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Abstract—Pedestrian positioning with wearable devices is
a significant application of attitude tracking. It tracks the
attitude (with heading angle being the most important part)
of the device in real time and provides positioning services
for users based on the information of step length provided
by Pedestrian Dead-Reckon (PDR), which is a cheap and
efficient positioning method at present. However, amid a train
of positioning methods, the joint estimate of tracking is given
by a train of methods based on the direction of gravity and the
earths magnetic field direction.Considering the measurement
of gravity that the gravity accelerometer is exposed to heavy
noise due to the complex movement of human body during
walking with uniform swing arm posture and forward speed,
this paper proposed a novel estimate method based on the Kalman filter with multi-state constraints and the usage of
low-cost sensors, which fulfills the estimation with the sequential observation of magnetic field. Compared with other
related work, this method proposed in this paper eliminates the dependence on gravity direction, avoiding the influence of
heavy noise caused by additional linear acceleration in motion state, and reduces the influence of insufficient observation
when using magnetic field observation alone. The performance of the proposed method is evaluated by real-world
experimentation results.

Index Terms— Orientation estimation, sequential geomagnetic observation, multi-state constrain, wearable device
positioning.

I. INTRODUCTION

W ITH the development of attitude tracking research,
it has been applied in diverse fields, including machine

interaction [1], robotics [2], aerospace [3], navigation [4], [5],
and human motion analysis [6], [7]. The tracking methods
based on sensor generate the attitude angle with the integral
of gyroscope, leading to a larger zero bias of the measurement
with gyroscope due to the low cost of sensor. Large errors
will occur in the integration process. In addition, the attitude
angle calculation based on gyroscope measurement can only
obtain the relative position in the sensor frame rather than the
absolute position in the navigation frame.
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Therefore, in the relevant work, the attitude is constrained
by two absolute directions by the gravity measured by the
accelerometer and magnetic field direction measured by the
magnetometer to obtain the absolute attitude and eliminate
the errors of the gyroscope. Namely, in the paper [8], [9]
and [10], an optimization method based on gradient descent
is proposed, which uses the direction of gravity direction and
magnetic direction to estimate the attitude and integrates with
gyro information with a certain weight. More specifically,
Wöhle and Gebhard [9] add the Kalman filter on the basis
of [8] to optimize fusion weight. Admiraal et al. [10] pro-
pose an optimal gradient descent algorithm to improve the
operation speed and accuracy of the method in [8]. Different
from optimization-based approaches, a constrained particle
filter (IMeDeT) method is proposed in [11]. A scheme using
extended Kalman filter (EKF) to fuse inertial navigation sys-
tem (INS) and magnetometer information is proposed in [12].
In paper [13], a two-level cascade Kalman filter is proposed.
All the above methods use the integrated observation of gravity
direction and geomagnetic direction to ensure the full rank of
the observation equation.
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However, for the positioning of wearable devices under the
movement scene, the sensor will generate additional linear
acceleration along with the movement of human body, and
the measurement of gravity will contain heavy noise. Given
the observation is incomplete, the paper [14] proposes an
improved complementary filtering method that only uses the
information of gyroscope and accelerometer, which causes the
terrible accuracy, compared with the EKF method. In [15],
an improved gravity estimation method is proposed to com-
plete the estimation of the gravity as much as possible with the
accelerometer under motion state, and meanwhile the weight
of gravity observation is reduced in orientation estimation.
In [16], a calibration method of magnetometer is proposed, but
the premise is that the acceleration sum term was restrained
to be small.

Different from the above methods, in order to avoid the
influence of heavy noise on gravity measurement, this paper
abandons the observation on gravity, and aims at the problem
of insufficient observation, the Kalman filter with multiple
state constraints is used to conduct attitude estimation with the
sequential observation on magnetic field. When a pedestrian is
walking with uniform swing arm posture and forward speed,
the proposed algorithm can provide a stable heading estimation
of the walking.

II. PROBLEM DESCRIPTION

A 6-axis inertial measurement unit (IMU) can provide
acceleration and angular rate in body frame. But in most
applications, the position and attitude need to be described
in a geographic frame such as Earth-Centered Earth-Fixed
(ECEF) frame or local East-North-Up (ENU) frame. The
transformation of attitude from body frame to the geographic
frame can be expressed by

sG = C
(

qG
b

)
sb (1)

where s denotes the reference direction vector respect to
different frames; superscript b and G represent the body frame
and geographic frame, respectively; qb

G is the quaternion rep-
resenting a rotation from geographic frame to body frame and
C
(
qb

G

)
is the corresponding direction cosine matrix (DCM).

To estimate the rotation qb
G , two reference direction is

necessary. With a single reference direction, there will be an
infinite number of solutions for attitude calculation. In other
words, there will be an infinite number of rotation ways for
a certain direction vector to rotate from the global frame
to the sensor body frame. Therefore, most of the attitude
and heading reference systems (AHRS) choose to use two
reference directions to constrain the pose together and obtain
a unique solution, such as gravity and magnetic field direction.

The acceleration observed by the on-board IMU can be
written as,

ab
m = C

(
qb

G

)
g + na (2)

where ab
m is the output of accelerometer; g is the gravity

vector in geographic frame; na is the noise induced by the
accelerometer. Meanwhile, the geomagnetic field observed by

the on-board magnetometer can be written as,

mb = C
(

qb
G

)
mG + nm (3)

where mb is the output of magnetometer; mG is the geo-
magnetic vector in geographic frame, which may be distorted
by magnetizers in the environment; nm is the measurement
noise of magnetometer. In traditional approaches [8], [9] [10],
the attitude estimation uses accelerometer measurement and
magnetic measurement with constraints of known gravity
direction and geomagnetic direction with respect to the geo-
graphic frame as equation(4).{

ab
m = C

(
qb

G

)
g + na

mb = C
(
qb

G

)
mG + nm

(4)

Such approaches are effective for static or quasi-static
objects, since the gravity vector can be treated as a con-
stant and the measurements of the accelerometer are only
decided by the attitude of the sensor. However, the gravity
constraint is no longer available for moving objects such as
wrist-mounted devices. Due to the periodical movement of
human arms during running or walking, an unknown and
time-variant linear acceleration component cannot be ignored
in the measurements, which can be written as follows,

ab
m = ab

l + C
(

qb
G

)
g + na (5)

where ab
l is the linear acceleration observed by the accelerom-

eter in sensor body frame, which is caused by the human
motion. If the measurements of accelerometer are still used,
the linear acceleration should also be estimated, and it will
cause the observation equation to be underdetermined because
the number of observations is smaller than the number of
variables. So if the gravity constraint is still used, there will
be an unpredictable error obtained from the gradient descent
optimization, and the result will not converge to the gravity
reference direction.

However, in the scenario of motion, the measurement of
magnetometer is always the geomagnetic direction, which
is not affected by the motion state such as human arm
movement. In the scenario we describe, the observation of
the geomagnetic field can be considered reliable. Therefore,
the geomagnetic measurement is used as the only constraint
in the proposed approach to track the attitude. Because of the
insufficient rank of underdetermined equations, the constraint
of a single magnetic field observation to the attitude tracking
is weak, which may easily induce cycle slip or divergence due
to the observation noise.

Consider a time sequential iteration process, attitude can be
calculated by gyroscope observation can be written as,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
(
qb

G

)
k+1 = C

(
�t (wb

k + bg + ng)
)

C
(
qb

G

)
k

C
(
qb

G

)
k+2 = C

(
�t (wb

k+1 + bg + ng)
)

C
(
qb

G

)
k+1

...

C
(
qb

G

)
k+i = C

(
�t (wb

k+i−1 + bg + ng)
)

C
(
qb

G

)
k+i−1

(6)

where subscript k is the epoch number, �t is the sampling
time, wk is the instantaneous angular velocity of sensor,
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bg is the gyroscope bias and ng is the measurement noise
of gyroscope. Regard bg as a slowly varying variable, so in a
sliding time window, obtain the gyroscope iteration equations
of i epochs, variables in the equations are only the initial
attitude C

(
qb

G

)
k and bias bg . On this basis,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mb
k = C

(
qb

G

)
kmG + nm

mb
k+1 = C

(
qb

G

)
k+1mG + nm

...

mb
k+i = C

(
qb

G

)
k+i m

G + nm

(7)

proceed independent observation to the geomagnetic direction
of each epoch, with the increase of observation epoch, the rank
of observation equation will increase, and the observation
equations will gradually become overdetermined.

As analyzed above, in this paper, multiple observations
obtained sequentially are used jointly to update attitude esti-
mates in multiple time slots, simultaneously, which is also
called multi-state constrain (MSC) update. Increasing the num-
ber of independent geomagnetic observations, or the length of
observation window, can reduce the uncertainty generated by
the single reference direction.

III. ALGORITHM DESCRIPTION

In this section, the system model and updating mechanism
based on an extended Kalman filter is described. The influence
of the earth’s rotation is ignored considering the accuracy of
a low-cost Micro-Electro-Mechanical System (MEMS) IMU.
The attitude is expressed by a rotation from the geographic
frame to the sensor body frame.

A. System Model
The state vector of the proposed heading estimation algo-

rithm consists of 3-dimensional value of local geomagnetic
field and a sequence of quaternions representing rotations from
ECEF frame to sensor body frame in different time, which is
given by

Xk =
{(

mG
)T

, bg,
(

qb1
G

)T
, . . . ,

(
qbN

G

)T
}T

(8)

where the subscript k denotes the k-th updating epoch of the
proposed system, bg is gyro bias, it is a slow time-varying
variable, which is treat as invariant in a sliding window here.
mG is the 3-dimensional value of local geomagnetic field, qbi

G
is the quaternions from ECEF frame to body frame bi , which
is the IMU body frame defined at the moment when the i -th
magnetometer measurement is obtained, N is the total number
of magnetic observations used in the system, and T is matrix
transpose operator. The local geomagnetic field is modeled as
a constant or a slow changed variable with inaccuracy prior
information.

An error state implementation is used for the state propa-
gation, which is defined by

X̃k = Xk − X̄k =
{(

m̃G
)T

, b̃g, δqT
1 , . . . , δqT

N

}T

(9)

where X̄k is the prior estimation of Xk , m̃G is the estimation
error of local geomagnetic field, b̃g is the error of gyro bias
and δqi is the quaternion error for the i -th body frame, which
is defined by

qbi
G = δqi ⊗ q̄i (10)

where q̄i is a prior estimation of qbi
G , and ⊗ is the quaternion

multiplication operator. Under small attitude error assumption,
the following approximation can be used,

δqi ≈
[
[1.5]1 1

2
δθT

i

]T

(11)

where δθi ∈ R
3×1 is the error of Euler angles.

The prior estimation of attitude is obtained by using the
angular-rate measured from the gyroscope. The discrete prop-
agation equation of attitude can be derived from the continuous
differential equation in quaternion form, which is given by

q̇bi
G = 1

2
qbi

G ⊗ ωb (12)

where ωb = [
ωx ωy ωz

]
is the 3-dimensional angular-rate

measured by the gyroscope. Then we can obtain the linearized
continuous dynamics for the error state,

˙̃X = F X̃ + Gng

=
⎛
⎝[1.5] − 1 0 0 0 ωz −ωy

0 −1 0 −ωz 0 ωx

0 0 −1 ωy −ωx 0

⎞
⎠ X̃

−
⎛
⎝[1.5]1 0 0

0 1 0
0 0 1

⎞
⎠ ng (13)

where ng is measurement noise of gyroscope. The discrete
propagation equation of error state can be derived by solving
equation (13), which is,

X̃k,k−1 = �k,k−1 X̃k−1 = exp

[∫ tk−1+�t

tk−1

F (τ ) dτ

]
X̃k−1 (14)

where �t is the sampling interval of magnetometer, and F (τ )
is defined by the angular-rate at time τ . If the gyroscope
is not synchronized with the magnetometer, or the sampling
frequencies are not the same, interpolation for angular-rate
is necessary. The matrix exponential in equation (14) is then
approximated to the 3rd order Taylor series, which can be con-
sidered to be accurate enough when the sampling frequency
is 50Hz,

�k,k−1 = [
�(bg)k,k−1 �(q)k,k−1

]
≈ [

O3 I3
] + F (t) �t

+1

2
[F (t) �t]2 + 1

6
[F (t) �t]3 (15)

For convenience of express, the 6 × 3 matrix �k,k−1 is
divided into two 3×3 square matrices �(bg)k,k−1 and �(q)k,k−1
by column. When a new magnetic measurement is recorded,
the latest attitude error is propagated by using �k,k−1 in the
current error state vector and then added to the end of the state
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vector. As the new attitude error state is added, the covariance
matrix of state estimation error also needs to be expanded as
follows,

Pqk,k−1

=
[[1.3]I3(N+1)×3(N+1)

Jk,k−1

]
Pqk−1

[[1.3]I3(N+1)×3(N+1)

Jk,k−1

]T

+
[[1.3]O3(N+1)×3(N+1) O3(N+1)×6

O6×3(N+1) Qk

]
(16)

where Jk,k−1 =[
O3×3 �(bg)k,k−1 O3×3(N−1) �(q)k,k−1 O3×3

]
is the propagation matrix of estimation error, and Qk refers to
the noise induced by gyroscope measurement. We have

Qk =
∫ tk−1+�t

tk−1

�τ,k−1G Qk−1GT �T
τ,k−1dτ (17)

The local geomagnetic field is considered as a constant
during the updating interval, so the complete prior covariance
of error state estimate is

Pk,k−1 =
⎡
⎣Pmk O

Pbg

O Pqk,k−1

⎤
⎦ (18)

where Pmk is the posterior covariance of local geomagnetic
field estimate, Pbg is the covariance of gyro bias.

The length of error state vector is growing by time since
the latest attitude error state is added during each propagation.
We set a maximum length of the error state vector. The oldest
state will be deleted from the state vector when reaching the
maximum length.

B. Observation Model
Considering the observation of earth magnetic field from

the 3-axis magnetometer, the measurement obtained is a
3-dimensional vector with geomagnetic direction in sensor
body frame. In the system described in this paper, the coordi-
nates of inertial sensors and the magnetometer can be treated
as the same. So the measured geomagnetic field is as follows,

mb = C
(

qb
G

) (
mG + dm

)
+ nm (19)

where mb denotes the measurement of magnetometer in body
frame, mG is the local geomagnetic field in the geography
frame, dm is local geomagnetic distortion caused by buildings
or vehicles nearby, and nm is the measurement noise of
magnetometer.

Since the error state is used for system model, we choose
to use the residual of observed geomagnetic field to form the
observation model, which is defined by

m̃b = mb − m̂b

= C
(

qb
G

) (
mG + dm

)
− C

(
qb

G

)
m̂G + nm (20)

where m̂G is the posterior estimate of geomagnetic field after
the latest updating. The linear approximation of equation (21)
is obtained by the first order Taylor expansion as follows,

m̃b
i ≈ hqi δqi + hi m̃

G
i +C

(
q̂bi

G

)
dm + nm (21)

Fig. 1. Illustration of proposed attitude estimation approach.

where the subscript index i denotes the i -th measurement
residual corresponding to the i -th state in the error state vector.
The Jacobian matrix is defined as follows

hqi = ∂m̃b
i

(
δqi , m̃G

i

)
∂δqi

∣∣∣∣∣
X̂k

=
[

C
(

q̂bi
G

)
mb

i
∧
]

(22)

where
[

a ∧ ]
denotes the skew-symmetric matrix of vector a,

and

hi = ∂m̃b
i

(
δqi , m̃G

i

)
∂m̃G

i

∣∣∣∣∣
X̂k

= C
(

q̂bi
G

)
(23)

For the error state vector consists of states in multiple epoch,
the total measurement matrix is defined as follows,

Hk =
⎡
⎢⎣

hi O3×3 hq1 O O
...

... O
. . . O

hN O3×3 O O HqN

⎤
⎥⎦ (24)

where hN represents the partial derivative of observation equa-
tion H respect on geomagnetic direction in ENU system of
each epoch. O represents zeros matrix with size corresponding
to other matrix blocks.

C. Attitude Estimation Based on Extended Kalman Filter
The attitude is estimated by an extended Kalman filter.

Multiple measurements from magnetometer in time sequence
are used simultaneously to update attitude estimates at differ-
ent sampling time, which is so-called a multi-state constrain
Kalman filter [17]. The duration of an update epoch is decided
by the number of measurements used for state update, which
is denoted by M . It should be noticed that M can be different
to N , which is the number of states included in the error state
vector.

The proposed attitude estimation approach is illustrated by
Fig. 1. At the beginning of each update epoch, M oldest
attitude state in the error state vector is deleted, and M new
attitude state is propagated by the measurements of IMU,
as detailed described in section 3.1. The attitude states added
to the error state vector is synchronized with the magnetometer
measurements. When M new geomagnetic field measurement
is collected, the N attitude states in the error state vector,
as well as the geomagnetic filed intensity, are updated simul-
taneously by the measurements. In this way, the repeated
using of measurement is avoided, while the older states are
retained in the state vector, the historic information can be
taken into account during the estimation, which can improve
the robustness against the temporary distortion of geomagnetic
field. In additional, by controlling the maximum length of the
state vector, the tradeoff between computational complexity
and accuracy can be adjusted.
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Algorithm 1 Attitude Estimation by MSCKF

Input: IMU measurements
{
ab

i , ωb
i

}M
i=1,

geomagnetic field intensity
{
mb

i

}M
i=1

Output: quaternions from ECEF to body frame
{

qbi
G

}M

i=1
1 Initialize geomagnetic field intensity mG and attitude in

the form of quaternion qb0
G by

{
ab

i , ωb
i , mb

i

}
in a static

scenario
2 for each update epoch do

3 Obtain
{
mb

i

}M
i=1 from magnetometer

4 State/covariance propagation with
{
ωb

i

}M
i=1, refer to

(14)-(18)
5 Filter gain computation, refer to equation (26)
6 Error state update by measurement, refer to equation

(25)
7 Covariance update, refer to equation (27)

8 Calculate
{

qbi
G

}M

i=1
from ECEF to body frames based

on the updated error state for output, refer to equation
(10)

9 end

The EKF update process can be expressed as follows,

X̃k = X̃k,k−1 + Kkrk (25)

where rk = [
mb

1,k − m̂b · · · mb
M,k − m̂b

]
is the residual

vector of geomagnetic field intensity, and the filter gain is
given by

Kk = Pk,k−1 H T
k

(
Hk Pk,k−1 H T

k + Rk

)−1
(26)

where Rk is the covariance matrix of observation noise, which
is a diagonal matrix.

The posterior covariance of error state estimate is then
obtained by

Pk = (I − Kk Hk) Pk,k−1(I − Kk Hk)
T + Kk Rk K T

k (27)

Considering the computational complexity of the algorithm.
Matrix multiplication is the main consumption of computing
in the algorithm, in an observation and update process, in
equation (26), Kalman gain K can be computed in O((3M)3)
operations, in equation (27), updated covariance matrix can be
computed in O((6(N + 1))3) operations.

The algorithm is described in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Under the scenario we concerned in this paper, the purpose
of our algorithm is to improve the PDR positioning accuracy of
wrist device. Moreover, in the existing PDR algorithms, it has
been able to realize high-precision estimation of step length,
therefore, the main source of wrist device PDR positioning
error is heading estimation. Based on above considerations,
we integrate the proposed heading estimation algorithm and
the existing step length estimation algorithm into PDR algo-
rithm, and use the accuracy of PDR positioning result to eval-
uate the performance of our algorithm. Considering that we

TABLE I
MANUFACTORY INFORMATION OF SENSORS USED FOR EXPERIMENTS

use the low-cost sensor, we pre-calibrate the gyroscope before
the experiment by using map-based method [18], to eliminate
gyroscope in advance.

The performance of the proposed algorithm is evaluated
by real-world experimentation results. A commercial off-
the-shelf smartphone with android operation system is used to
collect data from different sensors including accelerator, gyro-
scope, magnetometer and Global Navigation Satellite System
(GNSS), which are used for post-processing. The manufactory
information of the integrated sensor in the Android 8.0 smart-
phone is listed in Table I.

The performance of the proposed algorithm is evaluated in a
standard track and field oval, compared with some traditional
approaches including Madgewick Filter using gravity and
magnetic field intensity and EKF using single magnetic field
intensity. The smartphone is mounted on the right arm by a
wristband, close to the wrist, and then the actor walked along
the track line in a normal stance for nearly 2.5 laps, in totally
about 7 minutes.

At the beginning of the experiment, the device kept static
and steady for nearly 20 seconds. The initial estimate of
earths magnetic field is derived by using the average of the
measurements from magnetometer. It should be notice that
the magnetic north is regarded as an approximate of geodetic
north in the proposed algorithm, so there is a fixed system
error in the estimate of heading angle. The initial estimate of
quaternion from ECEF to sensor body frame is also obtained
in the static period through a traditional Madgewick Filter.

The estimated heading angles by different algorithms in the
track and field oval are shown in Fig. 2. The two straight
parts of the track can be used as the ground truth reference.
The positioning results from GNSS is used for mapping
sensor time to the ground position. It can be seen in the
figure that the Madgewick Filter cannot provide a steady
estimate of heading angle during walking. For instance, during
40-60 seconds, the deviation of the estimated angle can be
more than 0.6 cycle, which is about 216 degree, and also
shows an obvious periodicity with frequency close to stride
rate of walking. It also shows that the occurrence of cycle
slip when using Madgewick Filter is more frequent than the
proposed algorithm. The estimate results from EKF show a
bias in comparison with the proposed algorithm, which can
be found during 40-60 seconds, as well as in 220-280 seconds
if the ambiguity of whole cycles induced by cycle slip is
ignored. It can also be found that the estimated heading
angles from EKF in the straight part of the track is not stable
in 220-280 seconds. The reason is that one single magnetic
measurement used in EKF is not sufficient to constrain the
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Fig. 2. Estimated heading angles by different algorithms.

Fig. 3. RMSE of estimated heading with different state vector length.

heading estimation. The slowly changing error is also caused
by the accumulation of linearization error of measurement
model used in EKF. Instead, the proposed algorithm can obtain
a stable heading estimation during the whole trajectory.

To calculate the Root Mean Square Errors (RMSEs) of
estimated heading angle with different maximum length of
error state vector, another experiment was designed and the
results are shown in Fig. 3. The RMSE is calculated dur-
ing a straight part of a playground track with a duration
of 20 seconds walking, while the estimates in the circular parts
are ignored since the ground truth is hard to match. In the
experiment, the actor’s arm keeps static with body to avoid
the error caused by arm swing, and the deviation between
the ending sensor heading and the starting sensor heading is
used to evaluate our algorithm. As shown in the figure, RMSE
decreases when using more states in the error state vector.
There is a large drop on RMSE when the maximum length of
error state vector grows from 2 to 10. It shows the benefit from
multiple observations used in the multi-state constrained filter.

Fig. 4. PDR trajectories with different states number.

The performance of the proposed algorithm improves slowly if
the maximum length keeps increasing from 10. When 30 states
are used in the proposed filter, which means the update interval
of attitude estimation is about 15 seconds, the RMSE of
estimated heading angle is less than 1 degree.

We designed a classic pedestrian dead-reckon (PDR) exper-
iment [19] to further evaluate the influence of state vector
length on estimation performance. The actor keeps a uni-
form swing arm posture and forward speed, walked on the
playground for about 2 loops, the trajectory coincides with
the runway line, and the start point coincides with the end
point. The trajectory of walking is used for evaluating the
performance of the proposed algorithm. The trajectory is
obtained as follows,{

xn = xn−1 + Ln cos θn

yn = yn−1 + Ln sin θn
(28)

where (xn, yn) is the coordinates after the n-th pace in the
horizontal plane, θn is the estimated heading angle, and Ln is
the pace length. Ln is calculate by GNSS trajectory as (29),

Ln =
√

(xG N SS,n − xG N SS,n−1)
2 + (yG N SS,n − yG N SS,n−1)

2

(29)

where (xG N SS,n, yG N SS,n) is the GNSS coordinates after the
n-th step in the horizontal plane. In addition, it is assumed
that the moment when the angular velocity is maximum is
the moment when the heading of the human body and the
sensor are consistent in each swing arm cycle. The peak time
of gyroscope raw data is used as the step time of each step of
the actor to ensure that the heading angle of the handheld smart
phone is consistent with the human body at the selected step
time in each swing arm cycle. Before selecting the pace time,
uses 30-order smoothing filter to remove the pseudo-peak of
gyroscope data. The selection result of body heading is shown
in Fig. 4.

Under the uniform swing arm movement, the selection
method will bring a fixed error between the selected body
heading and the real body heading. Based on the previous
experiment, assuming that the estimation error of our algo-
rithm can be ignored within 10 seconds, we rotated the first
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Fig. 5. PDR trajectories with different states number.

TABLE II
END POINT ERROR OF PDR TRAJECTORIES WITH

DIFFERENT STATES NUMBER

10 seconds trajectory and heading of each experiment to match
the GNSS trajectory to correct this fixed error.

The PDR results are shown in Fig. 5, where the maximum
length of error state vector N = 10, 20, 30 are chosen for
comparison. The trajectory obtained from EKF is also com-
pared in the figure, which is denoted by N = 1. It is obvious
that the trajectory obtained from EKF is distorted heavily from
the ground truth. The proposed algorithm can provide stable
estimates of heading angles during the trajectory. The error
of the estimated heading angles can be reduced by increasing
the maximum length of error state vector, which can furtherly
reduce the positioning error of the PDR trajectory.

The ground truth of the start point and end point of the
trajectory is the same, so the end point error can be obtained
for performance evaluation, as shown in Table II. The end
point error is decreasing as the maximum length of error state
vector is growing. When 30 states are used in the proposed
algorithm, the proposed algorithm can provide an end point
error of 13.63m during the whole 800 meter-length trajectory,
and the relative positioning accuracy is 1.70% of the total
trajectory length.

To analyze the impact of geomagnetic interference caused
by buildings or metal objects around such as cars or street
lamps, the performance of the proposed algorithm is also

Fig. 6. City road scenario for performance evaluation.

Fig. 7. PDR trajectories with different states number in city road scenario.

evaluated in a city road scenario, as shown in Fig. 6. A typical
city road scenario around a city square is chosen, and different
types of vehicles are parked along the road. The total length
of the trajectory is about 1.4 km, and the walking duration
is nearly 15 minutes. In the process of moving, our actor
also keep a uniform swing arm posture and forward speed,
the trajectory calculation method is the same as the above
experiment in equation (28) and (29). Different maximum
error state vector lengths are used for comparison, and the
positioning results obtained from GNSS are used as the ground
truth to evaluate the positioning accuracy of the proposed
algorithm.

The results are shown in Fig. 7, also choose the maximum
length of state vector N = 10, 20, 30. The proposed algorithm
can provide stable estimates of heading angles during the city
road scenario, the heading angle estimation error could reduce
with the increase of the maximum length of error state vector.

As shown in the approximate square trajectory in Fig. 7,
Huge trajectory error mainly occurs after the first turning (The
coordinates are approximately (100,−100) to (400,−100)) and
the third turning (The coordinates are approximately (400,200)
to (0,200)). Among the four trajectories, the trajectory error of
N = 1 is the largest, and the trajectory error will decrease with
the increase of N . In our experiment, when N is increased to
30, the positioning performance is better than other state vector
lengths.

These huge trajectory errors are caused by the distortion of
geomagnetic field, because heading estimation should diverge
slowly and evenly when the geomagnetic observation is not
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Fig. 8. Geomagnetic distortion in city road scenario.

Fig. 9. CDF statistics with different states number in city road scenario.

interfered. We calculated the geomagnetic intensity in the
urban environment experiments, and intercepted a group of
data with the same length from the undisturbed geomagnetic
data measured in the playground previously, to explain the
geomagnetic status of the urban experiment. The comparison
results are shown in Fig. 8.

As shown in Fig. 8, At 200 to 300 seconds and about 450 to
850 seconds, the estimation of geomagnetic field is distorted.
In 200 to 300 seconds (after the first turning), metal objects are
sparsely distributed in the street, the distortion amplitude of
geomagnetic observation is small, and the duration is short,
during this period, the trajectories difference estimated by
different maximum lengths of state vectors are small. In about
450 to 850 seconds (after the third turning), the distribution
of metal objects (parked cars) along the street becomes dense,
the duration of distortion becomes longer, the positioning
error increases rapidly after passing through the third turning,
during this period, it shows better heading angle estimation
performance with longer maximum length of error state vector.
The specific cumulative error statistical analysis is shown in
Fig. 9, and the comparison with EKF algorithm is added.

The original GNSS positioning data sampling frequency
is 1Hz, the GNSS positioning data in each pace time is

Fig. 10. Indoor experiment (a) indoor geomagnetic field,(b) estimated
heading.

used as the reference for accumulative error statistics after
interpolating it to 50hz (magnetometer sampling frequency).
Fig. 9 is a CDF curve of positioning error for error state
vectors with 4 different maximum lengths (N = 30, 20,
10, 1), at a probability of 95%, when 30 states are used in
the proposed algorithm, the proposed algorithm can provide
cumulative error of 16.01m, when 10 states are used in
proposed algorithm, it can provide cumulative error of 50.01m,
it is close to EKF algorithm.

An indoor experiment is added to evaluate the perfor-
mance of the proposed algorithm. The indoor environment
is a typical office building, which contains a long corridor
with similar rooms on each side. The actor walked strictly
along a straight line calibrated in advance on the ground.
Therefore, the ground-truth of the heading angle should be
a constant. The intensity of indoor geomagnetic field sampled
along the trajectory is shown in Fig. 10(a). We can find heavy
distortion in the indoor geomagnetic field, which may be
induced by the steel skeleton of the building. The estimated
heading of walking is shown in Fig 10(b). As we can see,
the heading error exceeded 350 degrees during the trajectory,
and there are many mutations in the curve, it is completely
different from the real walking situation. Due to the huge
and rapid changing distortion in the indoor geomagnetic field,
the proposed algorithm fails to converge.

V. CONCLUSION

In this paper, a new heading angle estimation method based
on multi-state constrained Kalman filter with low-cost sensor
is proposed. The estimation is realized by sequential observa-
tion of geomagnetic field. Compared with other related work,
the method proposed in this paper eliminates the dependence
on gravity direction, avoids the strong noise effect caused
by the additional linear acceleration in the motion state,
and reduces the effect of insufficient observation when using
magnetic field observation alone, finally, realizes the sensitive
tracking of the heading angle during walking with uniform
swing arm posture and forward speed. The experiments in
ideal runway scenario and typical city road scenario are carried
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out to evaluate the performance and anti-interference ability of
the algorithm. In the application scenario of wearable devices
during movement, the algorithm proposed in this paper can
provide stable real-time heading angle tracking under low-cost
sensors, and the estimation accuracy will increase with the
increase of the maximum length of state vector. However,
the proposed algorithm cannot be used in indoor scenarios
where the geomagnetic filed is heavily distorted.
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