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Abstract—Our purpose was to demonstrate the possibility
of providing foot-healthcare application by using an in-shoe
motion sensor (IMS) through validatingthe feasibility of apply-
ing an IMS for measuring the first metatarsophalangeal angle
(FMTPA), which is the most important parameter regarding
the common foot problem hallux valgus. Methods: The IMS
signals can represent foot motions when the mid-foot and
hindfoot were modelled as a rigid body. FMTPAs can be
estimated from the foot-motion signals measured using an
IMS embedded beneath the foot arch near the calcaneus side
using a machine-learning method. The foot-motion signals
were collected from 50 participants with different FMTPAs.
The true FMTPAs were assessed from digital photography.
Correlation-based feature-selectionprocesses (significance level p < 0.05) were used to search for the predictors from the
foot-motion signals. Leave-one-subject-out cross-validation, root mean squared error, and intra-class coefficients were
used for FMTPA-estimation model evaluation. Results: Eleven FMTPA-impacted gait-phase clusters, which were used to
construct effective foot-motion predictors, were observed in all gait-cycle periods except terminal swing. The range of
the foot motion in the sagittal and coronal planes significantly correlated with the FMTPA (p < 0.05). Linear regression
could be the best method for constructing an FMTPA estimation model with a root mean squared error and intra-class
correlation coefficient of 4.2 degrees and 0.789, respectively. Conclusion: The results indicate the reliability of our FMTPA
estimation model constructed from foot-motion signals and the possibility to providing foot-healthcare applications by
using an IMS.

Index Terms— Inertial sensor, foot-motion, foot health, gait analysis, hallux valgus.

I. INTRODUCTION

W ITH the development of Internet-of-Things technolo-
gies, wearable smart sensors, which can finish all
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the data processing on an edge device, have been applied
to various healthcare applications by automatically recording
biomedical signals, such as pulse and sweat, in daily living
without intentional manipulation [1], [2]. The relationship
between walking and health has been receiving attention.
There are mainly two types of wearable smart sensors believed
to have high potential for health applications through daily
gait analysis. One is smart sensors using optical sensing
technology [3] and the other is smart motion sensors [4].
Placing a sensor in various shoes or insoles is now considered
promising for providing various healthcare applications in a
more convenient manner because it is less of a hassle to wear
and enables automatic recording and analyzing of foot motions
during daily walking. Examples of smart wearable optical
sensors are smart insoles integrated with polymer optical
fibers [5], [6], which were developed for measuring ground-
reaction force and foot pressure during walking. They are
low cost, portable, and have a high degree of customizability
and high potential for clinical evaluation and remote health
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monitoring [5], [6]. Although such sensors are sensitive to
temperature [7], as long as this is taken into account, the
gait information of all subdivisions of the stance phase can
be evaluated [5]. A new type of wearable smart motion
sensor, called an “in-shoe motion sensor (IMS)”, is considered
promising for enabling various healthcare applications for
daily walking. An IMS automatically records and analyzes
foot motions not only in the stance phase but during the entire
gait cycle (GC) during daily walking [8]–[10].

The combination of smart motion sensors for measuring
gait parameters with artificial intelligence (AI) technologies
has been reported both for monitoring short-term changes
in daily physical conditions, e.g., effect of daily exercise or
physical fatigue [11], [12], and predicting long-term changes,
e.g., frailty or Parkinson’s disease, using signal features from
daily gait monitoring [13], [14]. Foot problems significantly
impact the quality of life, particularly the quality of ambu-
latory life [15]–[17]. Monitoring foot health is believed a
necessary [18], [19]. We argue that an IMS is a promising
option for providing convenient daily foot-health monitoring,
however, to the best of our knowledge, there has been little
research on foot-health monitoring using only foot motions;
thus, the feasibility of using an IMS to monitor foot health
should be verified. To do this, we focused on hallux valgus
(HV), which is a common toe deformity today [17], [20].

When the first metatarsophalangeal angle (FMTPA) contin-
uously increases, HV will occur. Extrinsic factors including an
inappropriate choice of shoes and inappropriate walking form
are partial causes of HV deformity progression [20]. Although
HV will substantially worsen the quality of ambulatory life in
its late stage [21], it is usually easy to ignore or incurs no pain
in the early stage [22]. In other words, if the most essential
parameter for HV deformity assessment, FMTPA, is frequently
monitored, i.e. accumulating a large amount of the time-series
data, we will be able to use AI technologies to detect the
early signs of HV, estimate its current status, or predict risk of
HV progression by combining it with other gait parameters.
This will make it possible to urge those who had not been
aware of their HV progression to take action, e.g., by choosing
appropriate shoes and doing exercise to improve walking form,
or advise those whose HV has progressed to access clinical
examinations and treatments.

Machine-learning models are widely used in various appli-
cations. There are two essential factors in constructing high-
precision machine-learning models. One is the selection of an
optimal computational algorithm, and the other is the selection
of optimal predictor variables. We focused on the latter for
this study. Walking is a natural form of periodic movement
in which the lower limbs are moved forward alternatively.
The musculoskeletal model [23] revealed that the same mus-
culoskeletal structure is used and the same motion is repeated
at the same phase in one GC. Understanding the impact of HV
on gait is considered important for assessing the FMTPA [24].
Previous studies reported alterations of kinematics on lower
limbs, e.g., more eversion during pre-swing (PS), less external
rotation during terminal stance (TSt) on the hindfoot-tibia, and
less range of motion of the hindfoot-tibia in the sagittal plane,
in people with HV [25]–[27]. By referencing these studies, the

Fig. 1. Schematic of one GC, gait phases, and gait events.

gait features of HV can be easily found during straight-path
walking. Consequently, we considered that through under-
standing the impact of FMTPA on foot motion, we can find
predictors that intrinsically correlate with the FMTPA from
measuring foot motion in specific phases of one GC during
straight-path walking.

We previously reported the impact of HV on inertial foot-
motion signals measured using an IMS [28]. In this paper,
we first present analysis on the data obtained from partic-
ipants with different FMTPAs to understand which phases
of foot-motion are impacted by FMTPA. We then discuss
determining predictor variables from these FMTPA-impacted
gait phases, and constructing machine-learning models for
estimating the FMTPA. Finally, we present FMTPA estimation
results obtained after inputting foot-motion signal features into
the constructed models.

II. GAIT CYCLE

One GC is the time period or sequence of events or
movements during locomotion in which one foot contacts the
ground to when that same foot again contacts the ground.
The motion of a foot contacting the ground is called heel
strike (HS), which is one of seven defined gait events, i.e.
special motion during walking. One GC can be partitioned into
stance and swing phases at toe off, which comprise 60 and
40% of a GC, respectively, as shown in Fig. 1 (taking the
right foot as an example). One GC can be divided into seven
periods: loading response (LR), mid-stance (MSt), terminal
stance (TSt), pre-swing (PS), initial swing (ISw), mid-swing
(MSw), and terminal swing (TSw) on the basis of six other
gait events in one GC: opposite toe off (OTO), heel rise (HR),
opposite heel strike, toe off (TO), feet adjacent, and tibia
vertical, respectively [23].

III. MATERIALS AND METHODS

A. Participants
We recruited 50 participants (23 men and 27 women)

of different ages, heights, weights, and shoe sizes for our
experiment. The average age, height, weight, and shoe size
were 48.4 ± 8.5 years, 165.0 ± 6.9 cm, 60.1 ± 10.3 kg,
and 24.8 ± 1.2 cm, respectively. The dominant leg was
judged as the side of the leg used for taking the first-step for-
ward [29], where the ratio of left to right was 20:30. All partic-
ipants could walk independently without any assistive devices.
They had normal or corrected-to-normal vision, no history
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Fig. 2. (a) Schematic of IMS embedded in insole; (b) schematic
of insole inserted in sports shoe; (c) definition of coordinate axes
and corresponding plane with directions defined as Ax (medial: +,
lateral: −), Ay (posterior: +, anterior: −), Az (superior: +, inferior: −),
Gx (plantarflexion: +, dorsalflexion: −), Gy (eversion: +, inversion: −), Gz
(adduction: +, abduction: −), Ex (plantarflexion: +, dorsalflexion: −), Ey
(eversion: +, inversion: −), and Ez (adduction: +, abduction: −); (d) cam-
era setup for photographic FMTPA assessment; and (e) measurement
method of FMTPA from digital photography. Points a and b were marked
at visual bisection points at distal and proximal shaft of proximal. Point c
was located at center of first metatarsal head, and Point d was marked
at visual bisection of proximal first metatarsal shaft.

of neuromuscular or orthopedic diseases, and no obstacles to
communication. The experimental procedure was explained to
all participants, and informed consent was obtained from each
individual before the experiment. The study was approved by
the NEC Ethical Review Committee for the Life Sciences
(protocol number: LS2019-010) on Sep. 11, 2019.

B. Experimental Setup and Protocol
An IMS was embedded in an insole placed under the foot

arch near the calcaneus side to ensure that participants could
walk naturally, and the insole was inserted into sports shoes
(Figs. 2(a) and (b)). The data were transferred to a smartphone
using Bluetooth Universal Asynchronous Receiver/Transmitter
(UART) in real time. The communication-capacity limitation
allowed us to use only one IMS for one participant during
measurement. Because foot motion is assumed to be symmet-
ric between the dominant and non-dominant leg, we used the
IMS for only the right foot.

When the shoes fit tightly and mid-foot and hindfoot were
modelled as a rigid body, the signal from the IMS in the
shoes could be assumed to be equal to the foot-motion signals.
The IMS contained a 6-axis inertial measurement unit (IMU)
(BMI 160, Bosch Sensortec, Germany), general-purpose mul-
tiprotocol system-on-chip (nRF52832, Nordic Semiconductor,
Norway), and control circuit. Nine types of foot-motion sig-
nals, including three axes of acceleration, i.e., linear motions

Ax , Ay , and Az and angular velocity, i.e., rotating motions
Gx , Gy , and Gz , were directly measured. Inside a micro-
computer, the three axes of sole-to-ground angles Ex , Ey ,
and Ez were calculated using a Madgwick filter [30], and
the acceleration values were then corrected to the global
coordinates automatically.

The participants walked in 8-m straight lines for eight suc-
cessive trials at a self-determined comfortable speed. Before
data collection, the participants were given a 2-min practice
session to familiarize themselves with the environment and
procedure. The data-sampling frequency of the IMS was set
to 100 Hz. The measurement range of acceleration was ±16 g,
and the angular velocity was ±2000 degree/s.

C. FMTPA: Target Variables
The true FMTPA in this study was obtained using a

photographic method that has been shown to be valid for
self-checks of HV as long as the photographing conditions
including photographing position, angle, and standing posture
are rigorously adjusted [31]. We used the camera on an
iPhone (Apple, USA), which was set at 15 degrees from the
perpendicular axis and guided using a tripod (Fig. 2(d)). The
participants were instructed to stand erect and look forward.
From the photo, reference points a, b, c, and d , were marked.
The FMTPA was calculated using the intersection of two axes,
a-b and c-d (Fig. 2(e)). The principal examiner determined the
reference points and took measurements from all photographs
on three separate occasions with a one-month interval between
each. That is, on each measurement occasion, each image was
independently marked up, and independent measurement was
conducted. To minimize test-retest bias and ensure that the
examiner was unable to recall previous observations, no ref-
erence was made to the data or images in the interim. Finally,
the FMTPA of each participant was obtained by averaging the
three separate measurements.

D. Data Processing
The IMS signals of each trial were split into strides by

detecting an HS event from Ay on the basis of the gait-event-
detection algorithm in our previous study [32]. Approximately
50 effective strides of each participant were selected from the
database. Note that the first and last strides of each walking
trial and those strides including outlier values, e.g. defective
data due to communication packet loss or decoding error,
etc. were excluded. Foot kinematics is affected by walking
velocity [33]; to exclude the velocity bias on foot motion, the
amplitude of acceleration and angular velocity waveform of
every stride were normalized using the corresponding maxi-
mum instantaneous walking velocity during the swing phase,
which was calculated by integrating Ay from a foot flat to the
end of the stride. Each stride was then temporally normalized
to a 1–100 percentage gait cycle (%GC), as a result, the data
of every normalized stride formed a 100 × 9 matrix. The
data in the columns mean the data of 1–100 %GC of Ax , Ay ,
Az , Gx , Gy , Gz Ex , Ey , and Ez . Next, all normalized strides
of each participant were averaged as the average foot motion
of each participant. Finally, each participant had one average
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Fig. 3. Flow chart of analysis for observing FMTPA-impacted gait phase.

foot motion, and a total of 50 datasets were used for model
construction and evaluation, which formed a 100 × 9 × 50
data cube. The noise levels (NLs) of the IMS signals were
also measured while the IMS was placed on a desk.

E. Feature Selection
In this section, we explain the processes to analyze which

phases in one GC were significantly impacted by FMTPA,
as shown in Fig. 3.

As the preprocessing, each averaged normalized stride in the
data cube was flattened into a 1 × 900 vector, turning the data
cube into a 50 × 900 matrix P . Correlation analysis with the
leave-one-subject-out (LOSO) process was used in the feature
selection to avoid overfitting. The data of the n-th participant
were first excluded, where n is the participant number, and
the data of the remaining 49 participants were used for the
analysis, forming a 49 × 900 matrix P �. Pearson’s correlation
analysis was used to examine whether there was significant
correlation between the amplitude of normalized foot-motion
signals and the FMTPA at every 1%GC. The inputs were the
data of the m-th column of P � and the FMTPA, where m is
a number between 1 and 900, and the output was the level of
significance of correlation analysis. If the level of significance
of correlation was p < 0.05, a “TRUE” label was given to
m; if not, a “FALSE” label was given. The Pearson product
moment correlation coefficient r of m was also recorded as
a reference value. The LOSO process was repeated 50 times
because there were 50 participants in our study. “TRUE” or
“FALSE” labels were also given 50 times to every m. The
labels on every m were then summarized. Those indexes
with over 47 “TRUE” labels were considered intrinsically
correlating with the FMTPA, i.e., as FMTPA-impacted %GC,
despite individual differences.

Predictor variables were processed from the data of
FMTPA-impacted %GC for constructing a regression model.

Fig. 4. Schematic of FMTPA-impacted %GC.

The target variables of the regression model were FMTPAs.
As shown in Fig. 4, a group of continuous FMTPA-impacted
%GCs were treated as a cluster, which was called a “gait
phase cluster (GPC)”, and the integral average of the signal
amplitude in the GPC, i.e., the average motion intensity of
each GPC, was output as a single predictor, while the signal
amplitude at each non-continuous FMTPA-impacted %GC was
directly guided as a predictor. Of course we can treat every
FMTPA-impacted %GC as independent predictors. However,
because foot motion is temporally successive, we considered
that the integral average value can represent foot motion
during those GPCs, which is considered more biomechanically
interpretable, as well as helpful to reduce the number of
predictors. The variance inflation factor (VIF) was used to test
the multicollinearity, the threshold of which was set to 10.

F. Estimation Model Construction and Evaluation
We used MATLAB (Mathworks, USA) to execute all data

processing and model construction. Because of the small
dataset, after predictor variables were determined, we pref-
erentially conducted a linear regression method for prediction
then compared it with five other classical machine-learning
regression methods: support vector machine, Gaussian process
regression, random forest, decision tree and neural network,
which are easily available on MATLAB toolbox.

Leave-one-subject-out cross-validation (LOSOCV) was
used for the model evaluation, and the root mean squared
error (RMSE), intra-class correlation coefficients (ICCs) of
type (2, k), and Bland-Altman plots were used for evaluating
the precision of the estimated results, levels of agreement
between the measured and estimated results, and limit of
agreement between both systems. The guidelines for interpret-
ing ICC inter-rater agreement were excellent (>0.900), good
(0.750–0.899), fair (0.500–0.749), and poor (<0.500) [34].

IV. RESULTS

A. FMTPA-Impacted %GCs
The FMTPA-impacted %GCs were found in the linear

motion of all directions (Ax , Ay , and Az) and in the
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Fig. 5. Schematic of FMTPA-impacted %GCs gait phase (black blocks
in lower part) listed in Table I.

TABLE I
DETAILS OF FMTPA-IMPACTED %GCs

rotational motion and sole-to-ground angle (SGA) in the
sagittal (Gx and Ex ) and coronal (Gy and Ey) planes. None
were found in the transverse plane (Gz and Ez). Eleven GPCs
were found (c1–c11), and their details are shown in Table I
and Figs. 5 and 6.

The FMTPA impacted almost the same %GCs of MSt
(c1, c5, and c10; c2 and c6) on both the linear and rotational
motions in the coronal plane. Immediately after an HS and
before a foot flat, the %GCs approaching a signal peak in
Az were affected (c3). Combined with c4, c7, and c11, the
FMTPA affected the rotational velocity and SGA in the sagittal
to coronal planes in order during TSt and PS. The FMTPA also
affected the SGA in the sagittal plane throughout the TSt to
MSw (c9), whereas it affected the rotational motion only on
TSt for (c4).

B. Predictor Variables
All the following results are shown in Fig. 7. By measuring

from digital photography, we found that the FMTPAs of all
participants were 20.7 ± 5.5 degrees, where the maximum
was 35.3 degrees and minimum was 10.2 degrees. The range
of amplitudes of all predictor variables (C1–C11) exceeded the
NLs. The intensity values of C2, C6, and C8 decreased, while

Fig. 6. Different types of foot-motion signals in one GC of three
example participants whose FMTPA were below 15 (blue dotted line),
between 15 to 25 (orange dashed line), and over 25 degrees (black line)
(top column), together with the average correlation coefficient r (middle
column) and the numbers of times marked as p < 0.05 in every 1%
GC (bottom column) counted fifty times for the leave-one-subject-out
process, and they are listed as follows corresponding to signal types.
(a) Ax; (b) Az; (c) Gx; (d) Gy; (e) Ex; (f); and Ey. FMTPA-impacted
GPCs are denoted as red blocks. Red dashed line (Count = 47) means
threshold for determining significant FMTPA-impacted %GC.



2840 IEEE SENSORS JOURNAL, VOL. 22, NO. 3, FEBRUARY 1, 2022

TABLE II
EVALUATION OF FMTPA ESTIMATION MODELS USING SIX

MACHINE-LEARNING-BASED APPROACHES

those of C1, C3, C4, C5, C7, C9, C10, and C11 increased as the
FMTPA increased. The trends of C1 and C2 also synchronized
with those of C5 and C6, respectively. The absolute value of
r of all the predictors exceeded 0.3, and C1 had the strongest
correlation with the FMTPA, i.e., 0.502. The VIFs of the
predictors were all below 10, meaning they could be treated
as independent variables.

The inversion of the positive and negative values of C1,
C2, C5, and C6 as the FMTPA increased was indicative of
the inversion of the foot-motion direction. Both the linear
and rotational motions during early MSt (C1 and C5) had
changes opposite to those during late MSt (C2 and C6). For
low FMTPAs, the acceleration vector transited from lateral
to medial from early to late MSt, and the feet changed the
rotational direction from inversion to eversion. However, for
high FMTPA, the transition in the acceleration vector and
changing of the feet’s rotational direction were completely
opposite to those for low FMTPA. The SGA also shifted from
inversion to eversion as the FMTPA increased (C10). The lin-
ear and rotational motions seemed to be nearly zero when the
FMTPA was around 20 degrees. When the FMTPA increased,
the feet had more pronated rotation immediately before TO
(C7) as well as more SGA eversion immediately before and
after TO (C11). The participants with higher FMTPAs had
higher average SGAs in the dorsal-flexion direction from the
beginning of TSt to the end of MSw (C9).

C. Evaluation of Constructed FMTPA Estimation Models
The evaluation results of FMTPA estimation models con-

structed by linear regression and other machine learning
approaches are shown in Table II. The RMSEs in the
LOSOCV of four of the methods were very similar, whereas
the ICCs showed that linear regression could be the best for
constructing an FMTPA estimation model. Its RMSE was
4.2 degrees and ICC was 0.789, suggesting that this estimation
model could precisely distinguish between the FMTPA at
a resolution of 4.2 degrees, achieving a “good” agreement
between the true and estimated values. This indicates that it is
possible to achieve rapid prediction directly on an edge device,
i.e. IMS, without transferring foot-motion data to servers or
clouds, which consumes a large amount of battery power.

Fig. 7. Correlation coefficient with FMTPA, level of significance, VIF, and
trends of predictors. Red dotted line shows fitted trend line from scattered
black dots.

Except for several exceedingly high FMTPA points, most
of the plots were well scattered around the equivalent line
between the true and estimated values (Fig. 8(a)). The esti-
mated values only had a difference of −0.2 ± 4.2 degrees
with the true values, and no proportional bias existed between
them (Fig. 8(b)).
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Fig. 8. (a) Agreement test results of the linear regression model between
the true and estimated FMTPA values in the LOSOCV; the red dotted line
means the equivalent line between the true and estimated value and (b)
Bland-Altman plots and the limit of the 95% confidence interval (CI, ±1.96
SD (standard deviation)) around perfect agreement in the comparison of
the true and estimated values; the red dashed line in the middle means
the mean value, and the top and bottom red dashed lines mean the upper
and lower limits of the CI.

V. DISCUSSION

We investigated for the first time the correlation between
the FMTPA and foot motion, especially inertial signals that
only originate from single segment kinematics relative to the
global coordinates when considering forefoot-hindfoot as a
rigid body. In a commonly used grading system, the defor-
mities were assessed at an FMTPA as normal (<15 degrees),
mild (15–20 degrees), moderate (20–39 degrees), and severe
(>39 degrees) [35]. In conventional HV assessment, FMTPA
measurements using a goniometer can easily be affected by
the presence of swelling, position of the goniometer arms, and
skill of the operator. Even when angle measurements are taken
from standard radiographs, measurement errors of 5 degrees
have been recorded [36]. We believe that our estimation model
achieved the same precision level as with the conventional HV
assessment method using radiography.

An IMU is sensitive to temperature [37]. In this study,
we chose BMI 160, Bosch Sensortec as the IMU integrated
in the IMS. According to the datasheet of this type of
IMU [38], a temperature sensor was integrated inside the
IMS for compensation. For the acceleration measurement, the
sensitivity temperature drift was only ±0.03%/K and zero-
g offset temperature drift was ±0.001G/K, and for angular

velocity measurement, sensitivity change-over temperature
was ±0.02%/K and zero-rate offset change-over temperature
was 0.05 deg/s/K. Our IMS was packaged in a case made
of acrylonitrile butadiene styrene, embedded into an insole
made of silicone rubber, and further wrapped by the sole of
the shoe after the insole was inserted into the shoe (also see
Fig. 2(b)). When a user wears the shoe, the IMU will be
located in a closed operation environment close to the body;
thus, we considered the temperature change surrounding the
IMU should be no more than 0.5K and compared with C1 to
C11, its impact can be ignored when estimating the FMTPA.

Through LOSOCV, we found 11 signal features C1 − C11
believed to well explain the impact of the FMTPA on foot
motions while excluding individual differences and data bias.
In most biomedical engineering studies, the number of partic-
ipants is never large, so it is difficult to cover the variation
of all hidden individual factors, e.g., lifestyle habits, medical
history, and profession. We considered only including intrinsic
features of the human body and the estimation model should be
robust against individual difference despite the small number
of samples. Therefore, we discuss the following findings that
might be related to previous biomechanical findings.

The impact of the FMTPA was observed in MSt (c1, c2,
c6, c7, and c10), TSt (c5, c8, and c9), PS (c4 and c9), periods
immediately after an HS and TO (c3, c9, and c11), and MSw
(c3 and c9), which is very similar to the results shown in the
report of Deschamps et al. [24].

Despite the signal amplitude being very near zero during
foot flats in the coronal plane, the impact of the FMTPA on
foot motion was still observed thanks to the high signal-to-
noise ratio of the IMS. By observing C1, C2, C5, C6, and C10
as the FMTPA increased, the foot motion gradually became a
mirror inversion. Throughout MSt, the feet with low FMTPAs
initially had an inversion posture. The feet were then further
supinated during the first half and pronated back during the
second half (C1, C5, and C10). However, those with high
FMTPAs started at an eversion posture, were further pronated,
then supinated back (C2, C6, and C10). These results might be
related to the supporting point of the foot sole shifting due to
the eversion deviation in the subtalar joint alignment in people
with HV, as reported in a previous study [26].

The most affected periods are TSt and PS, where the
vertical ground reaction force rises above the resting body
weight and the center of pressure moves from forefoot to
big toe [24]. We observed that high-FMTPA participants
tended to rotate more in the eversion direction and had a
posture having a more sole-to-ground eversion angle during
TSt and PS (C7 and C11). This might suggest that the
foot is forced to evert more to keep balance before TO
due to the support-point alteration induced by increasing the
FMTPA [26].

An increasing FMTPA decreases both in the hindfoot-tibia
dorsiflexion angle throughout the entire GC and decreases in
the tibia-ground forward angle from TSt to ISw [25], [26],
which was the reason for Ex increasing throughout TSt to
MSw (C9) observed in higher-FMTPA participants. The Ex

could be obtained by summing the hindfoot-tibia and tibia-
ground angle in the sagittal plane.
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We also found that several new FMTPA-impacted gait fea-
tures might only exist in inertial signals. We first observed that
a significant change in foot motion occurred along the coronal
plane of high-FMTPA participants, reducing their pronated
rotational velocity or even making it inverse to a supinated
rotation during late ISw (C8). We then observed an earlier peak
occurrence during LR (c3) in Az as the FMTPA increased.
This finding suggested that high-FMTPA participants tended
to drop their foot sole fast and hard, inducing strong impact
on the foot sole during walking. This might negatively affect
the foot arch muscles and induce foot arch collapse, which is
a causative factor of HV [39]–[41]. Finally, an earlier signal
rise in Gx and in Ex during a TSt along with an increase
in FMTPA (c4 and early c9) suggested earlier HR in high-
FMTPA participants.

Despite these valuable findings, we have to acknowledge
certain limitations which are subject to discussion. HV is also
a common foot deformity in children, adolescents, and the
elderly [42]–[44], whereas the ages of the participants in this
study were limited between 20 and 60. Because the skeleton
and muscles of children and adolescents are still develop-
ing, their gait differs from adults [45], while the kinematic
features of the elderly differ from those of younger people
due to age-related muscles weakness [46], [47]. Regarding
the elderly, gait changes may impact the significant signal
features for FMTPA estimation, for example, c3 located at the
phase immediately after HS when the quadriceps are activated
during walking [23]. Therefore, the age-related weakness of
quadriceps may also impact the foot motion at this phase while
generating crosstalk on this FMTPA-related feature. More data
of much younger and more elderly participants should be
included in the future.

Rather than embedding an IMS into the sole of a shoe,
our design of embedding an IMS into insoles enables various
types of shoes to be used. However, we only studied the
wearing of sports shoes. According to previous studies, gait
can be altered when wearing different shoes, especially high-
heeled shoes [48], [49], which were considered as significant
extrinsic factors of female HV progression [21]. The foot sizes
of children and adolescents are commonly below 20 cm. Since
the length of our IMS along the longitude axis of the foot is
3.5 cm, it may exceed the range of their foot arch, thus will
more or less affect comfort. Further discussion on wearing
different types of shoes and how to improve the design of the
IMS to fit the needs of children and adolescents is still needed.

Another limitation is that we assumed two feet have sym-
metric foot motions. Previous studies suggested a difference
in gait between the dominant and non-dominant foot [50].
Whether the difference will significantly impact the estimation
model requires further discussion, particularly for those users
whose lower limbs and gait are asymmetric.

Since there are foot problems involving foot motion deviat-
ing from normal cases, not only HV by using an IMS, but
detecting deformities of other parts of the foot, e.g. over-
pronation [51] or flat footedness, should also be investigated.
An over-pronated foot is induced by abnormal subtalar joint
alignment and considered an intrinsic risk factor for develop-
ing lower extremity injury [52]. Through analyzing different

parts of the foot, users can be advised to change to a more
appropriate shoe to avoid HV or purchase motion-control
shoes and/or insoles to correct over-pronated feet [53].

VI. CONCLUSION

We constructed an FMTPA estimation model using IMS
signal features and machine-learning methods. This was the
first time investigating the impact of the FMTPA on foot
motion, especially inertial signals, and found 11 effective
predictors existing in all GCPs except the terminal swing. Our
model constructed using linear regression was found to be
the best, achieving an RMSE of 4.2 degrees. Our results had
good agreement with the true values, which demonstrated the
possibility of FMTPA measurement as well as of daily foot-
health monitoring by using an IMS. For future work, we will
investigate whether an interactive factor between FMTPA and
footwear exist to construct a more reliable model for practical
use and test the applicability of the model for the elderly
and people with neuromuscular or orthopedic disease in a
clinical setting. We will also investigate whether there are
better machine-learning methods to achieve better estimation.
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