
6942 IEEE SENSORS JOURNAL, VOL. 22, NO. 7, APRIL 1, 2022

Low-Power Detection and Classification for
In-Sensor Predictive Maintenance Based on

Vibration Monitoring
Paola Vitolo , Graduate Student Member, IEEE, Antonio De Vita, Student Member, IEEE,

Luigi Di Benedetto , Senior Member, IEEE, Danilo Pau , Fellow, IEEE,
and Gian Domenico Licciardo , Senior Member, IEEE

Abstract—In this work, a new custom design of an anom-
aly detection and classification system is proposed. It is
composed of a convolutional Auto-Encoder (AE) hardware
design to perform anomaly detection which cooperates with a
mixed HW/SW ConvolutionalNeural Network (CNN) to perform
the classification of detected anomalies. The AE features a
partial binarization, so that the weights are binarized while
the activations, associated to some selected layers, are non-
binarized. This has been necessary to meet the severe area
and energy constraints that allow it to be integrated on the
same die as the MEMS sensors for which it serves as a neural
accelerator. The CNN shares the feature extraction module
with the AE, whereas a SW classifier is triggered by the AE
when a fault is detected, working asynchronously to it. The
AE has been mapped on a Xilinx Artix-7 FPGA, featuring an
Output Data Rate (ODR) of 365 kHz and achieving a power dis-
sipation of 333µ W/MHz. Logic synthesis has targeted TSMC
CMOS 65 nm, 90 nm, and 130 nm standard cells. Best results
achieved highlight a power consumption of 138µ W/MHz with
an area occupation of 0.49 mm2 when real-time operations
are set. These results enable the integration of the complete
neural accelerator in the CMOS circuitry that typically sits with the inertial MEMS on the same silicon die. Comparisons
with the related works suggest that the proposed system is capable of state-of-the-art performances and accuracy.

Index Terms— Anomaly detection, FPGA, artificial intelligence, autoencoder, classification, in-sensor computing,
ultra-low-power.

I. INTRODUCTION

THE without peace evolution of Artificial Intelligence (AI)
and Deep Learning (DL) methods in particular [1],

is further pushing the development of effective Anomaly
Detection (AD) systems as the first step toward the full
implementation of Predictive Maintenance (PdM), which has
rapidly imposed as one of the main strategies in the hetero-
geneous context of Industry 4.0 for the huge improvements in

Manuscript received January 20, 2022; accepted February 19, 2022.
Date of publication February 24, 2022; date of current version March 31,
2022. This work was supported by the Italian Ministry of Education,
University and Research. The associate editor coordinating the review
of this article and approving it for publication was Prof. Ruqiang Yan.
(Corresponding author: Gian Domenico Licciardo.)

Paola Vitolo, Luigi Di Benedetto, and Gian Domenico Licciardo are with
the Department of Industrial Engineering, University of Salerno, Fisciano,
84084 Salerno, Italy (e-mail: pvitolo@unisa.it; ldibenedetto@unisa.it;
gdlicciardo@unisa.it).

Antonio De Vita and Danilo Pau are with the System Research
and Applications Department, STMicroelectronics, 20092 Milan, Italy
(e-mail: antonio.devita@st.com; danilo.pau@st.com).

Digital Object Identifier 10.1109/JSEN.2022.3154479

the reliability of industrial machines and the significant cost
reductions. Although the malfunctions of industrial machines
can be attributed to very different causes, involving both elec-
trical and mechanical components, recent studies suggest that
mechanical faults are mainly caused by bearing malfunctions,
which account for approximately 30-40% of all the sources of
failures [2]. Early symptoms of incipient mechanical failures
can be detected by sensing weak anomalous vibrations or
associated patterns by employing acoustic or inertial sensors,
vibrometers and accelerometers, placed on the body of the
machines to be monitored, and communicating with a central
data processing system. Considering that industrial machines
normally operate in noisy environments, DL approaches,
by processing the stream of data leaking from the sensors, are
much more effective to find the complex correlations between
normal and anomalous behaviors than the conventional model
and rule-based approaches, mainly during the early stages of
the faults when anomalous signals can be very weak [2], [3].
Recent DL approaches are based on Convolutional Neural
Networks (CNN), Generative Adversarial Network (GAN),

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6703-3999
https://orcid.org/0000-0001-5588-0621
https://orcid.org/0000-0003-1585-2313
https://orcid.org/0000-0002-1913-4928

VITOLO et al.: LOW-POWER DETECTION AND CLASSIFICATION FOR IN-SENSOR PdM BASED ON VIBRATION MONITORING 6943

Recurrent Neural Networks (RNN), etc., each one having its
own strengths and weaknesses [1]. However, deploying such
networks in PdM systems is very challenging and costly due to
the very high computational complexity, memory requirements
of those models, and power consumption, which do not meet
the needs for always-on monitoring of the apparatus [4], [5].
In this context, Auto-Encoders (AE) [6] are an obvious choice
since they combine the use of relatively shallow networks with
the possibility of unsupervised training, particularly interest-
ing when the availability of labelled faults data is difficult.
Indeed, AE is trained to approximate input data as faithfully
as possible at the output. Moreover, if the input data are
underlying normal operations of the monitored apparatus,
anomalous inputs can be detected by comparing them with the
corresponding reconstructed outputs. However, the limitation
of the AE is the capability to recognize what it shall be normal,
namely, AEs are only able to detect if an anomaly occurs, but
they are not capable to classify it [7]. As it will be discussed in
the next section, several solutions have been presented in the
related works to overcome the above limitation by recurring
to conventional and more compact Machine Learning (ML)
approaches or to more complex DL, which usually are chal-
lenged in finding an acceptable trade-off between the number
of physical resources needed by their implementations, the
processing speed, and the detection/classification accuracy.

This work presents a new Anomaly Detection and Classi-
fication (ADC) system for the PdM of industrial apparatus,
which overcomes the above limitations by proposing a new
approach to the design a sensor-based edge-AI computing
system. The main advantages of the proposed approach are
in: a) the continuous monitoring of the vibrations produced
by a mechanical apparatus; b) the real-time AD (processing
of an input before another input data is available) with very
high Output-Data-Rate (ODR); c) the extremely high AD
accuracy and the capability to classify anomalies (9 classes
have been set by this study); d) a large part of the com-
putational complexity is both close and integrated into the
sensors to reduce energy requirements and bandwidth on the
communication channels. The system has an original hybrid
architecture composed of two intersecting parts: an AD built
around a deep convolutional AE and an on-demand Anomaly
Classifier (AC), which is triggered only when the AE detects
an anomaly, therefore a-synchronously vs the detection. The
careful design of the AE, with ultra-low area and energy
features, makes viable its integration with the CMOS circuitry
typically embodied on the same die of the inertial MEMS, such
as A/D, filters, re-samplers, etc., [8], [9], therefore enabling
much more effective in-sensor AI. Additionally, the encoder
part of the AE operates as a feature extractor for the AC
component of the system. Therefore, a CNN for AC has been
implemented by pipelining the encoder sub-module of the AE
with a classifier, implemented on a low-power microcontroller
unit (MCU) and activated on-demand, from its deep sleep
state, by the AE. Additional strength points of the proposed
AE can be summarized as follows:

• The proposed AE is composed of multilayer NNs for
both the encoder and the decoder to achieve a very high
detection accuracy.

• A new custom partial-binarization schema has been used
for both the encoder and the decoder, to feature binarized
weights and non-binarized activations for some selected
layers.

• The number of physical resources needed by the AE
implementation has been limited thanks to a careful
custom HW design rather than by reducing the number
of layers [10]–[14].

• This choice takes advantage of the low number of
activations of the classifier and enables the possibility
of sharing it with multiple AEs integrated into several
sensors distributed on the apparatus under monitoring.

As case study, the proposed system has been used for the
monitoring of bearings in motors. The Case Western Reserve
University (CWRU) public bearing dataset [15] for machine
health monitoring has been used for training and validation.
The proposed system exhibits state-of-the-art accuracy with a
detection accuracy of 99.61% and a classification accuracy
up to 94.83% for 9 classes. Implemented on the Xilinx
Artix 7 FPGA, the AE counts a total power dissipation
of 122 mW (15 mW of dynamic power) operating at the
maximum frequency of 45 MHz (i.e. 333 μW/MHz dynamic
power), supporting MEMS with an ODR up to 365 kHz,
which is one of the most important requirements for real-time
monitoring application to high-speed critical manufacturing
machines, such as high-speed drills and cutters. Synthesis
using TSMC 65 nm LP-HVT CMOS technology gives a power
dissipation of 138.62 μW/MHz, an area occupation 0.49 mm2,

and the maximum operating frequency is 230 MHz. To explore
the opportunity of embedding the proposed accelerator with
the sensor circuitry, to deploy in-sensors computing, analysis
with more conservative TSMC 90 nm and 130 nm HVT
CMOS technologies have been performed. To our best knowl-
edge, all the achieved results are beyond the state of the art
for such systems.

The remaining part of the paper is organized as follows:
Section II reports a brief overview of the most recent related
works; section III presents the employed models; architecture
of the HW design is presented in section IV; implementation
results and comparisons with the related works are discussed
in section V; section VI concludes the paper.

II. RELATED WORKS

To introduce recognition capabilities in AEs, several solu-
tions have been proposed in the recent literature, which
usually adopts conventional ML approaches, featuring much
less computational complexity than DLs. A large part of
the related works is conceived to improve the AE models.
In [16] a Feature Distance-Stacked AE (FD-SAE) has been
combined with a Support Vector Machine (SVM) to classify
3 anomalies and only when their effects on the bearings
are significantly different from the ones during the normal
operation.

In [17] a deep generative model based on a Variational-
AE (VAE) has been proposed to perform classification with
a reduced set of labelled data for training. In [18] wavelet
packet denoising and random forests are used to achieve
88.23% classification accuracy in fault diagnosis of rolling
bearing and in noisy environment. In [19] a 2D CNN is

6944 IEEE SENSORS JOURNAL, VOL. 22, NO. 7, APRIL 1, 2022

Fig. 1. Schema of the proposed fault diagnosis system. Encoder and
decoder are implemented in HW, while the classifier SW runs on a tiny
STM32 microcontroller.

proposed to improve classification accuracy of bearing faults
by vibration data. However, such models usually require
high computational complexity and memory footprint, so that
they are not well suited for resource constrained embedded
systems. The use of cloud computing is inconvenient when
operational critical apparatus must be monitored, due to the
low reliability and high latency of remote connections which
requires enough bandwidth to guarantee real-time operations;
general purpose platforms, using CPUs and GPUs have got
silicon sizes, prices and energy costs which are incompatible
with the integration into the apparatus to be monitored [5].
Similar limitations affect devoted processors, such as the Xil-
inx Deep Learning Processor Unit (DPU) core [20], introduced
to accelerate CNN inference on FPGAs. Although it is a
configurable soft core engine supporting various basic DL
features (convolution, max and average pooling, etc.), DPU has
been essentially designed for high performance applications
and requires too many physical resources and energy budget
to be effectively considered for extreme deep edge comput-
ing implementations. FPGA designs in [21]–[23] require too
many neurons and, hence, too many physical resources and
energy budget to be effectively considered for deep edge
computing implementations. With the aim to reduce the HW
computing resources, [24]–[27] exploit lightweight variants
of CNN, based on Tiny-YOLO [24], MobileNet [25] and
ShuffleNet [26], but they are still inadequate for HW imple-
mentation with a power budget in the order of microwatts.
With the purpose to reduce the power dissipation, in [28] a
configurable neural custom architecture has been presented,
which normally operates with a small, low-precision AE, but
it increases the complexity of the network and the computing
precision on the detection of anomalies. While this approach
could be effective for fault detection, it is not the best choice
for PdM, which requires high accuracy when weak, initial
signals of early anomalies occur [2], [3]. Therefore, our
solution, which is set to design custom neural HW to keep the
large part of the computation inside the sensors, appears by
far the most viable solution to meet conflicting requirements
in terms of availability of physical resources, communication
bandwidth, [29] and to support MEMS inertial sensors with
high ODR [8], [9].

III. THE UNDERLYING MODELS

The proposed ADC system is schematized in Fig. 1. It is
composed of two NNs, the convolutional AE for AD, in turn
composed of an Encoder and a Decoder stage, and the CNN

(Encoder + Classifier) for fault classification. The encoder
also operates as feature extractor for the CNN; therefore, it is
shared between the two NNs in the Y-shaped fashion as shown
in Fig. 1. The models exploit a partial quantization approach
tested for the first time by the authors in [10]–[12] into a
Human Activity Recognition (HAR) system. Although the
NNs are significantly different in dimensions, topology, and
acquiring sensors (tri-axial accelerometers in that case), the
partial-binarization approach has been so effective in finding
a good trade-off between high recognition accuracy and low-
power dissipation of the CNN in HAR that it has also been
used for AE. Therefore, all weights of the AE are binarized,
namely they are set to be either +1 and -1 and encoded with
1 bit. Consequently, a memory reduction factor of 32:1 can
be roughly estimated with respect to a traditional 32 bits
floating point coding. Also Multiply-Accumulations (MAC)
complexity has been dramatically reduced to much simpler
ADD/SUB operators with large gains in area and power con-
sumption. Furthermore, the outputs of the layers that require
the largest number of operations or memory requirements have
been binarized and Batch Normalization (BN) layers have been
introduced to preserve the accuracy [30].

A. Convolutional Auto-Encoder
The proposed AE is shown in Fig. 2, divided into the

encoder (2a) and decoder (2b) sequential stages. HNN-based
convolutional model has been designed for the encoder and the
decoder. This choice enables several significant advantages for
the HW implementation of the AE:

• The number of network parameters and the required
physical resources of the HNN are drastically lower than
those of a comparable fully connected topology.

• The reduced complexity of the operators, and hence their
delays, favors the iterative HW design of CONV layers,
with an acceptable increment of latency even for sensors
with very high ODR.

• The previous advantages also result in a lower occupied
area and lower power dissipation with respect to a con-
ventional CNN.

The encoder consists of two convolutional (CONV) and a
Max-Pooling (MP) layer, which act as hierarchical extractors
and decimation filter, respectively. The CONV layers are
composed of 8 channels, with a kernel size of 5, and zero
padding. The input window is composed of W1=24 samples.
The inputs to the first layer are not binarized, and 16 bits are
used for their representation, according to the output of several
commercial sensors for PdM [8]. The number of outputs per
channel of the first layer is equal to W2 = 20, due to the
absence of zero-padding. Thus, the dimensions of the output
activations of the CONV1 layer are W2×ch = 20 × 8 (160
samples). CONV1 is followed by a BN layer and binarization,
consequently each output can be represented by 1 bit. The
activation function used for the binarization is the sign:

y = sgn(x) =
{

−1 i f x < 0

+1 i f x ≥ 0
(1)

The outputs have been binarized considering that most of the
operations are performed in the next CONV2 layer. CONV2

VITOLO et al.: LOW-POWER DETECTION AND CLASSIFICATION FOR IN-SENSOR PdM BASED ON VIBRATION MONITORING 6945

Fig. 2. Model of the proposed AD system, composed of (a) the encoder, (b) decoder and (c) the CNN_Head. The latter, in pipeline with the encoder,
composes the CNN classifier.

applies a set of 8 filters of size 8×5, thus the output activations
for this layer have dimensions W3×ch = 16×8 (128 samples).
The Max-Pooling has size 4, namely its output activations have
dimensions W3/4×ch = 4 × 8 (32 samples).

The decoder stage is the mirror image of the encoder. It uses
UpSampling layer, which quadruples the size of the input, and
the transpose convolutional layer (ConvT), which performs an
inverse convolution operation. ConvT consists of a uniform
up/down padding of the input and a convolutional operation.
Therefore, the input size of ConvT1 is W5×ch = 16 × 8, a
4 padding is done resulting in an output size 24 × 8 and then
a convolution with 5 kernel size and 8 channels is used. Its
output activations have dimensions W6×ch = 20 × 8 (160
samples). ConvT1 is followed by a BN level and binarization,
thus each output can be encoded with 1 bit. ConvT2 performs
the same padding and convolution as ConvT1, but ReLU is
the activation function:

y = ReLU(x) =
{

0 i f x < 0

x i f x ≥ 0
(2)

Table I reports the complexity of the AE, detailing for each
layer the amount of memory to store the parameters and
the number of operators. By pursuing the intent to reduce
the physical resources for the HW implementation of the
system, the encoder also operates as a feature extractor, which,
in conjunction with a shallow classifier, composes a CNN
capable of classifying faults, sharing a large part of the
resources with the AE.

B. CNN for Classification
Fig. 2c represents the CNN_Head module composed of two

full-precision Fully Connected (FC) layers and a SoftMax.
Together with the encoder of Fig 2a, it composes the CNN for
classification, which is then composed of 2 partially binarized
CONV layers, 1 Norm layer, 1 MaxPool, 2 FC layers and a
SoftMax. FC1 has 64 neurons and (2) as activation function.
FC2 has 9 neurons, which correspond to the number of faults
that the CNN can classify in this work.

Unlike the AE, an input window of 24 does not embody
enough information to disambiguate an anomaly between the
various classes, providing an inadequate mean accuracy value

TABLE I
MEMORY AND OPERATIONS REQUIRED BY THE ADC

of 55%. The input dimensions have been empirically derived
for the case study described in the next sub-section, for
which the classification accuracy overcomes 90% with an input
window of 336 (91.92%) and increases up to a maximum
value of 94.83% with an input window of 600. In this last
case, the output dimensions of CONV1 and CONV2 layers
are W2×ch = 596×8 (4768 samples) and W3×ch = 592×8
(4736 samples), respectively.

The X-CUBE-AI ver. 6.0.0 tool has been used to deploy the
proposed CNN_Head in Fig. 2.b on a STM32L476RG micro-
controller. The tool automatically converts the pre-trained
network into C code, which has been compiled and profiled on
the STM32. Considering that a single inference run requires
79,120 MACC operations, each one needing 8.69 clock cycles,
at a clock frequency of 80 MHz the total inference time is
8.59 ms only right after an asynchronous anomaly detection,
while consuming 120 μA/MHz in run mode. The complexity
of CNN_Head in terms of required memory for the parameters
and number of arithmetic operations is reported in Table I.
Since the CNN_Head required single precision floating point
computing resources of the STM32 and lots of memory,
then its in-sensor implementation is not justified in practical
applications, while it can be conveniently implemented as a

6946 IEEE SENSORS JOURNAL, VOL. 22, NO. 7, APRIL 1, 2022

TABLE II
SUBSET OF THE CWRU DATASET USED FOR THE CNN

software module on a cheap off-the-shelf MCU or on the
processing units equipping almost all the recent FPGAs, work-
ing in tandem with the AE. To solve the mismatch between the
input windows of the AE (24) and the CNN (600), as well as to
achieve a compact ADC system that shares the compact HNN
encoder as in Fig. 1, when detecting an anomaly, 24 outputs
of the MaxPool layer of the encoder are accumulated into
the STM32 embedded RAM by the CNN_Head for 25 times,
up to 600 inputs. It is worthwhile to consider that the above
arrangement not only facilitates the fine tuning of the classifier
after its installation to preserve the accuracy (e.g., in presence
of wear of the monitored apparatus) but also enables the time-
sharing of the same CNN_head with several sensors equipped
with the feature extractor and deployed in different carry
positions on the apparatus to be monitored.

C. Case Study and Verification: Bearing Faults Detection
and Classification

In order to validate the proposed ADC system, we have
used the bearing dataset [15], provided by Case Western
Reserve University (CWRU), Cleveland, Ohio, USA. It con-
tains electric motor bearing vibration data sampled at 12 kHz
and 48 kHz by using accelerometers attached to the motor
housing with magnetic bases. Electro-discharge machining has
been used to induce 4 different diameter faults on the rolling
elements, the outer races, and the inner races. The motor
speeds were set to 1797, 1772, 1750, and 1730 rpm, related to
loads of 0, 746, 1492, and 2238 W. The extracted datasets for
this work have been of 20,328 samples of 24 data points for
the AE and 2637 samples of 600-lenght for the CNN, each
one coded with 16 bits. The sample data and the rpm have
been of 12 kHz and 1797, respectively. The classified faults
are 9 and detailed information is listed in Table II.

The models have been built and trained using TensorFlow
and Larq frameworks [31], [32]. The dataset for the AE has
been divided into training (75%), validation (12.5%), and test
(12.5%) dataset. AE has been trained with batch sizes of
256 for 50 epochs. Since the CWRU dataset also contains
anomalous data, they have been exploited for AE training
following the algorithm proposed in [33]. To evaluate the
model, accuracy and Area Under Curve (AUC) have been cal-
culated on the test dataset. The AUC is a metric for evaluating
the performances of the classification model separately from
the thresholds set. The AUC scores and accuracy achieved,
averaged over 10 trials, are 0.99 and 99.61%, respectively.

For the CNN training, the dataset extracted from that of the
CWRU has been divided into training (80%), validation (10%),
and test (10%). Categorical cross-entropy has been chosen
as loss function and Adam as the optimizer. The number of

TABLE III
MODEL COMPARISONS

epochs has been set to 200 and the batch size to 128. The
accuracy achieved, averaged over 10 trials, is 94.83%.

Table III compares the proposed classification model with
one of the most recent works in the literature [27], in terms
of number of operations, memory requirements for parameters
and partial outputs, and accuracy. However, considering that
the 1D-CNN in [27] outperforms the MobileNet and Shuf-
fleNet V2 in [26], in terms of accuracy and model size, results
in Table III can be generalized to the above lightweight net-
works. Like our proposal, the network in [27] works directly
on 1D vibration input signals, without the additional resources
required for the Short-Time Fourier Transform (STFT) to
convert vibrations into 2D time-frequency signals, as it is
usually done in alternative solutions [26]. But nevertheless,
our solution requires a memory footprint and a number of
operations which are orders of magnitude lower than [27].
On the contrary, partial quantization is primarily responsible
for 4.47% reduction of classification accuracy, which anyway
remains higher than 94%, and is a very acceptable trade-off
for the HW implementation of our system, which aims to
prioritize fault detection at the edge.

IV. HARDWARE ARCHITECTURE

The design strategy for the proposed AE HW accelerator has
aimed to identify the minimum number of circuital elements,
leveraging an extensive use of resource sharing and iterative
processing schemas, to meet area and power constraints for
in-sensor implementation, while preserving the capabilities of
the system to interface with high-ODR sensors in real-time.
In this case

Due to partial binarization, only a single bit is required
to encode weights and binarized output activations, while a
fixed-point coding has been used for non-binarized values to
greatly lighten the circuital implementation. A code length of
16 (8.8) bits has been used, which ensures a trade-off between
the minimum code length and the resulting accuracy. Thanks
to the above quantization choices, the memory required for
the convolutional kernels and the partial results could be
fitted in internal registers or distributed memories of FPGA,
avoiding a slower and more energy-hungry access to higher-
level memory. Also, the complexity of the arithmetic circuits
has been strongly simplified by the implementation of the
quantization schema. In fact, the weight binarization reduces
MACC operations in much simpler ADDs/SUBs, so that each
CONV/CONVT layer performs the following calculation:

N∑
i=1

wi · xi + b = ±x1 ± x2 ± . . . ± xN + b (3)

VITOLO et al.: LOW-POWER DETECTION AND CLASSIFICATION FOR IN-SENSOR PdM BASED ON VIBRATION MONITORING 6947

Fig. 3. Block diagram of: (a) the proposed AE Accelerator; (b) the
encoder of the proposed AE Accelerator; (c) the decoder of the proposed
AE Accelerator.

where wi and xi are the weights and the inputs to a certain
neuron, respectively, and b is the bias.

Moreover, since the batch normalization is followed by
binarization, also the implementation of the BN layer does not
require a multiplier. Indeed, given a generic input, x , the output
of the batch normalization can be written as y = αx + β =
α

(
x + β

/
α
)
. Since y must be constrained to ±1 through the

sign function, there is no need to multiply, and just to know
the sign of α and the value γ = β/α, which are encoded by
1 bit and 16 bits, respectively.

A. Implementation of the HW Modules
Fig. 3a schematizes the proposed HW architecture of the

AE. It consists of two modules implementing the encoder and
the decoder, a FIFO for data buffering between the modules,
and a Control Unit (CU) that carefully manages the operations.
The encoder and decoder operate asynchronously with each
other so that the encoder can accept a new input data without
waiting for the decoder to finish its processing, consequently,
increasing the maximum Input Data Rate (IDR).

Fig. 3b and 3c show the implementation schemas of the
encoder and decoder modules, respectively. Each module is
composed of a CU, ENC_CU and DEC_CU, and a core,
ENC_CORE and DEC_CORE, which iteratively run to accom-
plish the operations of the encoder and decoder. The encoder
also includes a SIPO to store the data of the receptive field for
the first CONV layer. Both cores consist of a PE, multiplexers
to select the appropriate inputs for the PE and FIFOs, and
embedded memory elements to store all the variables needed
to perform the operation locally. In particular, circular buffers
based on FIFO have been designed to store the inputs, the

partial outputs, and the parameters of the network. Considering
that:

• the kernel sizes and the number of channels of each
CONV layer are 5 and 8, respectively;

• the weights and bias are encoded by 1 bit and 16 bits,
respectively;

• the BN parameters, α and γ , are encoded as the weights
and bias, respectively;

• the number of weights, biases, and BN
parameters to be stored for the encoder are:
CONV1_w+BN1_α+CONV2_w=5 × 8+8+5 ×
8×8=400
CONV1_b+BN1_γ+CONV2_b=8+8+8=24;

• the number of weights, biases, and BN parameters to be
stored for the decoder are:
CONVT1_w+BN2_α+CONVT2_w=5 × 8×8+8+5 ×
8=400
CONVT1_b+BNT1_ γ+CONVT2_b=8+8+1=17;

FIFOs for the encoder have dimensions 400 bits for the
weights and 24 × 16 bits for the bias. In turn, the FIFO
dimensions for the decoder are 400 bits for the weights and
17 × 16 bits for the bias.

On the other hand, considering that:

• each CONV layer performs a convolution when a number
of inputs equal to the kernel size is ready;

• the Max Pool layer must wait a number of inputs equal
to its size;

an iterative architecture has been devised that does not wait
for all the data to be available, but only those necessary
for the start of processing. For example, CONV1 processing
starts as soon as 5 of 24 input data are available. This
reduces the SIPO dimension of 79%, from 24 × 16 bits to
5 × 16 bits, and FIFOs for the partial outputs of CONV1,
CONV2, MaxPool, CONVT1 and CONVT2 layers, having
dimensions 40×16 bits, 32×16 bits, 8×16 bits, 40×16 bits,
and 40×16 bits, respectively, with an overall reduction of 74%.
Therefore, ENC_CORE and DEC_CORE embed 268 bytes
and 246 bytes of FIFO memories, respectively.

The FIFOs related to weights and biases must be initialized
by using an external data stream during the setup phase, and,
subsequently, they are set as circular buffers by the CU for
all the rest of the time. The memory elements for the partial
results, on the other hand, operate as FIFOs when they are
written and as circular buffers when they are the inputs for
subsequent operations.

Fig. 4 shows the implementation schema of the PE, used
for both the encoder and the decoder. The PE consists of
a 3-level adder tree, with 16-bit (8.8) fixed-point coding.
As shown in the equation in the inset of Fig. 4, it performs
a dot product between two vectors and the sum with the
bias or the previous partial result. The vectors DIN and w
have both length 5 and w has binarized elements. A1, A2
and A3 of the adder tree are 16-bits adders with circuitry
for binarized weights multiplication. A4 and A5 are 16-bits
adders. The output of the adder tree is iterated through the
mux “RES,” to calculate the convolution (3) for each layer.
The activations functions (1) and (2) have been implemented

6948 IEEE SENSORS JOURNAL, VOL. 22, NO. 7, APRIL 1, 2022

Fig. 4. Implementation schema of the processing element (PE).

by the muxes “BIN” and “RELU,” fed by the adder tree and
selected by the mux “ACT” and “RES” when the dot product
calculation is complete. Additionally, the PE performs the
necessary comparisons for the Max Pooling layer by means of
the “MP” mux, and the decoder performs padding and upscale
operations, by appropriately adding 8 zeros or the 8 previous
data in BFIFO_o1 and BFIFO_o2 in Fig. 3c.

B. Dynamic Generation of the Layers
To reduce HW resources and perform all the operations nec-

essary to execute the layers by reusing the single PE present
in each module, control logics, ENC_CU and DEC_CU, have
been implemented to manage the inputs and outputs of the PE
and to correctly store the partial results in the FIFOs. The CUs
have been realized by using Finite State Machines (FSMs),
which have a state for each layer, in turn featuring a sub-state
for each dot operation. For example, to generate CONV1 of
Fig. 2, the control logic provides two substates, each of which
runs in a single clock cycle: one that manages the dot product
and one that performs BN and binarization. In particular,
considering Fig. 3, in the first substate the five input data
stored in SIPO and the five weights stored in the FIFO_W
are multiplied and then added to the bias stored in FIFO_B.
In the second substate, the previous result and the γ parameter
of BN, stored in FIFO_B, are added and then the binarization
is performed taking into account the α parameter of BN, stored
in FIFO_W, and the result is stored in BFIFO_o1. In this
way, the first output of CONV1, related to one channel of
Fig. 2, is calculated. To obtain the results of the other channels,
the two aforementioned substates are iterated a number of
times equal to the number of channels, 8. Therefore, to obtain
an output for each channel of CONV1, which includes the
operations of convolution, BN, and binarization on 5 input
data, 2 ×8=16 clock cycles are required. Once the operations
for CONV1 have been performed, the control logic uses the
circuitry of Fig. 4 to obtain the results of the other layers.
In particular, 72, 32, 72 and 9 clock cycles are required
for CONV2, MaxPool, CONVT1 and CONVT2, respectively.
Therefore, considering that one clock cycle is required to pass
from one state to another, ENC_CORE requires 123 clock
cycles to process an input sample and provides one output
each 4 inputs because of the last Max Pooling layer of size
4. In turn, DEC_CORE is asynchronously fed by the encoder

Fig. 5. Schema of the test board of the proposed system. A PC can be
used as data source for training and a sensor for on-line operations.

through the buffer, it employs 9 to 83 clock cycles to provide
an output, depending on whether padding or upscaling must
be performed.

Therefore, the ADC system can process new input data after
123 clock cycles and elaborates 16 input samples (required for
a fault detection) in a minimum of 3632 clock cycles.

It is worthwhile to observe that since ENC_CORE and
DEC_CORE work in parallel, the maximum ODR sensor
supported by the system is limited only by the processing
time of the encoder.

V. SYNTHESIS AND IMPLEMENTATION RESULTS

The proposed design has been implemented on the Xilinx
Artix-7 (xc7a35tfgg484-1) FPGA [34] by using the Vivado
IDE suite. Fig. 5 shows the schema of the test board of
the proposed system. It is composed of a small Digilent
CMOD A7-35T, equipped with the FPGA used to implement
the AE; the STM32F401RE MCU [35] has been used to
implement the classifier, according to the proposed HW/SW
hybrid schema, and also to manage the data transfer from the
data source to the FPGA by using a custom, simplified SPI-
like interface. The data source can be either the PC, used to
store the test dataset, or the sensor such as the X-NUCLEO-
IKS01A1 [36], equipped with the LSM6DSO IMU. Moreover,
synthesis results targeting TSMC 130 nm, 90 nm, and 65 nm
CMOS standard cells by using the Cadence toolchain have
been reported to evaluate the in-sensor integration cost with
the other logic currently mapped onto MEMS sensor circuitry.

A. FPGA
Table III reports details of the FPGA implementations

of our design, compared with the most recent related
works [21], [37]. Since the performances of the design results
from the trade-off between the capability to manage sensors
with high ODR, the power consumption and the number
of mapped physical resources, a new Figure-of-Merit (FoM)
has been introduced to make straightforward the compar-
isons. Therefore, ODR-on-Power-and-Resources (OPR) has
been defined as:

O P R = O DR

T ot .Power × Resources
(4)

where ODR is the one supported in real-time, Resources is
the number of physical resources for the implementation.
It could be either the occupied area of the design (for ASICs),
or the total number of LUTs, registers and macros mapped on
FPGAs.

VITOLO et al.: LOW-POWER DETECTION AND CLASSIFICATION FOR IN-SENSOR PdM BASED ON VIBRATION MONITORING 6949

Fig. 6. OPR vs. ODR on FPGA. The linear trend is due to the significant
quiescent power dissipation of the FPGA compared to the dynamic power
(DP). The inset shows the detail around ODR = 1 kHz to highlight
comparisons with [21] and [37].

TABLE IV
FPGA RESULTS AND COMPARISON

Fig. 6 shows the OPR of our design in terms of the ODR
values, up the maximum supported ODR, while the inset
presents the detail around ODR = 1 kHz to highlight compar-
isons with [21] and [37]. Considering that our system obtains
an AUC = 0.99, quite higher than the only one accuracy
metric provided by [21] and [37], the curve in the Fig. 6
clearly shows the advantages of our AE with respect to the
related works. Indeed, the proposed implementation requires
2449 LUTs and 2319 FFs, which are order of magnitudes
lower than the other designs, although it does not exploit DSPs
and BRAMs, to make the implementation results as platform
independent as possible. Moreover, although the maximum
frequency of 45 MHz is lower than the operative frequency
of the alternatives, the maximum supported ODR sensor of
our design is 365 kHz, namely more than two orders of
magnitude higher than the counterparts. Such a high ODR
value enables several highly demanding PdM applications
whose high-speed mechanical parts must be monitored in real-
time (such as high-speed drills and cutters) even with the
use of ultrasonic MEMS microphones [9], [38] (e.g., pressure
leaks, bearing condition, gear meshing, pump cavitation, etc.).
It is worthwhile to note that if we lower the operating
frequency to set the ODR to 1 kHz, like the alternatives in
Table IV, the power consumption of our proposal, 107 mW,
remains significantly lower. With reference to Application
Processing Units (APU) built with FPGAs, that from some
years have become very attractive to setup highly customizable
platforms [39], an interesting solution is the Xilinx DPU [20]
to implement high performance NNs, including GoogLeNet,
ResNet and MobileNet, on Xilinx Zynq SoC devices. The
DPU IP provides some possible configurations regarding the
DSP slice, LUT, block RAM, UltraRAM, the number of DPU

TABLE V
COMPARISON WITH XILINX DPU [20]

cores, the convolution architecture, etc., to meet various types
of constraints. However, even with the smallest convolution
architecture, B512, as shown in Table V, the FPGA resources
used by the DPU core on the Ultrascale+ ZCU102 are
36,458 LUT, 41,744 FF, 77.5 BRAM, and 124 DSP, with a
power consumption of 5.718 W [20], to which memory and
a program running on the APU must be provided to handle
interrupts, data transfers and storage of input, temporary and
output data, resulting in significantly greater overall resources
than to our project.

Fig. 7 shows the implementation breakdown of the AE on
the FPGA, in terms of utilization and power consumption.
Results show that about 56% of mapped LUTs and 43% of
power consumption are used for the PEs and CUs of the
encoder and decoder. About 89% of FFs are occupied by
the FIFOs, whose quantity is the actual limiting factor of the
proposed design.

B. Standard Cells
In Table VI comparisons of synthesis results with 130 nm

(the one usually adopted to manufacture the most commer-
cially available MEMs sensors), 90 nm and 65 nm have been
reported. CMOS technologies with High Voltage-Threshold
(HVT) have been selected for the noteworthy difference of
leakage power dissipation, which could be a serious prob-
lem when the design is used at low frequencies [10]. For
ease of comparison, also the 65 nm General Purpose (GP)
technology has been included. When estimated with Cadence
Joules feed with SAIF files, the HVT cells reduce leakage
power by 77% at the cost of a maximum frequency reduc-
tion of about 10%. Maximum operating frequencies, ranging
from 100 to 250 MHz, enable ODR values in the MHz range.
Such values are much higher than those typically required
by current applications, and they give an estimation of the
scaling capability of the proposed design with perspective
sensor technologies. Table VI also reports the total power
dissipation when the ODR is set at 20 kHz, namely at an
AE operation frequency of 2.46 MHz. It is worthwhile to
note the large increment of the static power dissipation due
to leakage of the 65 nm GP technology with respect to the
HVT counterpart. Comparisons with the state of the art are
not that simple due to the limited number of works targeting
low power integrated implementations and the lack of data
reported by other papers. However, from the recent literature,
we have considered the data of the ADEPOS design in [28]
and [40], since it is one of the rare works that target low-power
AE-based system with a 65 nm CMOS technology, although
it is not a quite fair comparison. Indeed, to reduce the power
dissipation from a maximum value of 744 μW to a stand-by
power dissipation of 12 μW, ADEPOS completely activates

6950 IEEE SENSORS JOURNAL, VOL. 22, NO. 7, APRIL 1, 2022

Fig. 7. Breakdown of the AE on FPGA.

TABLE VI
STANDARD CELLS SYNTHESIS COMPARISONS

only after that an anomalous data has been detected, dynam-
ically increasing its complexity and accuracy only during
about 1% of the lifetime [34], based on tests with the dataset
in [41] and an ODR of 20 kHz. Depending on the activation
phase, it achieves OPR = 47.16 Hz μW−1mm−2 (2924 when
inactive).On the contrary, our design works with a constant
high accuracy level, well-suited for PdM, which requires the
identification of the initial very weak signal of anomalies,
with a power dissipation of 341 μW when the operation
frequency is set for an ODR = 20 kHz and an occupied area
of 0.49 mm2, resulting in OPR = 120 Hz μW−1mm−2. Those
results, to our best knowledge, overcome the state of the art
in term of performances for these kinds of systems.

VI. CONCLUSION

This article proposes a HNN-based model for fault diagnosis
and a custom neural HW accelerator for in-sensor comput-
ing targeting PdM applications. The custom HW in-sensor
accelerator works synergistically with an MCU to offer both
ultra-low power AD and highly accurate classification with a
high performance/cost ratio. Future work will investigate the
application of this system in other application contexts and the
possibility of managing multi-sensor fusion data.

REFERENCES

[1] Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng, “A survey of
predictive maintenance: Systems, purposes and approaches,” 2019,
arXiv:1912.07383.

[2] S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, “Deep learning
algorithms for bearing fault diagnostics—A comprehensive review,”
IEEE Access, vol. 8, pp. 29857–29881, 2020.

[3] J. Yang, Y. Yang, and G. Xie, “Diagnosis of incipient fault based on
sliding-scale resampling strategy and improved deep autoencoder,” IEEE
Sensors J., vol. 20, no. 15, pp. 8336–8348, Aug. 2020.

[4] S. R. Saufi, Z. Ahmad, M. S. Leong, and M. H. Lim, “Challenges and
opportunities of deep learning models for machinery fault detection and
diagnosis: A review,” IEEE Access, vol. 7, pp. 122644–122662, 2019.

[5] M. Capra et al., “Hardware and software optimizations for accelerating
deep neural networks: Survey of current trends, challenges, and the road
ahead,” IEEE Access, vol. 8, pp. 225134–225180, 2020.

[6] J. Zhai, S. Zhang, J. Chen, and Q. He, “Autoencoder and its various
variants,” in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Miyazaki,
Japan, Oct. 2018, pp. 415–419.

[7] M. Ribeiro, M. Gutoski, A. E. Lazzaretti, and H. S. Lopes, “One-class
classification in images and videos using a convolutional autoencoder
with compact embedding,” IEEE Access, vol. 8, pp. 86520–86535, 2020.

[8] Ultra-Low-Power High-Performance 3-Axis Accelerometer With Digital
Output for Industrial Applications, DocID027668 Rev 2, STMicroelec-
tronics, Italy, 2015.

[9] Ultrasound Behavior and Guidelines of Analog MEMS Microphone
IMP23ABSU, IMP23ABSU Rev 2, STMicroelectronics, Italy, 2020.

[10] A. De Vita, A. Russo, D. Pau, L. D. Benedetto, A. Rubino, and
G. D. Licciardo, “A partially binarized hybrid neural network system for
low-power and resource constrained human activity recognition,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 11, pp. 3893–3904,
Nov. 2020.

[11] A. D. Vita, D. Pau, C. Parrella, L. D. Benedetto, A. Rubino, and
G. D. Licciardo, “Low-power HWAccelerator for AI edge-computing
in human activity recognition systems,” in Proc. 2nd IEEE Int. Conf.
Artif. Intell. Circuits Syst. (AICAS), Aug. 2020, pp. 291–295.

[12] A. D. Vita, D. Pau, L. D. Benedetto, A. Rubino, F. Petrot, and
G. D. Licciardo, “Low power tiny binary neural network with improved
accuracy in human recognition systems,” in Proc. 23rd Euromicro Conf.
Digit. Syst. Design (DSD), Aug. 2020, pp. 309–315.

[13] G. D. Licciardo, C. Cappetta, L. Di Benedetto, A. Rubino, and
R. Liguori, “Multiplier-less stream processor for 2D filtering in visual
search applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 28,
no. 1, pp. 267–272, Jan. 2018.

[14] G. D. Licciardo, C. Cappetta, L. Di Benedetto, and M. Vigliar,
“Weighted partitioning for fast multiplierless multiple-constant convolu-
tion circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 1,
pp. 66–70, Jan. 2017.

[15] Case Western Reserve University (CWRU) Bearing
Data Center. Accessed: Oct. 2020. [Online]. Available:
https://csegroups.case.edu/ bearingdatacenter/pages/welcome-case-
western-reserve-universitybearing-data-center-website.

[16] M. Cui, Y. Wang, X. Lin, and M. Zhong, “Fault diagnosis of rolling
bearings based on an improved stack autoencoder and support vector
machine,” IEEE Sensors J., vol. 21, no. 4, pp. 4927–4937, Feb. 2021.

[17] S. Zhang, F. Ye, B. Wang, and T. G. Habetler, “Semi-supervised bearing
fault diagnosis and classification using variational autoencoder-based
deep generative models,” IEEE Sensors J., vol. 21, no. 5, pp. 6476–6486,
Mar. 2021.

[18] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He, “Fault
diagnosis of a rolling bearing using wavelet packet denoising and
random forests,” IEEE Sensors J., vol. 17, no. 17, pp. 5581–5588,
Sep. 2017.

[19] R. Magar, L. Ghule, J. Li, Y. Zhao, and A. B. Farimani, “FaultNet: A
deep convolutional neural network for bearing fault classification,” IEEE
Access, vol. 9, pp. 25189–25199, 2021.

[20] Y. Lei, Q. Deng, S. Long, S. Liu, and S. Oh, “An effective design to
improve the efficiency of DPUs on FPGA,” in Proc. IEEE 26th Int.
Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2020, pp. 206–213.

[21] M. Tsukada, M. Kondo, and H. Matsutani, “A neural network-based
on-device learning anomaly detector for edge devices,” IEEE Trans.
Comput., vol. 69, no. 7, pp. 1027–1044, Jul. 2020.

[22] J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked autoen-
coders using low-power accelerated architectures for object recogni-
tion in autonomous systems,” Neural Process. Lett., vol. 43, no. 2,
pp. 445–458, Apr. 2016.

[23] M. Coutinho, M. Torquato, and M. Fernandes, “Deep neural network
hardware implementation based on stacked sparse autoencoder,” IEEE
Access, vol. 7, pp. 40674–40694, 2019.

[24] W. Fang, L. Wang, and P. Ren, “Tinier-YOLO: A real-time object
detection method for constrained environments,” IEEE Access, vol. 8,
pp. 1935–1944, 2020.

VITOLO et al.: LOW-POWER DETECTION AND CLASSIFICATION FOR IN-SENSOR PdM BASED ON VIBRATION MONITORING 6951

[25] W. Yu and P. Lv, “An end-to-end intelligent fault diagnosis applica-
tion for rolling bearing based on MobileNet,” IEEE Access, vol. 9,
pp. 41925–41933, 2021.

[26] H. Liu, D. Yao, J. Yang, and X. Li, “Lightweight convolutional neural
network and its application in rolling bearing fault diagnosis under
variable working conditions,” Sensors, vol. 19, no. 22, pp. 1–20, 2019.

[27] C. C. Chen, Z. Liu, G. Yang, C. C. Wu, and Q. Ye, “An improved
fault diagnosis using 1D-convolutional neural network model,” Electron.,
vol. 10, no. 1, pp. 1–19, 2021.

[28] S. K. Bose et al., “ADEPOS: A novel approximate computing framework
for anomaly detection systems and its implementation in 65-nm CMOS,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 3, pp. 913–926,
Mar. 2020.

[29] Z. Zou, Y. Jin, P. Nevalainen, Y. Huan, J. Heikkonen, and T. Westerlund,
“Edge and fog computing enabled AI for IoT–An overview,” in Proc.
IEEE Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Hsinchu, Taiwan,
Mar. 2019, pp. 51–56.

[30] E. Sari, M. Belbahri, and V. Partovi Nia, “How does batch normalization
help binary training?” 2019, arXiv:1909.09139.

[31] M. Abadi. (2015). TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems. [Online]. Available:
https://www.tensorflow.org/

[32] LARQ. Accessed: Jun. 2021. [Online]. Available:
https://docs.larq.dev/larq/

[33] Y. Yamanaka, T. Iwata, H. Takahashi, M. Yamada, and S. Kanai,
“Autoencoding binary classifiers for supervised anomaly detection,” in
Trends in Artificial Intelligence (Lecture Notes in Computer Science)
vol. 11671. Springer, 2019, pp. 647–659.

[34] (Feb. 2018). Xilinx. 7 Series FPGAs Data Sheet: Overview. XC7A35T-
1CPG236C datasheet. [Online]. Available: https://www.xilinx.com/su
pport/documentation/data_sheets/ds180_7Series_Overview.pdf

[35] (Jan. 2015). STMicroelectronics. STM32F401xD STM32F401xE.
STM32F401RE Datasheet. [Online]. Available: https://www.st.com/re
source/en/datasheet/stm32f401re.pdf.

[36] (May 2015). STMicroelectronics. X-NUCLEO-IKS01A1 Motion MEMS
and Environmental Sensor Expansion Board for STM32 Nucleo.
[Online]. Available: https://www.st.com/resource/en/datasheet/x-nucleo-
iks01a1.pdf

[37] T. Belabed, M. G. F. Coutinho, M. A. C. Fernandes, V. Carlos, and
C. Souani, “Low cost and low power stacked sparse autoencoder
hardware acceleration for deep learning edge computing applications,”
in Proc. 5th Int. Conf. Adv. Technol. Signal Image Process. (ATSIP),
Sep. 2020, pp. 1–6.

[38] C. Murphy. Choosing the Most Suitable Predictive Main-
tenance Sensor. Analog Devices. [Online]. Available:
https://www.analog.com/en/technical-articles/choosing-the-most-
suitable-predictive-maintenance-sensor.html#

[39] G.-D. Licciardo and M. Costagliola, “An H. 264 encoder for real
time video processing designed for spear customizable system-on-chip
family,” in Proc. IEEE Int. Conf. Signal Process. Commun., Dubai,
United Arab Emirates, Nov. 2007, pp. 824–827.

[40] B. Kar, P. K. Gopalakrishnan, S. K. Bose, M. Roy, and A. Basu,
“ADIC: Anomaly detection integrated circuit in 65-nm CMOS utilizing
approximate computing,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 28, no. 12, pp. 2518–2529, Dec. 2020.

[41] NASA Dataset. Accessed: Oct. 2020. [Online]. Available: https://ti.
arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository

Paola Vitolo (Graduate Student Member, IEEE)
was born in Sarno, Italy, in 1992. She received
the B.Sc. (cum laude) and M.Sc. (cum laude)
degrees in electronic engineering from the Uni-
versity of Salerno, Fisciano, Italy, in 2017 and
2021, respectively, where she is currently pur-
suing the Ph.D. degree with the Department
of Industrial Engineering. Her current research
activities are on integrated low-power hardware
accelerators for artificial neural networks.

Antonio De Vita (Student Member, IEEE) was
born in Avellino, Italy, in 1992. He received
the B.Sc. and M.Sc. (cum laude) degrees in
electronic engineering and the Ph.D. degree in
microelectronics from the University of Salerno,
Fisciano, Italy, in 2015, 2017, and 2021,
respectively. He joined STMicroelectronics as a
Research and Development Digital Design Engi-
neer in 2021. His current research activities con-
cern digital architectures for machine learning.

Luigi Di Benedetto (Senior Member, IEEE)
received the B.Sc. and M.Sc. (cum laude)
degrees in electronic engineering and the Ph.D.
degree in solid state electronics from the Uni-
versity of Salerno, Fisciano, Italy, in 2006,
2009, and 2013, respectively. In 2013, he was
a Visiting Scientist with the Fraunhofer IISB
and Friedrich-Alexander-Universität Erlangen-
Nürnberg, Erlangen, Germany. Since 2013,
he has been a Research Fellow, and since 2018,
he has been an Assistant Professor in Electronic

with the Department of Industrial Engineering, University of Salerno.
His main research interests include the modeling, simulation, and
development of high-power electronic devices based on wide bandgap
semiconductor and design of VLSI systems.

Danilo Pau (Fellow, IEEE) graduated in elec-
tronic engineering from the Politecnico di Milano
in 1992. Since 1991, he has been with STMi-
croelectronics, Italy, as a System Researcher.
He worked on HDMAC hardware design and
MPEG2 video memory reduction, then on video
coding and transcoding, next on embedded 3D
and VG graphics, and computer vision with hand-
crated algorithms. Currently, his focus is on the
development of tools to bridge deep learning
frameworks with resource constrained applica-

tions on micro-controllers and sensors. He currently serves IEEE
Region 8 Action for Industry focused on the internship initiative. He is
also a member of the Machine Learning, Deep Learning, and AI in
the CE (MDA) Technical Stream Committee of the IEEE Consumer
Electronics Society (CESoc).

Gian Domenico Licciardo (Senior Member,
IEEE) received the electronic engineering
degree from the University of Naples Federico
II in 2002 and the Ph.D. degree in information
engineering from the University of Salerno, Italy,
in 2006. From 2007 to 2018, he was an Assistant
Professor in Electronic at the University of
Salerno, and he joined the Department of
Industrial Engineering of the same university as
an Associate Professor in 2018. He currently
supervises the research activities in the circuital

electronic fields, teaches digital electronics to bachelor’s, master’s, and
Ph.D. students of the electronic engineering courses, and serves as a
Coordinator for the IEEE Student Branch of the University of Salerno.
He published several international papers about his main research
interests which span from the modeling, simulation, and characterization
of electron devices to the design of digital VLSI systems for signal
processing. He is an associate editor of several international journals
published by IEEE and Springer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

