pass chain provides the approximation coefficients
A(n). The decomposition through levels is then performed,
using A(n) as the new input signal [27].

WPD is an extension of the DWT [27], where the D(n)
coefficients are also decomposed. In this way, WPD provides
a better resolution in terms of frequency, as suggested in [27].
In [24] WPD is used to separate the respiratory and cardiac
signals. The authors take advantage of the improved frequency
resolution and perform a 6-level decomposition. Respiratory
and cardiac signals are recovered through the combination of
nodes containing the desired frequency band. CWT is used
afterwards to obtain the cardiac rate, achieving an average
absolute error varying between 1.69 and 3.22 beats-per-minute
(BPM).

In the general literature, CWT is the most used method to
recover the cardiac signal. More specifically, in [15] authors
study which is the most appropriated scale factor to determine
the IBI accurately. In [20], [21] CWT is used to improve
the accuracy on the heart rate computation. First of all, [20]
is focused on short-time applications. The authors compared
the performance of their method with a conventional Fourier
transform, achieving an average error reduction from 26.7%
to 3.5 %. In [21] CWT is used to adapt the extraction
properties to be suitable for different subjects in different
monitoring scenarios. The authors obtained a Root-Mean-
Squared Error (RMSE) varying between 0.1 and 4 BPM within
the testing scenarios.

On the other hand, DWT is mostly used to denoise the
cardiac signal, and not necessarily as a mean to isolate it.
In [19] the authors study which are the best DWT features to
denoise the cardiac signal acquired by a 5.8 GHz radar. They
analyzed the Signal-to-Noise Ratio (SNR) of 115 potential
functions, containing 6 wavelet families and 10 decomposi-
tion levels. They concluded that for the denoising purpose,
Daubechies and Symlet wavelets with 9 vanishing moments
are the most appropriated selection, considering 7 decompo-
sition levels.

B. Empirical Mode Decomposition
The Empirical Mode Decomposition (EMD) technique con-

sists on separating the input signal in a finite number of
components [28], the so-called Intrinsic Mode Functions
(IMFs). IMFs are obtained through a sifting approach, which
consists in the following procedure [29]: firstly the lower
and upper signal envelopes are obtained through cubic spline
interpolations on local minima and maxima. Then, the mean
value of both envelopes is subtracted from the input signal,
and the same process is repeated until the IMF conditions are
verified (see [28], [29]).

The signal decomposition in IMFs is performed iteratively,
i.e. after finding the first IMF, this component is subtracted
from the original signal and the result is submitted to the
sifting process all over again. At the end, the original signal
can be obtained through the sum of all IMFs plus a residual
function.

EMD techniques are widely used in literature to extract the
cardiac signal in the bio-radar context. For instance, in [16]
the author used EMD to extract the heartbeat signals even in
situations where the subject is randomly moving other body
parts. In this case, the respiratory component is mitigated
using a high-pass band filter and the EMD was applied
afterwards. The authors tested the effectiveness of their method
considering different amplitudes of body motion and obtained
an RMSE between 0.6 to 1 BPM. On the other hand, it was
demonstrated in [17] that it is possible to recover both bio-
signals (respiratory and cardiac signals) concurrently using
EMD. Herein the authors give an implementation example,
where the cardiac signal was obtained through the first IMF
isolation and the respiratory signal was reconstructed through
the sum of the IMFs with more energy in the desired spectral
component. The maximum error that the authors obtained
in [17] was equal to 4.4 BPM.

More recently, the improved version of EMD, namely the
EEMD was used in [10]. EEMD aims to solve inherent EMD
issues, such as the mode mixing [30], which makes the phys-
ical meaning of an individual IMF unclear. For this purpose,
the EEMD simulates successive observations of the same input
signal, by adding white noise to it. Thus, each observation
results from the noise addition with different characteristics.
Adding noise will provide a relatively uniform reference scale
distribution, which improves the EMD performance [30].

C. Methods Combination
The method proposed in [10] combines the DWT usage

with EEMD. In this case wavelets threshold are used to
denoise IMFs. Then, vital signs were accurately extracted
by selecting the most appropriate IMFs, where the cardiac
signal was recovered with an error equal to 0.014 BPM. The
same method combination is proposed in [18] to separate bio-
signals. Herein the authors state that the combination of both
methods can provide results accurate enough to estimate the
HRV. Since cardiac signals are tenuous in comparison with
respiratory signals, in [18] wavelets are used due to their
optimal resolution in time-domain for high-rate signals, and
the EEMD is applied to help in signal reconstruction. Herein,
the RMSE varied between 2.53 and 4.83%.
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Fig. 2. Baseband signal represented in the complex plane.

III. IMPLICATIONS OF REAL APPLICATION

SCENARIOS ON BIO-RADAR SIGNALS

Generally in CW radars, signals are acquired by quadra-
ture receivers, that perform a downconvertion to baseband
using in-phase and quadrature demodulation. Thus, the signal
processing is performed using complex signals. The received
baseband signal can be represented by an arc projected in the
complex plane, as depicted in Fig. 2a (neglecting the parasitic
reflections).

Its mathematical form can be represented by
equation (1) [5]:

g(n) = g0(n) + g1 = A0e jϕ(n) + A1e jθ1 (1)

where, g0(n) represents the desired bio-signal and g1 the
sum of all parasitic reflections. Starting with the desired bio-
signal, A0 is the received signal amplitude (and the arc radius)
and ϕ(n) represents the phase change function according to
the chest-wall motion. The phase change generates the arc
depicted in Fig. 2a, which can be mathematically written as
equation (2):

ϕ(n) = θ0 + 4πar d(n)

λ
, (2)

where θ0 = (4πdo/λ) + φ, is the average distance traveled
by the wave, considering the nominal distance between the
radar and the target, do, the phase shift at the target’s surface
φ and the wavelength λ. Bio-signals are described by the
4πar d(n)/λ term, where d(n) encompass both respiratory
and cardiac signals. Bio-signals can be seen as periodical
waveforms, being the respiratory signal the one with higher
amplitude ar . Thus, ar corresponds to the arc length in the
complex plane.

The parasitic reflections that occur in the monitoring envi-
ronment can be described by g1 component, from equation (1),
where A1 represents the amplitude of the parasitic reflections.
For simplicity purposes, let us consider that the parasitic
reflection occurs due to one stationary object, located at a
distance d1 from the radar. The phase shift on this object
can be defined as θ1 = (4πd1/λ) and is also seen as an
addition of complex DC component in the baseband spectrum.
The resulting complex plane is depicted in Fig. 2b, where the
DC component is perceived as DC offsets added to the arc
center. Thus, the parameter A1 dictates the distance from the
arc center to the origin of the complex plane, and d1 dictates
the position of the arc center in the complex plane, i.e. its
coordinates.

Fig. 3. Received signal in a non-controlled environment.

In real application scenarios, this component might change
over time if the subject under monitoring moves slightly
uncovering different objects, or even if other targets located
in the environment change their position. This means that the
distance d1 varies in time accordingly, leading to θ1 and A1
parameters to change as well. Hence, the parasitic component
of the baseband signal should now be re-written as g1(n) =
A1(n)e jθ1(n), with θ1(n) = (4πd1(n)/λ), which indicates that
the DC offsets might also change over time [31].

In addition to the parasitic reflections, real application sce-
narios might also encompass low amplitude signals due to two
reasons: the misalignment between the antenna beam and the
chest-wall location that produces the maximum displacement
when the subjects randomly moves, and the variety of the
subjects’ body statures which might also be related with the
subject’s gender. In [23] it is presented a correlation between
anatomical differences relative to gender and the chest-wall
displacement. Men’s rib cage have a higher antero-posterior
diameter and a larger cross-sectional area and volume. On the
other hand, women have a disproportionately smaller rib cage
comparing with men, and hence a lower cross-sectional area.
In [23] it is also concluded that the men’s lungs are bigger
in absolute volume, which produces wider volume variations.
This means that men might produce high amplitude signals
(leading to higher length arcs ar ) and women lower amplitude
ones.

Fig. 3 shows an example of some signals that might support
the aforementioned hypothesis. These signals correspond to
some samples acquired in the scope of this study. The subjects
presented different physical characteristics, which were mea-
sured for control purposes, namely the height, their Body Mass
Index (BMI) and their thoracic perimeter aligned with the
diaphragm. Subject 1 and subject 2 presented higher reflection
areas. They are males and have a thoracic perimeter equal
to 90 cm and 96.5 cm, a height equal to 1.75 m and 1.76 m and
a BMI of 22.20 and 27.44 kg/m2, respectively. On the other
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Fig. 4. Schematics of the monitoring scenario.

hand, subject 3 and subject 4 are females and have a narrower
thoracic perimeter, namely 75 cm and 82 cm, a shorter stature,
being 1.56 m and 1.50 m height and 25.07 and 18.70 kg/m2

of BMI, respectively. Hence, these lower physical dimensions
represent a decreased reflection area.

Fig. 3a shows the received signal projection in the complex
plan. On the left, it is possible to observe the full raw signal
obtained during a 30 minute acquisition, from subject 2 in red
and from subject 3 in black. Herein, it is possible to observe
that both subjects moved during the experiment which caused
a DC offsets change. For instance, two distinct groups of arcs
can be observed in subject 2, marked as A1 and A2. The DC
offsets change is even more pronounced in the subject’s 3 case,
respectively marked as B1 and B2.

The signals samples of the Fig. 3a on the left side also
shows a difference on the arcs length, that might be related
with the size of the reflecting areas of both subjects. Fig. 3a on
the right, presents the arcs corresponding to one-minute seg-
ments of all subjects. Once again, it is possible to observe the
impact of the body statures differences, once subjects 1 and 2
produced a larger arc than subjects 3 and 4. Finally, the
same effect is perceived in the extracted waveform present in
Fig. 3b, after the Digital Signal Processing (DSP) algorithm,
i.e. without the complex DC offsets and after the phase demod-
ulation. Herein different amplitude signals were obtained.

IV. HARDWARE DESCRIPTION AND DATA COLLECTION

In this work, a bio-radar prototype was used operating with
CW at 5.8 GHz. Fig. 4 shows the schematics of the room used
as non-controlled monitoring environment. The setup used
was composed by a software-defined radio as RF front-end,
namely the USRP B210 board from Ettus ResearchTM. Two
2×2 antenna arrays were used for transmission and reception,
respectively. These antennas have circular polarization and
are crossed polarized to avoid the mutual coupling and to
improve the path gain [32]. Both antennas have an half-
power beamwidth of 40◦ approximately, and a gain equal to
11.6 dBi. The setup was operated with a transmitted power
equal to 2 dBm.

As mentioned previously, the vital signs of four subjects
were acquired, where two were males and the other two
were females. The study was approved by the Ethics and
Deontology Committee of University of Aveiro, Portugal
(No.29-CED/2021) and an informed consent was obtained
from all the subjects. The subjects were seated in front of
the antennas at a distance of half meter and they were asked

Fig. 5. BPM variation over time for different emotional conditions.

Fig. 6. Breathing pattern and trigger definition for signals
synchronization.

to remain still as much as possible during the experiment.
Subjects were monitored while they were watching videos,
selected to induce three emotions [2]: happiness, fear and
the neutral condition. The main goal of these videos was to
take advantage of a wider variability in the heart rate caused
by the emotions felt and also to account with the individual
differences.

Fig. 5 shows an example of the number of BPM over time
for two subjects. It varied from 65 to 95 BPM along with
the different emotional conditions. Besides, each subject had
a different reaction for each set of videos. These events led us
to obtain unbiased and more robust results.

The experiment was conducted in different sessions occur-
ring on separate days. Each session was dedicated to a different
emotion and it was composed by a baseline period of 5 minutes
approximately, and an inducing moment that lasted around
20-30 minutes. The collected dataset has a total duration
of 367 minutes (around 6 hours). The vital signs were acquired
simultaneously, using our bio-radar prototype and the BITalino
(r)evolution BT board for the ECG signal [33].

In order to synchronize both signals, the subjects were asked
to perform a breathing pattern composed by three deep breaths,
an apnea period of 10 seconds and a slow exhale as depicted
in Fig.6. Then, immediately before the next inhale, the subject
pushed a trigger button to start the ECG acquisition.

Our study aims to compare different methods for the
cardiac signal extraction and verify their performance in



7984 IEEE SENSORS JOURNAL, VOL. 22, NO. 8, APRIL 15, 2022

real application scenarios, which implies that: i) the moni-
toring environment cannot be controlled, ii) the population
under monitoring can encompass subjects with different body
statures and iii) the signal amplitude might change during
long term acquisitions, because it is impossible to remain
completely still and keep the same body position.

In order to address to the aforementioned issues, the
signals of all subjects were acquired inside a conventional
room (outside the laboratory environment), with other subjects
inside the room at the same time, but out of the antennas
range. Since the signals are acquired during 30 minutes, it is
expected that the subject under monitoring move according to
his/her reaction to the videos or even to adjust his/her position,
seeking for a comfortable posture. All these conditions could
generate a time varying multipath environment that eventu-
ally changes the complex DC offsets accordingly, as it was
previously observed in Fig. 3a.

Bio-radar signals were acquired using the GNU Radio
Companion software, with a sampling frequency equal to
100 kHz. After receiving the signal, it was processed using
MATLAB in order to remove the complex DC component
and to recover the vital signs. This procedure is explained on
detail, in the next sub-section.

A. Processing Signal Algorithm
Taking into account the effects observed in the real life

signals, for instance as the ones depicted in Fig. 3a, the DSP
algorithm presented in [31] was applied to recover the vital
signs. This algorithm is robust to low amplitude signals and is
implemented dynamically to encompass the DC offsets time
variations.

Considering the arc shape that the baseband signal has in
the complex plane (see Fig. 2b), one common method used in
literature for the DC offsets compensation is the Park et al.
method [34], which uses a circle fitting applied to the arcs
to identify their center coordinates (which are the DC offsets
values). Then, those coordinates can be subtracted from the
remain signal, and the phase demodulation can be subse-
quently performed to recover vital signs, using the arctangent
method [35]. However, the solution proposed by Park et al.
is not successful when the signals are weak, since they lose
their arc shape, being rather a cluster of disperse samples.
In those cases, the fitting is performed considering that all
radar samples form a circle, hence the coordinates estimation
is often provided in the middle of the radar samples, pushing
the arc to oscillate around the complex origin and providing
an incorrect arctangent result. The algorithm proposed in [31]
uses a customized cost function minimization, by setting the
searching area outside the radar samples. With the arc center
solution located outside the radar samples, the signal can be
properly re-centered around the origin.

Furthermore, the algorithm from [31] is applied dynam-
ically over time, in order to encompass eventual DC off-
sets changes that might occur due to body motion, for
instance. For this purpose, the DC offsets are estimated
using an overlapped windowing approach. A vector is created
with the successive estimations of each window, which is
then interpolated to assign a DC offset coordinate pair to

each radar sample. The DC offsets are removed smoothly
after subtracting the interpolated vector from the radar
signal.

As mentioned in [31], the algorithm presents some lim-
itations. One is regarding the DC offsets solution obtained
through the cost function minimization. The minimum zones
can occur in both arc sides, i.e. inside and outside its concav-
ity. Since different solutions are provided over time through
the windowing approach, successive windows might present
solutions in opposite sides of the arc, adding an undesired
variability degree to the overall center estimation. In order
to attenuate this effect, a Savitzky-Golay filter is applied
to the coordinate vectors before interpolation. However, the
Savitzky-Golay filter provides intermediate values between
two opposite ones, which might affect the final aspect of the
signal. In order to solve this problem, we used a median filter
combined with an interpolation using the nearest value, which
revealed being more effective and it could remove the DC
offsets without altering the original signal.

Finally, on the ECG side, a 15th order band-pass FIR filter
with pass-band equal to 6-20 Hz, was applied to highlight the
R-peak detection and remove noise [36], providing a better
comparison tool.

V. METHOD EVALUATION

A. Methods Description
Considering the state of the art presented in Section II,

a total of six methods (M1 to M6) were tested, compared and
discussed in this work: M1) Single BPF, M2) DWT followed
by EEMD, M3) Standalone DWT, M4) Standalone WPD, M5)
WPD followed by EEMD and M6) Standalone CWT.

Despite the presented disadvantages of BPF, it is still widely
used in literature. Therefore we decided to include it as
a standalone method and evaluate its performance as well.
Additionally, we verified in preliminary tests that applying
a BPF prior to any other method, attenuates the respiratory
component and improves the algorithms performance. For this
reason, the remain methods (M2 to M6) are applied after a
band-pass filtering stage.

Each method was implemented using the following
specifications:

1) BPF: This method consists only on a 100th order band-
pass FIR filter, with a pass band between 0.7 and 2 Hz. This
filter order was selected because it provides around 10 dB
attenuation over the respiratory frequency band.

2) DWT: In this work, DWT is implemented to directly
retrieve the cardiac waveform, rather than denoising it.
The wavelet coefficients are obtained using the maxi-
mal overlap discrete wavelet transform, implemented with
modwt function from MATLAB, considering 7 decompo-
sition levels, as recommended by [19]. For this purpose,
a Daubechies with 4 vanishing moments was selected as
mother wavelet by trial. Then, the resultant signal can be
recovered from the wavelet coefficients using the modwtmra
function from MATLAB. The output of this function consists
on a set of signals, with different frequency components.
Since our signals are analyzed with a sampling rate equal
to 100 Hz, the cardiac component is mainly present in the
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5th and 6th decomposition levels. Therefore, only the signals
of these two levels are summed.

3) WPD: This method is similar to DWT. A decomposition
tree can be obtained using the wpdec function of MATLAB,
with the same mother wavelet used in DWT. In order to
avoid redundancy and save computational resources, only the
8th decomposition level was selected to inspect the nodes.
This level was chosen by trial, since it was the one providing
enough frequency discretization on the cardiac band. The
cardiac signal was reconstructed using the coefficients of the
nodes which had the desired frequency, and this was performed
using the wprcoef function.

4) EEMD: In order to implement EEMD, the guidelines
suggested in [30] were followed: White noise was added to
the input signal, with an amplitude equal to AW = 0.4 ×
σ(x(n)), where σ(x(n)) denotes the standard deviation of
input signal x(n). The noisy signal was decomposed in IMFs
afterwards and these steps were repeated a total of 100 times,
using different noisy samples. At the end, it was obtained
the ensemble of means from all IMFs. Once again, their
frequency content is evaluated, to select the ones with the
desired spectral component and then sum them to reconstruct
the cardiac signal.

5) CWT: The CWT was performed using the Morlet wavelet
with cwt MATLAB function, which is the option suggested
by [15] and [20]. In this case, Daubechies was not used since
orthogonal wavelets are designed for dyadic scales (which are
more spaced comparing with the ones used in CWT, to reduce
redundancy) [26]. The cardiac signal was recovered using
the icwt function, which once again selects the coefficients
correspondent to the desired frequency band.

All the decomposition methods reconstructed the cardiac
signal by summing the sub-signals with a spectral content
between 0.8 and 2.5 Hz.

B. Evaluation Metrics
During the data processing stage, one could observe that

different body statures produced signals with different ampli-
tudes. In our particular case, the male subjects produced
signals with higher amplitude and better SNR, comparing with
the signals generated by the female subjects. Hence, there was
a necessity to divide the dataset in a short-version (SH) and
full-version (FL), in order to perform a more controlled analy-
sis. Thus, the SH dataset has 217 minutes and includes signals
from subject 1 and subject 2. This dataset is analyzed primarily
to define which is the best method to extract the cardiac signal
properly. Conversely, the FL includes all the 367 minutes
and it is analyzed afterwards, to understand the impact that
lower amplitude signals have in the algorithms performance
(produced by the females considered in this study). Each
dataset was divided in one-minute segments.

The methods performance was evaluated in two metric lev-
els, respectively. The first metric level was focused on the heart
rate accuracy (in BPM). The heart rate was computed using a
zero-crossing approach: firstly the zero-crossing intervals were
identified and the maximum of each interval was computed,
corresponding to a peak. The IBI was computed between
peaks for each one-minute segments and a time threshold

Fig. 7. ECG and radar signals superposition for peaks location evalua-
tion, with the illustration of two peaks difference Δt.

was applied afterwards to remove outliers. The threshold was
computed using half of the mean IBI of the full segment. The
number of BPM was determined by the inverse of IBI values
median.

The first metric level encompass the correlation coeffi-
cient between the radar cardiac signal and the ECG signal.
A Bland&Altman (B&A) analysis is also performed in this
scope [37]. Additionally, the coefficient of variation (CV)
is also considered, to relate the variation between the radar
and ECG measures with their mean value [38]. The absolute
error in BPM was also evaluated and compared among the
six methods. Finally, the computational speed and the results
coherency in consecutive runs were also accounted.

The second metric level is related with the study of the
peaks position in relation to the ECG signal. HRV parameters
could be successfully computed in radar signals, if the peaks
position and hence the IBI do not differ largely from the ECG.
Thus, ECG and radar signals were superimposed and the peaks
position was compared, as depicted in Fig. 7. It is expected
that both signals are not perfectly synchronized, which means
that a small lag offset can be acceptable. The most important
aspect is to guarantee that this offset remains approximately
constant over the segment. Furthermore, one should note that
this delay may not last more than some milliseconds, so it is
not expected to obtain biased results. For the heart rate case,
since we are evaluating one-minute segments, the delay does
not have impact in the total number of BPM because the delay
duration is much less than the mean IBI.

Considering Fig. 7, some metrics were computed over the
time difference between the ECG and radar peaks, marked
as �t : the average IBI of radar and ECG signals (IBI), the
standard deviation of such average IBI for both radar and ECG
(σIBI), the average value of the time difference between the
radar and the closest ECG peak (�t) and the standard deviation
of such time difference (σ�t

).
As we will see in the next section, the ECG results suggest

a slight variability on the σIBI, due to our psychophysiological
behavior. This is the variation that induce the HRV parameters.
The radar signals should vary in the same scale, to equally
produce reliable results. Thus, the σIBI for radar is the first
indicator of the peaks location consistency. Then, the remain
metrics may justify such variation.

For the time difference �t, the algorithm seeks for the clos-
est ECG peak in relation to the radar peak under evaluation.



7986 IEEE SENSORS JOURNAL, VOL. 22, NO. 8, APRIL 15, 2022

Fig. 8. Correlation and B&A graphs for tested methods using the SH dataset.

Fig. 9. Empirical cumulative distribution function of the BPM error for all
methods using SH dataset.

The most important metric is the σ�t
, which indicates the

variation level of the peaks position in relation to the corre-
sponding ECG peaks, and it should be the lowest as possible.

VI. RESULTS DISCUSSION

First of all, let us start with the SH dataset evaluation.
Fig. 8 depicts the Correlation and the B&A graphs for all
the six methods. Additionally Fig. 9 shows the error behavior
for all methods. The results of such graphs are summarized
in Table I, which also contains other performance metrics,
such as the computational speed and the results variation in
consecutive runs. This table presents the results for FL dataset,
as well, which is analyzed afterwards.

All methods present a similar BPM accuracy, excepting the
M1 method. For instance, it presented a correlation coefficient
equal to r2 = 0.56, which clearly indicates a lack of relation
between ECG and radar measures. On the other hand, M2 and
M3 were the ones that stand out with the best performance,
having the highest correlation coefficient r2 = 0.99, the lowest
coefficients of variation (CV = 1.7% and CV = 1.5%) and
the lowest limits of agreement. Between both, it should be
highlighted the M3 performance in other metrics. For instance,
95% of the dataset presented an error that did not exceed
2.46 BPM, as shown in Fig. 9, while the remain methods
present a BPM error superior to 2.6 BPM. In [14] the authors
obtained a similar accuracy using the same carrier frequency
and transmitted power. Aside from M1, M6 is the one that
requires less computational resources. In fact, M6 presents a
performance slightly lower than M2 and M3.

Methods that combined wavelets with EEMD (M2 and
M5) were specially time consuming, since for each IMF it is
required to perform a certain number of repeated observations.

Fig. 10. Histogram with the distribution of Δt over ECG IBI using SH
dataset.

Furthermore, EEMD methods presented slightly different
results in consecutive runs, probably due to the different
characteristics of the noise added on each observation. This
could induce an additional error and compromise the results
reliability.

The M4 method (using WPD) presented also less satis-
factory results, either implemented alone or combined with
EEMD. Besides, this method presented a higher execution
time, which is related to the nodes decomposition.

Observing now the obtained results for FL dataset (see
Table I), the methods with the best performance were M3
and M6, which were the faster either (neglecting the M1
case). However, it is also possible to understand the results
impact due to the smaller reflecting areas and lower amplitude
motions of subjects 3 and 4. As expected, the error in BPM
increased in general, namely between 6 to 8 BPM, excepting
for the BPF where an abrupt increase was verified. The
correlation coefficient got also worst, as well as the B&A
parameters. Even though, the M3 method stands out for being
the best method, having the highest correlation coefficient
r2 = 0.92, the lowest CV and the lowest run time.

Regarding the second metrics level, the radar peaks position
was evaluated in relation to ECG peaks, through the �t

parameter. Starting with the SH dataset, Fig. 10 shows an
histogram that indicates the peaks location distribution in
relation to the ECG peak. For instance, if the �t is equal
to IBI/2, all bars would be around 0.5. On the other hand,
if radar peaks were exactly synchronized with ECG peaks,
the histogram bars would only fall around the 0.1 value, and
this would be the most preferable situation. Assuming that
a constant offset would be acceptable, the bars should lie
around any other value, but exclusively that one. In fact, the
histogram from Fig. 10 shows us a wider distribution for every
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TABLE I
EVALUATION METRICS FOR HEART RATE ACCURACY

TABLE II
EVALUATION METRICS FOR PEAK LOCATION CONSISTENCY

value, which indicates a certain level of variability for all
methods.

Table II shows the results of the obtained radar IBI and
the �t variation among all methods. From Table II and
similarly from Fig. 10, it can be inferred that all methods
have a similar behavior and no one stands out in particular. For
comparison purposes, the IBI for ECG was equal to 785.72 ms
and its σIBI was equal to 37.48 ms. In contrast, the IBI of radar
for each method present a somewhat difference in relation to
the ECG IBI, which is more notorious for the M1 method.
However, wider differences can be noticed in the all σIBI,
which represents a IBI variability higher than expected for
the radar side.

These results may be explained with the peak location varia-
tion, as suggested by �t results. There is indeed a considerable
offset on the radar peak position, and in fact, this offset
can be seen as worrisome considering its standard deviation,
which varies between 67 and 75 ms. This variation might be
translated in an additional error on the IBI determination.

For the FL dataset, the IBI ECG was equal to 789.4 ms
and its σIBI was equal to 50.3 ms. The radar IBI results did
not altered much, but they became slightly worse for σIBI.
Likewise, the �t and its σ�t

increased around 10 ms.
Almost all results were affected after adding signals from

subjects 3 and 4. In this sense, it is possible to conclude
that low amplitude motions hamper even more the methods
sensitivity to precisely determine the radar peaks location,
which can also compromise the heart rate accuracy.

Thus, we believe that although DWT revealed being the
best method for heart rate estimation, it might not be suitable
for HRV estimation and all methods presented similar results
regarding the peak position consistency. Therefore, the direct
computation of HRV parameters might not be possible as it
is, and other approaches should be explored. This conclusion
in line with Kim et al. in [12], where a different radar with a
lower carrier frequency was used.

VII. CONCLUSION

In this work, a comparative study for cardiac signal extrac-
tion was performed, considering real application scenarios.
Six different methods were selected from literature, imple-
mented and compared, considering two main issues: the inter-
individual stature variability and non-controlled monitoring
environments. The impact of the inter-individual variability
in the signals amplitude was observed, but more research is
required to understand if the lower amplitude is necessarily
related with the subjects’ gender or exclusively related with
the body statures.
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Regarding the performance of the cardiac extraction meth-
ods, standalone wavelet-based methods showed to be the more
indicated for heart rate estimation, since it presented the
smallest error and the fastest computational effort, regardless
of the subject’s body stature. This was observed for both CWT
and DWT, where DWT stand out as being the method with the
best performance. However, a results degradation was verified
in general, when subjects with lower amplitude motions were
included in the dataset.

Additionally, the radar peaks position consistency was eval-
uated. Although the DWT presented the best accuracy results,
there is no guarantee that this method, or any other herein
tested, can provide the peak location with enough precision
for HRV parameters estimation, at least using the described
system setup. The radar σIBI varied largely from the one
observed for ECG, as well as σ�t

. This fact can contribute to
an additional error in HRV parameters estimation. Therefore,
other approaches should be explored to estimate HRV, since
the DWT might not be used solely.
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