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Abstract—This paper provides a tutorial on the most
recent advances of event-driven metering (EDM) while indi-
cating potential extensions to improve its performance.
We have revisited the effects on signal reconstruction of
(i) a fine-tuned procedure for defining power variation events,
(ii) consecutive-measurements filtering that refers to the
same event, (iii) spike filtering, and (iv) timeout parame-
ter. We have illustrated via extensive numerical results that
EDM can provide high-fidelity signal reconstruction while
decreasing the overall number of acquired measurements
to be transmitted. Its main advantage is to only store sam-
ples that are informative based on predetermined events,
avoiding redundancy and decreasing the traffic offered to the
underlying communication network. This tutorial highlights
the key advantages of EDM and points out promising research
directions.

Index Terms— Event-driven data acquisition, smart grids, advanced electricity metering.

I. INTRODUCTION

HOUSEHOLD electrification is now widespread: nine
out of ten people worldwide have access to electric-

ity [2]. In developed countries, availability of electricity to
the general population approaches 100%, while in developing
countries, the percentage is steadily rising. Electricity metering
thus becomes fundamental not only for billing purposes but
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also for monitoring the operational condition of power grid
components.

Traditionally, electricity use from consumer units (e.g.,
households, buildings and industries) has been manually col-
lected: a person is required to move on site and check the
electricity meter at the entrance of the place, write down the
cumulative consumption, and subtract it from the previous
reading to get the consumption for a time period. In this case,
the amount of energy consumed within that period (usually
one month) is what matters, regardless of how and when that
energy was consumed over time. Energy consumption patterns
may widely vary among the different consumers. Certain user
profiles are associated with nearly constant consumption over
time exhibiting only minor variations, whereas for other users
energy can be extensively consumed within just a few days of
the month or in short periods at specific times.

Recent advancements in communication and computation
technologies have rendered the automated measurement acqui-
sition feasible, reducing the need for human intervention.
In addition, emerging demand-response programs gradually
rely on more frequent measurements to constantly track
the consumption at the consumer side in response to sup-
ply conditions regulated by utility providers [3]. Neverthe-
less, the rationale behind this automated data acquisition
resembles the manual method, because measurements are
generated in a content-agnostic manner without exploiting
the inherent attributes of metering information. In principle,
these measurements are sent in periodic time intervals and
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are henceforth defined as time-based measurements. Another
option is to transmit new measurements whenever a fixed
amount of energy has been consumed, i.e., often referred
to as energy-based measurements, without any additional
specification of the energy consumption profile within that
period of time [4]–[6]. With these strategies, the only way
to increase the fidelity of the signal reconstruction is to send
more frequent measurements, either by increasing the temporal
resolution, or, in the second case, by reducing the size
of the reported “energy block”. If we extend this line of
reasoning, it would be required to have infinitesimal time slices
or energy blocks to achieve highly accurate representation
of the energy consumption. This would result in significant
overload levels for the underlying communication infrastruc-
ture (e.g., [7]) since each household would act as a source
of tens of thousands of measurements per day; a challenge
even for communication systems designed for machine-type
communication, including 5G.

By inspecting the metering signal characteristics in the time
domain, one can observe that it has essentially a flat shape for
most of the time, only with abrupt changes that are caused by
the switching of electrical appliances. Conventional time-based
measurements may fall short of representing the real energy
consumption in a meaningful way. Too few measurements
representing the average power over a long period of time, may
have almost no similarity with the actual consumption pattern.
On the other hand, too many measurements to capture the
power variations, may result in several consecutive measure-
ments having very similar – or even identical – power values.
An alternative to the aforementioned methods is the so-called
event-driven data acquisition [8], where (…) a sample is pro-
duced only when something significant (an “event”) occurs in
the signal. That is, the information about the state of the signal
is sent only when it exceeds a given predetermined thresh-
old. In stark contrast with conventional periodic-sampling
strategies, this approach capitalizes on the largely unexploited
intrinsic features of the conveyed information, which influence
its relevance and usefulness. Event-driven data acquisition
has been widely used in various disciplines, ranging from
signal processing [9], [10] to process control [11], [12], and
communications [13]–[15]. In the electricity metering domain,
event-driven data acquisition, often referred to as event-driven
metering (EDM), has been recently employed in [16]–[23]. In
addition to these key developments, we can cite the following
papers that use event-driven processing for smart meter data
analysis [24]–[26].

The events under consideration in the aforementioned
papers refer to either instantaneous power transitions or energy
variations, both triggered whenever the relevant values cross
predetermined thresholds. The EDM method has the potential
to significantly reduce the metering data volume generated and
transmitted, as far as the values falling under the threshold
are discarded instead of being stored and/or sent, causing
minimum impact on the quality of signal reconstruction.
An important limitation of EDM, though, is that in its original
implementation, the thresholds are determined beforehand
(and hence, are fixed) from a group of samples that are
collected during a time interval. Consequently, any changes
in the composition of consumer units (such as the addition

or removal of electrical appliances, or the change of the
seasons, to name a few) can largely influence the number of
measurements sent by the consumer. To the best of the authors’
knowledge, this limitation has not been adequately addressed
in existing related literature.

This contribution is a tutorial on recent improvements of
EDM based on a semantics-aware approach that harnesses
intrinsic contextual attributes of metering information. The
main objective is to demonstrate how the number of mea-
surements generated by each customer is kept within a given
range, by using their own consumption to determine the
power variation thresholds. By exploiting this knowledge
in semantics-empowered EDM, we identify ways to reduce
the acquired data by filtering those measurements that trigger
events with low impact on the signal reconstruction process.

The remainder of this paper is organized as follows.
Section II provides an overview of the EDM technique
and highlights our proposed modifications. Section III
offers a comprehensive and in-depth performance assess-
ment of the different EDM enhancements based on energy
consumption data provided by the Pecan Street project
(https://www.pecanstreet.org/dataport/). Section IV is reserved
for concluding remarks related to the improvements of the
EDM method and potential future research directions.

II. EVENT-DRIVEN METERING: OVERVIEW

The EDM technique, mainly developed by Simonov and
his collaborators in a series of papers [16]–[18], [22], [23],
is built upon the three following events which are relevant to
the signal reconstruction:

• Instant power variations, �P, that capture abrupt differ-
ences in power consumption levels, with a corresponding
threshold δP ;

• Energy deviation, �E, defined as the energy evolution
that diverges from the expected trend, with an associated
threshold δE ;

• Fixed time measurements, at regular time intervals of
length T , for compatibility with legacy metering.

It is worth noting that absence of data is also informative
in EDM. If no data is acquired, it can be inferred that
consumption is to some extent constant during the respective
window defined by T , as it never exceeds the thresholds
determined by �P and �E .

Fig. 1 illustrates how the EDM mechanism works for an
arbitrary scenario where δP is configured such that it never
triggers an event and there are no fixed time measurements.
The original signal is presented in the first plot. In this
example, the power threshold is never crossed, as shown by the
grey spikes in the second plot. In the third plot, the cumulative
energy deviations that trigger events (i.e., the sudden changes
after a linear increase or decrease) can be observed. The fourth
plot depicts the reconstructed signal using EDM. Finally, the
quality of reconstruction is evaluated in the fifth plot, where
the reconstruction error is presented as a comparison between
the first and the fourth plot.

In this example, we mainly focused on the behavior of
the cumulative energy deviation. This quantity represents the
accumulated energy that exceeds the expected trend given by
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Fig. 1. Example of the EDM mechanism for arbitrary threshold values
δP = (2kW, 2kW, 2kW) and δE = (1kWs, 5kWs, 20kWs). First top:
original signal; second top: power variation; middle: cumulative energy
deviations; second bottom: reconstructed signal from EDM; first bottom:
error in the reconstruction. Adapted from [1].

the transmitted power value in the previous time instant. That
is, given that a certain event P(t) triggered a measurement at
time t , the value of the energy deviation can be calculated as

�E =
∣∣∣∣

τ∑

k+1

P(t + k) − P(t)

∣∣∣∣. (1)

In case the sum in Eq. (1) exceeds the threshold value given
by δE , an event is generated. Accordingly, whenever any of
the δP , δE , or T thresholds is reached, a measurement is sent,
the value of the accumulated energy deviation is reset, and the
current power value P(t) is updated.

An extension to the EDM method was recently proposed
by Tomé et al. in [21], aiming at modifying the acquisition
procedure to facilitate signal reconstruction. In addition, the
authors have introduced alternative ways to reduce the data
volume generated, and remove redundancy during acquisition,
i.e., by eliminating measurements referring to the same event

Fig. 2. Framework and functional blocks of EDM.

and adding a timeout event. In that paper, though, the proposed
enhancements were not investigated in detail. Here, we further
extend the initial results and derived insights by conducting
an in-depth assessment of four key operational techniques in
EDM, namely: (i) estimation of the power variation threshold,
(ii) filtering of consecutive measurements, (iii) filtering of
spikes, and (iv) timeout parameter. Moving beyond existing
contributions, we have utilized the Pecan Street database as
input to this work. It constitutes a well-known data source in
the research community and, to the best of our knowledge,
it provides an extensive set of measurements to accurately
evaluate the proposed methodology.

III. EVENT-DRIVEN METERING ENHANCEMENTS:
A COMPREHENSIVE ASSESSMENT

In this section, we will sequentially evaluate the impact of
four different enhancements in EDM method: (i) estimation of
the power variation threshold δP , (ii) filtering of consecutive
measurements, (iii) spike filtering, and (iv) timeout parameter.
The numerical results are based on long-term simulations
of Pecan Street households following the approach depicted
in Fig. 2. The employed dataset consists of 1-second (1s)
measurements and the original signal (i.e., input of the EDM)
is already sampled with a frequency of 1Hz; thus, the proposed
data acquisition step is based on such a frequency. Note that
this time granularity is not mandatory for the EDM, and
thus, it could also be deployed even in minute timescales
(although this would preclude its key benefits of identifying
sudden variations). A detailed discussion about the physical
implementation of EDM is given in [17], [22], [23]. Here, our
objective is to provide a comprehensive tutorial of improve-
ments in EDM based on the (algorithmic) definition of the
events in a semantic manner, considering also different types
of filters and individual definition of thresholds.

As shown in Fig. 2, the raw measurements (signals) cap-
tured by the metering devices at each consumer point, pass
through the data acquisition component where EDM is applied.
Then, the samples obtained via EDM advance to the recon-
struction component, where the signal is rebuilt based on the
received samples through linear interpolation. To evaluate the
quality of the signal, we compare its reconstructed version
with the original signal (whose time granularity is 1s) utilizing
the normalized Mean Average Error (nMAE) and Root-Mean-
Square Error (nRMSE) metrics, defined as

nMAE =
∑ |Pe − Pr |∑

(Pr )
, (2)
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Fig. 3. Instant power differences for a set of houses in the Pecan dataset.
Left: houses with similar profile. Right: houses with different profiles.
Source [1].

nRMSE =
√∑ |Pe − Pr |2∑

(Pr )
, (3)

respectively. In Eqs. (2)-(3), Pr denotes the real power con-
sumption and Pe is the estimation from the measurements.

A. Estimation of Threshold δP

A proper estimation of δP allows the meter to adapt to
different consumption patterns by exploiting the availability
of historical consumption data. An example of instant power
differences during a week for a set of houses in the dataset
is presented in Fig. 3. It can be observed that for houses with
similar consumption behavior, as the ones selected in the left
plot, setting a fixed trigger would yield a similar number of
measurements. For example, setting δP = 10W would result
in about 1%-2% of the data being transmitted. For houses with
entirely different patterns, as the ones selected in the right plot,
setting the same (10W) threshold would capture 1% to 20%
of the measurements, depending on the house.

It is important to note that this proposal constitutes an
improvement compared to the methods described in [19], [21].
The idea here is to develop an adaptive method that defines
the thresholds δP based on the individual historical profile
of each household. In this case, the proposed algorithm first
defines such a value considering a specific training dataset and,
afterwards, it dynamically updates it by taking into account
the actual realizations for a given set of parameters. Such
parameters will determine the event under specific policies
which differentiate daily profiles.

In this particular case, instead of calculating the triggers in a
single week and applying the same value in all days of the fol-
lowing week, it is also possible to perform the computation for
each day separately during an extended period. In this context,
we have carried out the reading of households’ consumption
and the corresponding simulation in several ways:

• A fixed-time simulation (considered as the reference),
denoted by T in the labels;

• A “genie” simulation, labeled G, in which the own
consumption of the day is used to determine the optimal
value of δP that would result in the desired amount of
measurements;

• A setup taking into account the consumption of the
previous day to determine δP for the following one (e.g.,
using the data from Monday to estimate the threshold for
Tuesday), labeled 1;

Fig. 4. Distribution of the average number of measurements (top), and
normalized values of MAE (middle) and RMSE (bottom) for the 84 houses
simulated from the Pecan database. Legend: T: fixed time, G: genie,
1: previous day, 7: same weekday, 8: both previous day and weekday,
W: average of the last 7 days. The gray dashes (–) represent outliers.
Source [1].

• A setup considering the consumption of the same week-
day from the previous week (e.g., using the data from last
Sunday in order to calculate the trigger for this Sunday),
labeled 7;

• Using the average of the previous day (1) and the same
weekday from the previous week (7), labeled 8;

• Using the average of the triggers from the previous
7 days, labeled W.

The simulation was conducted for all the houses for a period
of 5 weeks. In particular, the first week was used for data col-
lection to obtain the initial δP triggers (i.e., in this simulation it
is the only parameter being tracked), which were sequentially
applied in the following weeks. The measurements from the
first week were then discarded, and the remaining 4 weeks
were used to calculate the average amount of measurements for
each house, as well as the corresponding reconstruction errors.
The target number of measurements simulated were 0.1%,
0.3%, 1%, 3%, and 10% (or, for the fixed-time baseline, 900s,
300s, 120s, 30s, and 10s, respectively, which would result
in a similar number of measurements). The reconstruction
performance is evaluated with the aid of nMAE and nRMSE
metrics.

In Fig. 4, we can observe that, while all event-driven
strategies result in similar error quantities, only strategy T (i.e.,
the reference one, consisting of a fixed time threshold) exhibits
a visually worse performance. It is also worth noting that
almost all the compression targets in the event-driven strategy
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Fig. 5. Example of the consecutive-measurements filter. Source [1].

result in errors within the same range as the subsequent fixed-
time target. For instance, the nMAE value for the target of
0.3% in the EDM strategy is similar to the nMAE value of the
time-based target of 1%. This becomes even more pronounced
when examining the nRMSE metric. While it is intricate to
fully interpret its value, it provides a measure of how well
the strategies follow large variations in power demand. In any
case, what is worth to mention is that the definition of thresh-
olds is essential to improve (optimize) EDM performance;
this can be realized by the individualized dynamic method
that considers different daily profiles, as demonstrated by the
comparison with the fixed time policy T.

In the following sections, we will only simulate a single
threshold target, i.e., 1% of the original resolution using the
average of the last 7 days’ triggers.

B. Filtering of Consecutive Measurements
An important limitation of the original EDM implemen-

tation is that consecutive power variations that exceed δP

threshold would generate multiple samples, which greatly
increase the amount of measurements while adding negligible
information usefulness/value to the data. To deal with this
issue, we have implemented a consecutive-measurements filter.
It works by storing the measurement that triggered a power
event and waiting for the following measurement to check
whether it qualifies as a consecutive measurement, adding
memory in the data acquisition procedure. A pair of subse-
quent measurements is considered consecutive when

1) |�Pt,t−1| > δP , and
2) sgn(�Pt+1,t ) = sgn(�Pt,t−1),

are both satisfied. If the measurements fulfill the aforemen-
tioned criteria, the previous measurement is discarded and the
current one is stored. Enabling the filter introduces a small
delay of one time unit in the transmission of the measurement
(i.e., 1s for this database), since it requires the next reading
to be acquired and processed before deciding whether to send
the current measurement or update it.

An example of applying the filter is shown in Fig. 5, where
we can observe a small sample of house 59 from the Pecan
database, with the δP threshold configured to 1% of the daily
measurements (which corresponds to 126W for this house
and day). Besides reducing the amount of measurements, the
filtered case reaches the top of the peak offering a better
representation of the signal with respect to the normal case.
Fig. 6 shows the percentage of consecutive measurements that

Fig. 6. Percentage reduction when the consecutive-measurements filter
is ON. Source [1].

Fig. 7. Relative variation in error when the filter is ON. Source [1].

occur when δP = 1% is set for each one of the houses.
A set of houses demonstrate short reduction in the number
of measurements when the filter is activated; however, the
majority of the houses show reduction in the order of 20%
or more, in the number of measurements. Fig. 7 illustrates the
impact of the consecutive-measurements filter on the average
relative error performance. Although some houses exhibit an
increased error due to the lower number of measurements, the
dominant trend reveals a reduction of the average error. This
can be intuitively explained by the fact that the filter discards
some transient measurements while improving the tracking of
steady-state values, as shown in Fig. 5.

C. Filtering of “Spikes”
Certain types of loads, such as electric motors and fridges,

are characterized by sharp transients when switched on, but
such values quickly converge to their steady-state values.
These quick transients are commonly known as spikes and,
due to their characteristics, may cause an excessive number
of measurements when conventional EDM is applied. In our
own EDM implementation, we have introduced a spike filter;
when this filtering is active, such sharp transients are ignored
until a steady-state value is reached. A pair of measurements
is considered to be a spike when all the following criteria are
satisfied:

1) sgn(�Pt+1,t) = −sgn(�Pt,t−1),
2) |�Pt+1,t | > δP and |�Pt,t−1| > δP ,
3) |�Pt+1,t−1| < δP .
Fig. 8 depicts the effect of the spike filtering technique in

comparison to the consecutive-measurements filter, using the
same time interval as in Fig. 5. In particular, as illustrated
in the detail of Fig. 8, we have one spike and the resulting
measurements from the consecutive-measurements filter. The
spike filter detected such type of event and, since the power
difference before and after that particular spike is smaller than
the δP threshold (i.e., 126W as in the previous case), no mea-
surement is transmitted. Otherwise, if the final value exceeded
the detection threshold, a single measurement would have been
sent (the rightmost one), instead of the two measurements in
the case of the consecutive-measurements filter.
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Fig. 8. Example of spike filtering. Source [1].

Fig. 9. Relative reduction in measurements when both filters are ON.
Source [1].

Fig. 10. Relative nMAE variation when both filters are ON. Source [1].

Figs. 9 and 10 show the relative reduction in measurements
with respect to the baseline case and the nMAE variation
due to the reduction in measurements, respectively. It can be
observed that the average number of measurements is reduced
from approximately 25% when only the consecutive filter is
applied, to approximately 50% when both filters are activated,
but the average error greatly increases. One way to circumvent
this would be to increase the desired amount of measurements
(that is, lowering δP ) to compensate for the sharp reduction
in the number of measurements.

D. Replacing δT With δtimeout

In the original EDM implementation, a fixed time measure-
ment δT was included for compatibility with legacy metering
and billing. Although useful for that purpose, we argue that
these measurements insert unnecessary redundancy in the data;
such information can be easily derived from other measure-
ments, provided that there are adequate points to represent the
demand. In addition, using a fixed time measurement would
result in all houses periodically sending measurements at
exactly the same time. Instead, we propose to replace δT with a
timeout parameter, δt imeout , which is sent when no other events
have been detected for a long time. This approach is beneficial
in two ways: (i) it reduces the probability of transmitting
several measurements simultaneously; (ii) it guarantees that
we will have a periodic update in the demand of the houses
even in the absence of other events.

Fig. 11. Deviation in energy report due to extrapolation of the previ-
ous measurement. From top to bottom: Power demand; Time interval
between samples; Energy consumption for the period; Deviation from
the actual measurement. Source [1].

Fig. 11 illustrates the impact of these parameters on the
periodic energy consumption report. We have simulated a
series of measurements using δP = 1%. The timed measure-
ments were set to either none at all, δT = 1800s, or δt imeout =
900s, and were compared with the periodic reporting every
1800s. The periodic reporting, when there are no fixed time
measurements, is extrapolated from the last measurement that
occurred before the reporting period. We can observe that the
absence of any type of timed measurement causes a deviation
in the energy reporting, especially during times with low
activity (for example, between 03:00 and 06:00); instead, when
δt imeout is applied, the deviation is greatly reduced.

When there is no need for immediate reporting of the
energy consumption, as it is usually the case in energy billing,
we can rather interpolate the measurements which occurred
both before and after the reporting period, as shown in Fig. 12.
This, in turn, results in a significant reduction of the deviation
between the actual and inferred measurements, even when
δt imeout is not set. Table I shows the deviation in the energy
report and the error in signal reconstruction for each one of the
previous cases. Replacing δT with δt imeout results in a slight
decrease in the number of measurements and has negligible
impact on both energy report and reconstruction error.

When applying this modification to a population of houses,
a remarkable reduction in the peak amount of measurements
can be achieved, since the fixed time reporting is excluded.
Fig. 13 shows a simulation of one day applying the same
parameters, i.e., δP = 1% and setting either δT = 1800s or
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Fig. 12. Deviation in energy report due to interpolation of measurements.
Top: Energy consumption for the period; Bottom: Deviation from the
actual measurement. Source [1].

TABLE I
COMPARISON OF TIMED SAMPLES FOR HOUSE 9333 WITH δP = 1%

AND 30MIN REPORTING. SOURCE [1]

Fig. 13. Measurements per second (top) and per 30min interval (bottom)
for the Pecan dataset. Source [1].

δt imeout = 900s, for the simulated neighborhood of the Pecan
database. It can be observed that the peak of simultaneous
measurements went from approximately 90 (corresponding to
the number of houses) to less than 20 measurements,1 while a
smaller number of measurements, i.e., from 83425 to 81989,
was attained. Although a reduction of about 2% in the total
number of measurements may not sound significant, the 3- to
6-fold reduction of simultaneous measurements is of utmost
importance for the underlying communication infrastructure.
As the generated traffic becomes akin to a continuous flow
of few messages, instead of sporadic time instants with high
bursts of messages, congestion is alleviated and the reliability

1The first and last values also add up to the number of houses simulated
when using δt imeout , but this is an artifact of simulating a single day, since
the first and last samples are necessary to correctly reconstruct the demand
curve for a given period.

of transmitted data can be improved. More details of the rela-
tion between communication and EDM can be found in [20].
Note that, although EDM cannot provide significant advantage
in terms of computation directly, a properly designed EDM
can decrease the traffic offered to the communication network
and improve the performance of data transfer from metering
devices to a fusion center for further processing.

IV. LESSONS LEARNED AND FUTURE WORK

The work presented in this paper has demonstrated the
efficacy of an alternative method of electricity metering based
on informative events. In particular, Section III offers a
systematic and in-depth assessment of the EDM procedure
when enhanced with four different functional modifications.
In particular, as shown in Section III-A, it is feasible to
adjust the power variation threshold from each house in
an automated manner so that the average number of mea-
surements per day follows the desired target percentage.
In Sections III-B and III-C, performance evaluation reveals
that, even with a low number of measurements, there is
still a noteworthy degree of redundancy residual in the data,
which can be reduced by means of filtering. Applying the
consecutive-measurements filter results in considerable reduc-
tion in the aggregate data size while having almost no impact
on the quality of the signal. Enabling the spike filter yields
higher compression in the data; however, in the specific case
simulated, it has shown to be too aggressive, giving rise to
much higher signal degradation than in the former case. This
effect could be mitigated either by decreasing the power vari-
ation threshold value to capture the lower power thresholds,
or by allowing a non-strict mode, which would skip the spikes
but would register the following steady-state measurement.
In Section III-D, we have shown that replacing the fixed time
measurements with a timeout limit, significantly reduces the
amount of simultaneous measurements while having an almost
negligible impact in the accuracy of the measurements for
billing purposes. In addition, the underlying communication
infrastructure becomes less susceptible to congestion and
relevant capacity-overload issues. The measurements can be
slightly decreased as well.

An interesting aspect of the timeout parameter is the infor-
mative nature of not receiving a new sample. In this case, the
time limit imposed by the δt imeout parameter is used to infer
the state of the network in a given neighborhood. If a house
has not transmitted any measurement for a time period longer
than δt imeout , a fault may have occurred either in the grid or
in the communication system. Fig. 14 depicts a representative
example for the case of missing measurements. Random
errors in individual houses may eventually occur (e.g., due
to interference), which are represented by small bars (the left
side of the bars indicates when the timeout limit was exceeded
while the right side denotes that normal communication was
restored) spread all over the plot. On the other hand, groups
of houses exceeding the timeout may indicate that a power
or communications outage in the neighborhood area has hap-
pened. A power outage would look like the top-left part of the
plot. After the interruption has occurred, an aggregator node
would observe that several houses start exceeding the δt imeout
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Fig. 14. Transmission errors under EDM with timeout. Top-left: power
interruption on a neighborhood. Bottom-center: communication error
in the neighborhood’s aggregator. The remaining points correspond to
single transmission errors. Vertical lines indicate the intervals in which
the error events occur for the groups of houses. Source [1].

limit one after another; when the power is restored, all the
affected houses would resume operation. The communications
failure (i.e., in the bottom part) looks similar to the previous
case, with the difference that, upon service restoration, the
arrivals of the measurements are not synchronized assuming
that no retransmission policy is implemented.

Although the EDM enhancements presented in this paper
demonstrate overall good performance, some of the choices
made are purely arbitrary, such as determining that the target
number of measurements would be 1% of the measurements
within a day. Such a choice was mainly motivated in an
effort to show that it is indeed possible to have good signal
reconstruction with an approximately constant number of mea-
surements; this is in stark contrast with the conventional EDM
approach where the signal error would have been constrained,
regardless of the final number of measurements. Although the
error metrics in conventional EDM demonstrate good results,
the lack of flexibility in parameter determination (which is also
considered fixed) and the unpredictability of the end result
(regarding the number of measurements), make it difficult
to accurately estimate the required infrastructure needs for a
large deployment of meters. Future work will meticulously
address the estimation of EDM parameters, aiming to adjust
the power triggers in a more precise way. A possible way in
this direction would be to use the event-driven measurements
as a pre-processor for non-intrusive load monitoring (NILM)
techniques, identifying the appliances by their power events,
and, based on historical data, adjust the parameters according
to the expected use patterns as soon as they are detected.

An additional research line refers to the joint consideration
of EDM with missing data imputation techniques in an effort
to regain perspective on the mechanisms which causally induce
occlusions in measurement trajectories. Incomplete/missing
data in metering applications can be typically attributed to
(i) communication impairments, e.g., during transmission over
an unreliable wireless link, (ii) sensor hardware failures, or
(iii) security attacks, e.g., denial-of-service. Missing values
often result in severe data quality degradation, which in
turn harms the fidelity of energy consumption estimation and
hinders informed system control. Since the foundational prin-
ciples of EDM aim at reducing data redundancies, which could
be instead used to compensate for the missing values, resorting
to advanced imputation techniques becomes imperative [27].

Such techniques focus on the exploitation of intrinsic temporal
and spatial cross-correlations among ambient measurement
streams to extract their governing dynamics and curtail the
inadvertent loss of measurements’ quality. In the path forward,
we plan to explore the potential of EDM in the context of
incomplete datasets where imputation mechanisms are jointly
employed to make valid inferences for the missing data and
improve the signal reconstruction accuracy.
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