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Measurement of GMPT Coefficients for
Improved Object Characterisation

in Metal Detection
T. Özdeǧer , P. D. Ledger , W. R. B. Lionheart , J. L. Davidson , and A. J. Peyton

Abstract—Magnetic polarizability tensors (MPTs) have
become popular for characterising conducting permeable
objects and assisting with the identification of hidden objects
in metal detection for applications in security screening,
humanitarian demining and scrap sorting. A rigorous math-
ematical justification of the complex symmetric rank 2 MPT
object characterisation has been established based on the
leading order term in an asymptotic expansion of the per-
turbed field for small objects. However, the accuracy of an
MPT object characterisation is limited by the tensor’s small
number of independent coefficients. By considering higher
order terms in the asymptotic expansion, generalised mag-
netic polarizabilty tensors (GMPTs) have been introduced and
the purpose of this work is to show that GMPT coefficients can, for the first time, be measured in practice. GMPTs offer
the possibility to better discriminate between objects and, hence, the potential for better classification and identification,
overcoming the limitations of a rank 2 MPT object characterisation. In a metal detector, the low-frequency background
fields generated by a set of coils is almost always non-uniform and using GMPTs allow us to make a virtue of this. In this
work we include both measurements and simulations to demonstrate the advantages that using GMPTs offer over using
an MPT characterisation alone.

Index Terms— Electromagnetic induction spectroscopy, magnetic polarizability tensor, metal detection, metal classifi-
cation.

I. INTRODUCTION

MAGNETIC polarizability tensors (MPTs) have become
popular for characterising conducting permeable

objects and assisting with the identification of hidden
objects in metal detection for applications in security
screening, humanitarian demining and scrap sorting e.g. [1],
[2], [9]–[11], [19]–[21], [23], [30]–[32], [35]. A rigorous
mathematical theory has been established for the complex
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symmetric rank 2 MPT characterisation of a small highly
conducting permeable isolated object in a non-conducting
background. It has been shown that the MPT forms the
object description in the leading order term of an asymptotic
expansion of the perturbed magnetic field (Hα − H0)(x) as
the object size α → 0 [4], [12]. The expansion holds at
positions x away from the object. Furthermore, for objects
with rotational and reflectional symmetries, it has been estab-
lished that the number of independent complex coefficients
in the MPT can be much smaller than 6 [12]. The leading
order term in the asymptotic expansion of (Hα − H0)(x)
as α → 0 and an MPT object characterisation has been
generalised for multiple and inhomogeneous objects in [16].
Considerable benefits have been seen to be offered by exploit-
ing the spectral behaviour of the MPT coefficients, known as
its spectral signature, which provides much richer information
than the MPT at a single frequency. This has been understood
theoretically [15], efficient algorithms have been developed
to compute the MPT spectral signature [33] and these have
been applied to compute libraries of MPT spectral signature
object characterisations [17]. Machine learning approaches for
object classification based on measured and simulated libraries
of MPT spectral signatures have also been developed in [19],
[20] and [34], respectively.

A complete asymptotic expansion of the perturbed magnetic
field (Hα − H0)(x) as α → 0 has been derived in [14],
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which generalises the earlier results in [4], [12]. In this
expansion, new object characterisations called generalised
magnetic polarizabilty tensors (GMPTs) have been introduced,
building on the MPT object characterisation in the leading
order term. The purpose of this work is to show that GMPT
coefficients can be measured in practice for the first time.
GMPTs offer significant advantages over small object char-
acterisations using the leading order rank 2 MPT descriptions
currently used in metal detection. Specifically:

1) Offering the possibility to better discriminate between
objects and, hence, offer the potential for better classifi-
cation and identification, overcoming the limitations of
characterising objects using just 6 complex coefficients
in a rank 2 MPT description (a simple example of which
is to tell which way a cone is pointing).

2) In a metal detector, the low-frequency background fields
H0 generated by a set of coils is almost always
non-uniform and using GMPTs allow us to make a
virtue of this overcoming the assumption that H0 is
uniform over the object in a rank 2 description (hence
also achieving better 1.).

GMPTs are more complicated than the generalised polariz-
ability tensors (GPT) derived by Ammari and Kang [6] for
characterising low conducting inclusions in a scalar electrical
impedance tomography (EIT) problem. They have interesting
mathematical properties, which we plan to catalogue in a
forthcoming work.

The novelties of this work can be summarised as follows:
We show, for the first time, that GMPT coefficients and their
spectral signature can be obtained in practice from measure-
ments of (Hα − H0)(x) for a multiple coil arrangement using
a novel object manipulation device. The resulting measured
GMPT spectral signatures we obtain are in good agreement
with the simulated GMPT spectral signatures that we calculate
from numerical simulations using finite elements. We illustrate
that including the GMPT object characterisation information
is important to accurately predict (Hα − H0)(x) whenever the
background field is non-uniform.

The work is organised as follows: We begin with some
notation in Section II. Next, in Section III, we review the com-
plete asymptotic expansion of (Hα − H0)(x) as α → 0 and
restrict consideration to terms associated with rank 2 MPT and
rank 3 GMPT object characterisations. Then, in Section IV,
we apply the asymptotic expansion to a mathematical model
of the physical multiple coil arrangement that will be used
to generate H0 and to measure (Hα − H0)(x) in the form
of a transimpedance measurement. In Section V, we describe
how the transimpedance measurements can be used to deter-
mine the MPT and GMPT coefficients by rotating the object
in a uniform and then non-uniform H0 using an object
manipulation device and, in Section VI, we explain how the
MPT and GMPT coefficients and their spectral signatures
can be predicted numerically. Section VII presents a series
of results that compare our measurements and simulations,
which demonstrate that GMPT coefficients and their spectral
signature can be obtained in practice and that they have an
important role to play in predicting (Hα − H0)(x) if H0 is

non-uniform. We finish, in Section VIII with some concluding
remarks.

II. NOTATION

We denote by ek the unit basis vector associated with the
kth coordinate direction in a standard orthonormal coordinate
system x = (x1, x2, x3) and, hence, the kth component of
a vector field v is given by ek · v = (v)k = vk . We will
often use Einstein index summation notation so that a vector
can be described as v = vk ek and a rank 2 tensor using a
calligraphic font as M = Mkj ek ⊗ e j where summation is
implied over the repeated indices in each case. We will use
a Gothic font for higher order tensors so that a rank 3 can
be described as D = Di j k ei ⊗ e j ⊗ ek . The imaginary unit
is defined as i := √−1 and we will also use the notation

�u�L2(θ) :=
(∫ 2π

0 |u(θ)|2dθ
)1/2

to denote the L2 norm of u
over the angles 0 ≤ θ ≤ 2π .

III. COMPLETE ASYMPTOTIC EXPANSION

In [14] Ledger and Lionheart proved the result stated in
Theorem 1 below, for describing the magnetic field pertur-
bation (Hα − H0)(x) at a position x due to the presence
of a highly conducting object Bα with conductivity σ∗ and
permeability μ∗ in a non-conducting background with con-
ductivity σ = 0 and the permeability of free space μ0. The
result is applicable away from the object when the eddy
current approximation of Maxwell’s equations applies [3],
which means the excited angular frequency τ = 2π f (with
f measured in Hz) of the background field H0 is low and
σ∗ is high. Additionally, the topology of the object Bα and
its size α limits the applicability of the eddy current model,
with the eddy current model breaking down for a horse shoe
shaped conductor at lower frequencies compared to a solid
object of the same size due to capacitive coupling effects [26].
The description Bα := αB + z means that the object can be
described by a non-dimensional object B placed at the origin,
scaled by a size parameter α and translated by z.

Theorem 1: The magnetic field perturbation in the presence
of a small conducting object Bα = αB + z for the eddy current
model when ν := τσ∗μ0α

2 is order one and x is away from
the location z of the inclusion is completely described by the
asymptotic formula

(Hα − H0)(x)i =
M−1∑
m=0

M−1−m∑
p=0

(D2+m
x G(x, z))[i,K (m+1)]

MK (m+1)J (p+1)(D p
z (H0(z)))J (p+1)

+(R(x))i , (1)

J (p + 1) := [ j, J (p)] = [ j, j1, j2, · · · , jp],
K (m + 1) := [k, K (m)] = [k, k1, k2, · · · , km ],

with |R(x)| ≤ Cα3+M�H0�W M+1,∞(Bα), G(x, z) := 1/
(4π |x − z|). In the above, J (p) and K (m) are p– and
m–tuples of integers, respectively, with each index taking
values 1, 2, 3, and Einstein index summation is implied over
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K (m + 1) and J (p + 1). Also

(D2+m
x G(x, z))[i,K (m+1)] =

(
m∏

�=1

∂xk�

)
(∂xk (∂xi (G(x, z)))),

(D p
z (H0(z)))J (p+1) =

( p∏
�=1

∂z j�

)
(H0(z) · e j ),

and the coefficients of a rank 2 + p + m generalised magnetic
polarizability tensor (GMPT) are defined by

MK (m+1)J (p+1) := −CK (m+1)J (p+1) + NK (m+1)J (p+1), (2)

where

CK (m+1)J (p+1)

:= − iνα3+m+p(−1)m

2(m + 1)!p!(p + 2)
ek

·
∫

B
ξ × (

(
(ξ))K (m)(θ J (p+1) + (
(ξ))J (p)e j × ξ )
)

dξ ,

(3a)

NK (m+1)J (p+1)

:=
(

1 − μ0

μ∗

)
α3+m+p(−1)m

p!m! ek

·
∫

B
(
(ξ))K (m)

(
1

p + 2
∇ξ × θ J (p+1)+(
(ξ))J (p)e j

)
dξ .

(3b)

In the above, θ J (p+1) satisfy the transmission problem

∇ξ × μ−1∗ ∇ξ × θ J (p+1) − iτσ∗α2θ J (p+1)

−iτσ∗α2(
(ξ ))J (p)e j × ξ = 0 in B , (4a)

∇ξ · θ J (p+1) = 0 in R
3 \ B (4b)

∇ξ × μ−1
0 ∇ξ × θ J (p+1) = 0 in R

3 \ B , (4c)

[n × θ J (p+1)]� = 0 on � := ∂ B, (4d)

[n × μ−1∇ξ × θ J (p+1)]� = −(p + 2)[μ−1]�
·(n × e j (
(ξ ))J (p)) on �,

(4e)∫
�

n · θ J (p+1)dξ = 0, (4f)

θ J (p+1) = O(|ξ |−1)

as |ξ | → ∞ , (4g)

(
(ξ ))J (p) :=
p∏

�=1

ξ j� = ξ j1ξ j2 · · · ξ j p and in the case J (p) =
∅ then (
(ξ ))J (p) = 1.

Note that, compared to [14], we have chosen to simplify

the notation so that Č is now written as C and ˘̆
M as M.

Furthermore, in this work, we will restrict consideration to
objects with μ∗ = μ0 so that NK (m+1)J (p+1) = 0 and consider

the case of M = 2. This means the asymptotic expansion we
will consider includes the terms

(Hα − H0)(x)i = (D2
x G(x, z))ikMkj (H0(z))) j

+1

8
(D3

x G(x, z))ikk1 Dkk1 j (H0(z)) j

−1

6
(D2

x G(x, z))ikDkj j1(Dz(H0(z))) j j1

+(R(x))i , (5)

with |R(x)| ≤ Cα5�H0�W 3,∞(Bα) describing the behaviour of
the residual. In the above, the coefficients Mkj ≡ Mkj are
associated with a complex symmetric rank 2 MPT character-
isation M = Mkj ek ⊗ e j , which follows since Mkj reduces
to the rank 2 MPT coefficients Mkj previously considered
in [12], [13], [15], [16] where it has been shown that Mkj =
M j k . The coefficients Dkk1 j and Dkj j1 are associated with
scaled rank 3 GMPT characterisations

D = Dkk1 j ek ⊗ ek1 ⊗ e j , D = Dkj j1 ek ⊗ e j ⊗ e j1, (6)

where

DK (m+1)J (p+1) :=(−1)m2(m + 1)!p!(p + 2)CK (m+1)J (p+1).

(7)

Furthermore, for μ∗ = μ0, the GMPT has the following
symmetry

DK (m+1)J (p+1) = DJ (p+1)K (m+1), (8)

which does not follow from reciprocity and is somewhat
involved to prove. The proof will form part of a forthcoming
work on the mathematical properties of GMPTs.

The coefficients Mkj are independent of the choice of origin
for ξ [4], [5], [16] and, hence, the MPT object characterisation
is independent of the object’s position. However, in com-
mon with GPTs for the EIT problem [6], the coefficients
Dkk1 j of the scaled rank 3 GMPT depend on the choice
of origin for ξ . For this work, we choose the origin to
be the object’s centroid (centre of mass assuming uniform
density).

Using M alone to characterise objects has limitations since,
at most, an object is characterised by 6 complex coefficients
as a function of τ. However, for objects with rotational
and/or reflectional symmetries the number of independent
coefficients is much fewer and this makes it difficult to
discriminate between objects in object classification and to
determine which way an object (such as a cone) is pointing.
By additionally using D provides up to an additional 11
complex coefficients as a function of τ, which can aid with
discriminating between objects when undertaking classifica-
tion. Although, for objects with mirror and/or reflectional
symmetries, the number of independent coefficients of D
also reduces. In the following we explain how the MPT
and GMPT coefficients can be measured and simulated in
practice.
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Fig. 1. Configuration of the multiple transmit and receive coil arrange-
ment showing (a) turns in each coil and (b) the actual coil array.

IV. MATHEMATICAL MODEL OF THE COIL ARRANGEMENT

The induced voltage in a coil C with a single clockwise
winding, for an object positioned at z, can be expressed as

V ind =
∫

C
(Eα − E0)(x) · τdx

=
∫

S
∇ × (Eα − E0)(x) · ndx

= iτμ0

∫
S
(Hα − H0)(x) · ndx, (9)

where C = ∂S, τ is the unit tangent to C and n is the
unit normal to S. Upon substitution of (1), the evaluation
of V ind reduces to performing integrals of components of
(D2+m

x G(x, z)) with respect to x over the surface S.
The particular coil configuration considered is shown in

Fig. 1 and consists of 8 receive (Rx) coils and 9 transmit
(Tx) coils coaxially arranged in a vertical stack so that
n = e3 in (9). Coils Rx1-Rx4 are wound in a clockwise
orientation while coils Rx5-Rx9 are wound in an anticlockwise
orientation. Defining

w(n) =
{

1 n = 1, . . . , 4
−1 n = 5, . . . , 8,

(10)

then the induced voltage is given by the sum

V ind = iτμ0

8∑
n=1

w(n)NRx(n)

LRx(n)

∫
SRx(n)

(Hα − H0)(x) · e3dx,

(11)

where SRx(n), NRx(n) and LRx(n) are the enclosed surface,
number of turns and length of the nth Rx coil, respectively.
The background field H0 at the position z that is created by
the Tx coils can be expressed as the sum

H0(z) = HTx
0 (z)

=
9∑

n=1

Hcoil(NTx(n), ITx(n), LTx(n), RTx(n),

z1e1 + z2e2 + (z3 − LTx(n)/2 − pTx(n))e3),

(12)

where NTx(n), ITx(n), RTx, LTx are the number of turns, cur-
rent flowing, radius and length of the nth Tx coil, respectively
and pTx(n) describes the vertical position (base) of the nth Tx
coil. In addition, if z � e3, we have the well known form

Hcoil(N, I, L, R, z)

= N I

2L

⎛
⎝ L

2R − z3
R√

1 + ( L
2R − z3

R

)2
+

L
2R + z3

R√
1 + ( L

2R + z3
R

)2

⎞
⎠ e3,

for the background field on axis resulting from a solenoid. Off-
axis, the representation of Hcoil is also known analytically [7].
For the coil arrangement considered, the details are provided
in Table I so that the overall height of the arrangement is
500 mm. The non-uniformity of the background field HTx

0
exterior to the coil array is illustrated in the finite element
simulation shown in Fig. 2 (a), which is in close agreement
with the analytical model, as Fig. 2 (b) shows.

Furthermore, introducing

(HRx
0 (z))k :=

8∑
n=1

w(n)NRx(n)

LRx(n)

∫
S(n)

D2
x G(x, z)3kdx, (13)

for the background field that would be produced by the Rx
coils if excited by a unit current source at position z then it
is easy to show that

(Dz(HRx
0 )(z))kk1

:=
8∑

n=1

w(n)NRx(n)

LRx(n)

∫
S(n)

(Dz(D2
x G(x, z)))3kk1 dx

= −
8∑

n=1

w(n)NRx(n)

LRx(n)

∫
S(n)

(D3
x G(x, z))3kk1 dx. (14)

By substituting (5) into (11), replacing H0(z) by the expres-
sion given in (12) and using (13) and (14), it can be shown
that V ind takes the simple form

V ind = V ind
2 (M) + V ind

3 (D) + V ind
r , (15)

where V ind
2 (M) denotes the rank 2 contribution, V ind

3 (D)
denotes the rank 3 contribution and Vr ≤ Cα5�H0�W 3,∞(Bα)

denotes the residual, which, as we will see, will be small
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TABLE I
PARAMETERS DESCRIBING THE MULTIPLE COIL ARRANGEMENT

Fig. 2. Illustration of the background field showing (a) the simulated field
lines of BTx

0 = μ0HTx
0 around the coil array using a finite element model

and (b) |HTx
0 (z )| evaluated for positions z along the axis of the coil array

where z � e3 comparing (12) with a finite element model of the coil array.

for the problems we will consider. Explicitly, for the case
considered in this work,

V ind
2 (M) := iτμ0(HRx

0 (z))iMi j (HTx
0 (z)) j (16a)

V ind
3 (D) := iτμ0

(
−(Dz(HRx

0 (z)))kk1 Mkk1 j (HTx
0 (z)) j

+(HRx
0 (z))kMkj j1(Dz(HTx

0 (z))) j j1

)
= iτμ0

(
−1

8
(Dz(HRx

0 (z)))kk1 Dkk1 j (HTx
0 (z)) j

−1

6
(HRx

0 (z))kDkj j1(Dz(HTx
0 (z))) j j1

)

= −iτμ0Dkk1 j

(
1

8
(Dz(HRx

0 (z)))kk1 (HTx
0 (z)) j

+1

6
(HRx

0 (z)) j (Dz(HTx
0 (z)))kk1

)
, (16b)

where μ∗ = μ0 has been assumed and the symmetry condi-
tion (8) has been used in the latter result.

We observe that V ind
3 (D) provides a natural extension

of the familiar V ind
2 (M) term for a rank 3 GMPT object

characterisation. For an object placed on axis and in the
centre of the coil arrangement, HTx

0 (z) is near uniform and
the contribution V ind

2 dominates, while V ind
3 is negligible.

However, for an object placed outside of the coil arrangement
HTx

0 (z) is non-uniform and �Dz(HTx
0 (z))� can become large.

Indeed, if HTx
0 (z) is strongly non-uniform, V ind

3 (D) becomes
increasingly important and can dominate over V ind

2 (M).
If an object B is rotated by an angle θ about a coordinate

axis, its transformation can be described by B � = R(θ)(B)
where R(θ) is an orthogonal rotation matrix. Accordingly, the
coefficients of M and D transform as

M�
i j = (R)ip(R) j qMpq, (17a)

D�
i j k = (R)ip(R) j q(R)krDpqr . (17b)

Then, by replacing Mi j by M�
i j and Dkk1 j by D�

kk1 j in (16),
we obtain V ind

2 (M, θ) and V ind
3 (D, θ) for the rank 2 and

rank 3 contributions to V ind(θ) as a function of object rotation
angle.

Throughout, we will normalise the presented results of V ind

by τi and we will refer to Re(V ind/(τi)) as the reactive
and Im(V ind/(τi)) as the resistive components of the tran-
simpedance, respectively.

V. MEASUREMENT OF TENSOR COEFFICIENTS

The procedure for measuring the coefficients of M and D
for a given object αB breaks down in to first determining
those of M and then those of D for each excitation frequency
of interest. We describe each of these steps separately in the
following.

A. Measuring the Coefficients of the Rank 2 MPT
If the object’s position z is chosen to be along the axis of

the coil array, such that z � e3, and if z3 is chosen within the
volume of the coil array, away from its ends, HTx

0 (z) is near
uniform. For the coil array described in Table I, this occurs
when −0.155 m ≤ z3 ≤ 0.155 m, as shown in Fig. 2 (b).
Hence, for objects placed in such locations, V ind

3 does not
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Fig. 3. Target orientation manipulator capable of rotating objects around
one axis.

contribute to V ind and the measurements V ind,meas(θ) can be
used to determine Mi j . Noting that V ind

2 (M, θ) is linear in
the coefficients of M, and that these are independent of the
object’s position, we can determine Mi j as the solution to the
least squares problem

min
Mi j

|g(θn,M)|2 = min
Mi j

Nθ∑
n=1

∣∣∣V ind,meas(θn) − V ind
2 (M, θn)

∣∣∣2
,

where Nθ is the total number of angles θn considered. This
process is repeated for each excitation frequency of interest
leading to the object’s measured MPT spectral signature
Consideration must be given to the number of angles as well as
to the number of rotation axes considered [13], [25] to ensure
that all the independent coefficients of M are properly found.

In practice, the above process is achieved by placing the
objects at the aforementioned location and by performing
rotations using the bespoke target orientation manipulator
shown in Fig. 3. Using this apparatus, objects are rotated
about different coordinate axes with a fixed degree increment.
For each orientation, a frequency sweep between fmin and
fmax is performed and V ind for each frequency recorded. The
control of system electronics and the data acquisition during
the experiments is done automatically.

B. Measuring the Coefficients of D

Once the coefficients of M are found, we can then deter-
mine the coefficients of D by placing the object at a position
z where the background field HTx

0 (z) is non-uniform. This is
achieved by placing the object on the axis of the coil array with
z3 > 0.155 m, performing rotations about different coordinate
axes and solving the least squares problem

min
Dkk1 j

Nθ∑
n=1

|h(θn,M,D)|2

= min
Dkk1 j

Nθ∑
n=1

∣∣∣V ind,meas(θn) − V ind
2 (M, θn) − V ind

3 (D, θn)
∣∣∣2

,

(18)

for Dkk1 j for each frequency of interest leading to the object’s
measured GMPT spectral signature. Note that V ind

3 (D, θn)
is linear in the unknown Dkk1 j and that V ind

2 (M, θn) can
be evaluated since the coefficients of M have been found
previously and the object position z has been chosen. As in
Section V-A, important consideration must be given to Nθ and
the choice of θn [13].

Given that the object is positioned manually, its position
z is only known approximately. If we know that the object
is placed on the e3 axis, an improved estimate of its vertical
elevation z3 can be found by solving the minimisation problem

min
z3

Nθ∑
n=1

∣∣∣V ind,meas(θn) − V ind
2 (M, θn, z3)

∣∣∣2
, (19)

for the global minimum z3, where we have emphasised that
V ind

2 also depends on z3. Once this improved estimate is found,
it can be used in (18) to aid with determining Dkk1 j .

In practice, the above process is achieved by placing objects
in the non-uniform part of the field by using the mechanical
arrangement in Fig. 4. The same approach of incrementing the
rotation by fixed angle increment and sweeping through the
frequencies fmin and fmax, as described in Section V-A, is per-
formed. However, the apparatus shown in this figure allows
the object to be placed in different positions in both vertical
and horizontal direction for each experiment. In particular,
the apparatus allows the vertical position of an object to be
adjusted in 10 mm steps using the slots on the arrangement.
The object’s horizontal position can be also adjusted in 10 mm
steps on both the x1 and x2 axes by placing the arrangement
into pre-marked positions on the lid of the coil arrangement

VI. PREDICTING THE TENSOR COEFFICIENTS USING

NUMERICAL SIMULATIONS

The numerical prediction of the coefficients of M and D
for a chosen object αB follows a similar procedure to that
described previously for the computation of the coefficients
of the rank 2 MPT [12], [13]. This involves approximating
the solution θ J (p+1) to the transmission problem (4) by
constructing weak discrete finite element approximations using
an H(curl) conforming discretisation, which is appropriate for
this problem, where the both mesh spacing h and element
order q1 can be refined in order to improve the accuracy of
the numerical solution. The Coulomb gauge ∇ · θ J (p+1) = 0
has been circumvented by numerical regularisation [18].
We use the NGSolve finite element library [27]–[29] for the
numerical computations presented in this work.

Following the computation of θ J (p+1) for frequencies of
interest between fmin and fmax, the coefficients of M and D
are obtained by a simple post-processing involving integrals
over B using (3) leading to the object’s simulated MPT and
GMPT spectral signatures. We remark that this computation
could be accelerated by using a proper orthogonal decompo-
sition (POD) based reduced order model in a similar manner
to [33].

1We use q rather than the usual p to denote the element order avoid
confusion with tensor indices
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Fig. 4. Target orientation manipulator capable of rotating objects around
one axis at different vertical and horizontal positions.

VII. RESULTS

We will focus on the situation where αB is chosen to
be slightly truncated copper, brass and stainless steel cones,
in turn. Cones have been chosen, since, while they have a
rotational and mirror symmetries, they still have non-zero
rank 3 GMPT coefficients and can be used to illustrate
the improvements offered over using MPTs alone for object
characterisation. The sizes of each of the truncated cones are
identical and have the dimensions of bottom radius 7.5 mm,
top radius 0.5 mm and a height of 15 mm, hence we set
α = 0.001 m and B to be the non-dimensional truncated
cone with bottom radius 7.5, top radius 0.5 and height 15.
The materials of the cones are provided in Table II. While
approximate measurements of the conductivity of the cones
specimens have been made using a 4 terminal resistivity
measurement, the reference values are still believed to be more
accurate than these and, hence, have been employed in the
simulations.

We have chosen the cone’s canonical orientation such that
the vertex of the cone is aligned with the e3 direction and

the base of the cone lies in the (x1, x2) plane. This means
that the cone has a rotational symmetry about the x3 axis and
has reflectional symmetries about the x1 and x2 axes. Using
this information, we deduce that the 2 non-zero independent
coefficients of the complex symmetric M are M11 = M22
and M33 [12]. In similar way, we deduce that the 4 non-zero
independent coefficients of D are D223 = D113, D232 = D131,
D322 = D311 and D333. By further noting the symmetry
property (8), we find that this reduces to just 2 non-zero
independent coefficients D223 = D113 = D322 = D311
and D333.

Given the reduced number of independent coefficients of
M and D for our chosen cones, placing the object on the
x3 axis and performing rotations about either the x1, or,
equivalently the x2, axis are sufficient to determine the 2 non-
zero independent coefficients of each of these tensors.

A. Copper Cone
By following the procedure described in Section V-A,

we position the copper cone at z = (0, 0, 0.15) m so that it lies
in a uniform HTx

0 (z) and measure V ind,meas(θ) as we rotate the
cone by an angle θ about the x1 axis. We choose this position
as the psuedo field generated by the receive coils (if they were
used as transmit coils) is most uniform at z = (0, 0, 0.15) m
and z = (0, 0,−0.15) m. While midpoint of the transmit
coil is at z = (0, 0, 0) m, the receive coils do not have
sensitivity at this location, and we choose z = (0, 0, 0.15) m
as this easier to access than z = (0, 0,−0.15) m. For further
details, see Figure 6 in [25]. We set Nθ = 72 and choose
θn = n�θ = 2nπ/Nθ radians so that measurements are
made at 5 degree increments. We use this measurement to
determine M11 = M22 and M33 for 28 frequencies between
119.25 Hz and 95 400 Hz leading to the object’s measured
MPT spectral signature. Then, following the measurement of
the coefficients of M, we follow the procedure in Section V-B
and move the cone to z = (0, 0, 0.343) m where HTx

0 (z) is
non-uniform. Again we measure V ind,meas(θ) as we rotate the
cone by an angle θ about the x1 axis. We make Nθ = 72 mea-
surements and follow the procedure described in Section V-B
to determine D223 = D113 = D322 = D311 and D333 for the
same 28 frequencies between fmin = 119.25 Hz and fmax =
95 400 Hz leading to the object’s GMPT spectral signature.

To obtain the object’s MPT and GMPT spectral signatures
numerically, we follow the procedure in Section VI and
generate a mesh of 98 419 unstructured tetrahedra to discretise
the cone object B and fill the space to a truncated bound-
ary in the form of the box [−1000, 1000]3. By performing
p-refinement, we find that order q = 3 elements lead to
convergence of the tensor coefficients M11 = M22, M33,
D223 = D113 = D322 = D311 and D333 for frequencies
between fmin = 119.25 Hz and fmax = 95 400 Hz.

In Fig. 5, we show a comparison of the computed and
measured MPT and GMPT spectral signatures where excellent
agreement is observed for the computed and measured MPT
spectral signatures and good agreement is observed for the
computed and measured GMPT spectral signatures. The closer
agreement between the spectral signatures for the simulations
and measured MPT M, compared to the GMPT D is to be
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TABLE II
MATERIAL PROPERTIES FOR THE COPPER, BRASS AND STAINLESS STEEL CONES

Fig. 5. Copper cone showing: spectral signature corresponding to (a) computed coefficients of Mand (b) measured coefficients of M, (c) computed
coefficients of D and (d ) measured coefficients of D.

expected given that the coefficients of M are two orders of
magnitude larger than those of D, which makes them easier
to measure. The maximum difference between the measured
and simulated M coefficients over the frequencies of interest
is around 0.8%, which can largely be attributed to noise and
measurement errors in the system with any discretisation errors
being much smaller. While the shape of the GMPT spectral
signatures is well captured by the measurements, the accuracy
of the smaller, and harder to measure, D coefficients over
the frequencies of interest is lower, with differences ranging
from 1% to 25% for D333. We explain the reasons for the
larger differences in Section VII-D. One noticeable difference
between the simulations and measurements is the frequency
at which the curves for Re(D322) = Re(D311) and Im(D333)
cross. Even from the limited range of frequencies considered,
we can see that both the real parts of the coefficients of

M and D illustrate a sigmoid behaviour with log τ while
the imaginary parts of the coefficients of M and D have
single local maxima/minima with log τ, which is reminiscent
of the spectral behaviour of the MPT that has already been
understood theoretically [15].

To illustrate the importance of including both the V ind
2 (M)

and V ind
3 (D) to predict V ind when the object is located

outside of the coil arrangement, we compare, in Fig. 6, the
measured transimpedance V ind,meas(θ) with V ind

2 (M, θ) and
V ind

2 (M, θ)+ V ind
3 (D, θ), each as a function of rotation angle

θ about the x1 axis, for different frequencies of excitation
for an object at the position z = (0, 0, 0.343) m using the
simulated MPT and GMPT spectral signatures. In each case,
we see the superior performance of V ind

2 (M, θ) + V ind
3 (D, θ)

to predict V ind,meas(θ) compared to using V ind
2 (M, θ) alone

for an object at this position, for all frequencies considered.
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Fig. 6. Copper cone positioned in a non-uniform field at position z = (0,0,0.343) m comparing the reactive and resistive parts of Vind,meas(θ),
Vind

2 (M, θ) and Vind
2 (M, θ) + Vind

3 (D, θ), each normalised by ω�, showing (a) f = 1193 Hz Reactive, (b) f = 1193 Hz Resistive, (c) f = 3816 Hz
Reactive, (d ) f = 3816 Hz Resistive, (e) f = 12402 Hz Reactive and (f ) f = 12402 Hz Resistive.

Next, we compare the performance of using the simulated
and measured MPT and GMPT coefficients to predict
V ind(θ) at different frequencies for a cone located at z =
(0, 0, 0.343) m. To do this, we compare, in Fig. 7, the reactive
and resistive parts of the following residuals V ind, meas(θ) −
V ind

2 (M, θ), V ind, meas(θ) − V ind
2 (Mmeas, θ), V ind

3 (Dmeas, θ)
and V ind

3 (D, θ), where M and D indicate the simulated MPT
and GMPT tensors and Mmeas and Dmeas the corresponding

measured tensors. We observe good agreement between the
different residuals indicating that using either both the simu-
lated MPT and GMPT coefficients or both the measured MPT
and GMPT coefficients provide a good prediction of V ind(θ)
at this location.

To confirm that V ind
2 (M, θ) and V ind

3 (D, θ) do provide
the dominant contributions to V ind,meas(θ), and that other
higher order terms do not play a significant role, we express
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Fig. 7. Copper cone positioned in a non-uniform field at position z = (0,0,0.343) m comparing the reactive and resistive parts of
Vind, meas(θ) − Vind

2 (M, θ), Vind, meas(θ) − Vind
2 (Mmeas, θ), Vind

3 (Dmeas, θ) and Vind
3 (D, θ), each normalised by ω�, showing (a) f = 1193 Hz

Reactive, (b) f = 1193 Hz Resistive, (c) f = 3816 Hz Reactive, (d ) f = 3816 Hz Resistive, (e) f = 12402 Hz Reactive and (f ) f = 12402 Hz
Resistive.

V ind,meas(θ) in the form

V ind,meas(θ) =
K∑

n=−K

cneinθ ,

and use a fast Fourier transform to determine the amplitudes
|cn|. Considering the products of rotation matrices in (17)

that describe how the coefficients of M and D transform
under object rotation and writing powers of cosine and sine
functions in terms of multiple angles, e.g. cos2 θ = (1 +
cos(2θ))/2, cos3 θ = (3 cos θ + cos(3θ)/4 and cos4 θ =
(3 + 4 cos(2θ) + cos(4θ))/8, we conclude that, if V ind,meas(θ)
can be described by a rank 2 tensor description, it will have cn

being non-zero for n = 0,±2 while, if it additionally contains
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Fig. 8. Copper cone positioned in a non-uniform field at position z =
(0,0,34.3) cm showing the Fourier coefficients in the expansion of the
(a) reactive and (b) resistive parts of Vind,meas(θ) for the case of f =
1193 Hz.

terms associated with a rank 3 description, then, cn for n =
±1,±3 will also be non-zero. Furthermore, if V ind, meas(θ)
additionally contains terms associated with a rank 4 descrip-
tion, then, cn for n = ±4 will also be non-zero (since in this
case there would be a product of 4 rotation matrices). In Fig. 8,
we show the results of applying this to the case of the cone
located at z = (0, 0, 0.344) m and f = 1 193 Hz and remark
that the results for other locations exterior to the coil array and
other frequencies are similar. We observe that V ind, meas(θ) has
dominant contributions associated with n = 0,±1,±2,±3,
which is consistent with a rank 3 tensor description being
able to fully describe its behaviour. Also shown is the corre-
sponding result for V ind

2 (M, θ) + V ind
3 (D, θ), which also has

dominant contributions associated with n = 0,±1,±2,±3,
as expected.

To illustrate the importance of including both the V ind
2 (M)

and V ind
3 (D) to predict V ind at different object locations,

we compare, in Fig. 9, the measured transimpedance
V ind,meas(θ) with V ind

2 (M, θ) and V ind
2 (M, θ) + V ind

3 (D, θ),
each as a function of rotation angle θ about the x1 axis, for
different object locations and a fixed frequency of f = 3 816
Hz using the simulated MPT and GMPT spectral signatures.

As previously observed for the fixed position of in z =
(0, 0, 0.343) m in Fig. 6, we see that including the term
V ind

3 (D, θ) is important to accurately predict V ind at different
object locations. Note the results presented in Fig. 9 use a
larger angle increment of �θ = 2π/24 radians, corresponding
to 15 degrees, compared to those presented in Fig. 6 in
order to reduce the cost of the measurements and, hence,
the curves appear less smooth than before, but the conclusion
remains unchanged. In a similar manner to Fig. 7, we show
in Fig. 10 the corresponding transimpedence residuals for
different object locations where we once again observe good
agreement between the residual predicted by the simulated and
measured MPT and GMPT coefficients.

Further to the results shown in Fig. 9 and 10, the accuracies
according to the error measures

ereactive
2 (M)

= �Re(V ind,meas(θ) − V ind
2 (M, θ))�L2(θ)

�Re(V ind,meas(θ)�L2(θ)

, (20a)

eresistive
2 (M)

= �Im(V ind,meas(θ) − V ind
2 (M, θ))�L2(θ)

�Im(V ind,meas(θ)�L2(θ)

, (20b)

ereactive
3 (M,D)

= �Re(V ind,meas(θ) − V ind
2 (M, θ) − V ind

3 (D, θ))�L2(θ)

�Re(V ind,meas(θ)�L2(θ)

,

(20c)

eresistive
3 (M,D)

= �Im(V ind,meas(θ) − V ind
2 (M, θ) − V ind

3 (D, θ))�L2(θ)

�Im(V ind,meas(θ)�L2(θ)

,

(20d)

for a fixed frequency of f = 3 816 Hz and the copper cone at
different positions according to the simulated and measured
coefficients of M and D are shown in Tables III and IV,
respectively. These indicate that the accuracy of the transim-
pedance is improved from around 10% when only the MPT
is used to around 2% when either the simulated or measured
GMPTs are included for all object locations considered. We
have seen that D can be obtained from the measurements
V ind,meas(θ) if the object is placed in the non-uniform field and
including V ind

3 (D) is important whenever H0 is non-uniform.
Importantly, as remarked in Section III, D provides additional
complex coefficients as a function of frequency in addition
to those in M that can aid with object discrimination when
performing object classification. Next we consider a brass and
then a steel cone.

B. Brass Cone
We repeat the procedures described in Section V-A to

measure M11 = M22 and M33 at 28 frequencies between
fmin = 119.25 Hz and fmax = 95 400 Hz leading to the brass
cone’s measured MPT spectral signature. Then, we repeat
the procedure in Section V-B to measure D223 = D113 =
D322 = D311 and D333 for the same 28 frequencies between
fmin = 119.25 Hz and fmax = 95 400 Hz leading to the
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Fig. 9. Copper cone positioned in a non-uniform field comparing the reactive and resistive parts of Vind,meas(θ), Vind
2 (M, θ) and Vind

2 (M, θ) +
Vind

3 (D, θ), each normalised by ω�, for a fixed frequency of f = 3816 Hz showing (a) z = (0,0,0.365) m Reactive, (b) z = (0,0,0.365) m Resistive,
(c) z = (0.02,0,0.343) m Reactive, (d ) z = (0.02,0,0.343) m Resistive, (e) z = (0.04,0,0.343) m Reactive and (f ) z = (0.04,0,0.343) m Resistive.

brass cone’s measured GMPT spectral signature. To obtain
the object’s MPT and GMPT spectral signatures numerically,
we follow the procedure in Section VI and employ the same
discretisation used previously for the copper cone to simulate
the coefficients M11 = M22, M33, D223 = D113 = D322 =
D311 and D333 for frequencies between fmin = 119.25 Hz
and fmax = 95 400 Hz for the brass cone.

In Fig. 11, we show a comparison of the computed and
measured MPT and GMPT spectral signatures for the brass
cone where excellent agreement is observed for the computed
and measured MPT spectral signatures and good agreement
is observed for the computed and measured GMPT spectral
signatures. Again note that the non-zero independent coeffi-
cients of D are 2 orders of magnitude smaller than those of
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Fig. 10. Copper cone positioned in a non-uniform field comparing the reactive and resistive parts of Vind,meas −Vind
2 (M), Vind,meas −Vind

2 (Mmeas),
Vind

3 (Dmeas) and Vind
3 (D), each normalised by ω�, for a fixed frequency of f = 3816 Hz showing (a) z = (0,0,0.365) m Reactive, (b) z = (0,0,0.365)

m Resistive, (c) z = (0.02,0,0.343) m Reactive, (d ) z = (0.02,0,0.343) m Resistive, (e) z = (0.04,0,0.343) m Reactive and (f ) z = (0.04,0,0.343) m
Resistive.

M and, hence, we should not expect them to be measured
as accurately as those of M, with the difference between
the measured and computed MPT and GMPTs being similar
to those for the copper cone. A similar noticeable difference
between the simulations and measurements to the copper cone
is the frequency at which the curves for Re(D322) = Re(D311)
and Im(D311) cross. Also, in a similar manner to Fig. 5,

we observe that the coefficients of both the real parts of the
coefficients of M and D show a sigmoid behaviour with log τ
while the coefficients of the imaginary parts of the coefficients
of M and D have single local maxima/minima with log τ.

Comparable curves to those produced in Fig. 6-10 have also
been found for the brass cone and similar agreements can
be drawn for this object. Hence, we only provide the tabular
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TABLE III
COPPER CONE POSITIONED IN A NON-UNIFORM FIELD COMPARING THE ERROR MEASURES DEFINED IN (20) FOR COMPUTED M AND D

TENSORS, A FIXED FREQUENCY OF f = 3 816 HZ AND DIFFERENT OBJECT LOCATIONS

TABLE IV
COPPER CONE POSITIONED IN A NON-UNIFORM FIELD COMPARING THE ERROR MEASURES DEFINED IN (20) FOR MEASURED M AND D

TENSORS, A FIXED FREQUENCY OF f = 3 816 HZ AND DIFFERENT OBJECT LOCATIONS

TABLE V
BRASS CONE POSITIONED IN A NON-UNIFORM FIELD COMPARING THE ERROR MEASURES DEFINED IN (20) FOR COMPUTED M AND D

TENSORS, A FIXED FREQUENCY OF f = 3 816 HZ AND DIFFERENT OBJECT LOCATIONS

TABLE VI
BRASS CONE POSITIONED IN A NON-UNIFORM FIELD COMPARING THE ERROR MEASURES DEFINED IN (20) FOR MEASURED M AND D

TENSORS, A FIXED FREQUENCY OF f = 3 816 HZ AND DIFFERENT OBJECT LOCATIONS

summaries in Tables V and VI, which illustrate comparable
accuracies for the simulated and measured coefficients of M
and D for the brass cone positioned at different locations
compared to those shown in Tables III and IV.

C. Steel Cone
We repeat the procedures described in Section V-A to

measure M11 = M22 and M33 at 28 frequencies between
fmin = 119.25 Hz and fmax = 95 400 Hz leading to
the steel cone’s measured MPT spectral signature. Then,
we repeat the procedure in Section V-B to measure D223 =
D113 = D322 = D311 and D333 for the same 28 frequencies
between fmin = 119.25 Hz and fmax = 95 400 Hz lead-
ing to the steel cone’s measured GMPT spectral signature.
To obtain the object’s MPT and GMPT spectral signatures
numerically we the employ the same discretisation as before
and repeat the process described for the copper and brass
cones.

In Fig. 12 we show a comparison of the computed and
measured MPT and GMPT spectral signatures for the steel

cone where excellent agreement is observed for the computed
and measured MPT spectral signatures and good agreement is
observed for the computed and measured GMPT spectral sig-
natures Again note that the non-zero independent coefficients
of D are 2 orders of magnitude smaller than those of M and,
hence, we should not expect them to be measured as accurately
as those of M, in this case the minimum difference between
the measured and computed MPT coefficients is much less
than 1% and the minimum differences between measurement
and simulations for D333 is 5% while for D322 it is 9.7%.
In a similar manner to Fig. 5 and 11, we can see that the
coefficients of both the real parts of M and D illustrate a
sigmoid behaviour with log τ while the coefficients of the
imaginary parts of M and D have single local maxima/minima
with log τ.

In a similar manner to the brass cone, we only provide
the tabular summaries in Tables VII and VIII, which illustrate
comparable accuracies for the simulated and measured coeffi-
cients of M and D for the steel cone positioned at different
locations.
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Fig. 11. Brass cone showing: spectral signatures corresponding to (a) computed coefficients of M and (b) measured coefficients of M, (c)
computed coefficients of D and (d ) measured coefficients of D.

TABLE VII
STEEL CONE POSITIONED IN A NON-UNIFORM FIELD COMPARING THE ERROR MEASURES DEFINED IN (20) FOR COMPUTED M AND D

TENSORS, A FIXED FREQUENCY OF f = 3 816 HZ AND DIFFERENT OBJECT LOCATIONS

TABLE VIII
STEEL CONE POSITIONED IN A NON-UNIFORM FIELD COMPARING THE ERROR MEASURES DEFINED IN (20) FOR MEASURED M AND D

TENSORS, A FIXED FREQUENCY OF f = 3 816 HZ AND DIFFERENT OBJECT LOCATIONS

D. Accuracy of MPT and GMPT Measurements
The high level of accuracy in the measured MPT coeffi-

cients has been achieved as the multi-coil arrangement was
originally designed and built to characterise objects by their

rank 2 MPTs. The design, experimental repeatability and
accuracy of the system has been reported in [25]. In this
work, we have extended our original measurement system to
allow, for the first time, the measurement of the rank 3 GMPT
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Fig. 12. Steel cone showing: (a) computed coefficients of Mand (b) measured coefficients of M, (c) computed coefficients of Dand (d ) measured
coefficients of D.

coefficients by placing the object in the non-uniform H0 field
outside of the bore of the coil arrangement. There are several
potential sources of error in the GMPT measurements. Firstly,
the bore of the measurement apparatus is electrostatically
shielded to remove any capacitive coupling of a target object
to the coils. However, this is not the case when the target
object is placed outside of the bore where H0 is non-uniform.
This is further complicated when the object is rotated as the
capacitive coupling may be different for different orientations.
This results in experimental error that is observed in the
higher frequencies in the measured spectrum. Secondly, the
measurement system was designed to be sensitive across the
bore where H0 is uniform, which means high signal-to-noise
ratio (SNR) in this area. However, the SNR starts to get
smaller as the target object moves away from where H0(z) is
uniform. This means there may be errors in the experimental
results introduced by measurement noise. Thirdly, the appa-
ratus was built to ensure a precise position and orientation
manipulation, these manipulations will contain inaccuracies,
which result in differences in H0(z) as well as the rotational
configuration of the object compared to the analytical model.
Moreover, any small imperfections of the coils, which do
not affect rank 2 MPT characterisation results in the uniform

field, may become more apparent in measurements outside of
this region. Fourthly, a four-wire resistivity measurement was
used to characterise resistivity of the cones. However, these
may have small errors in the results meaning the materials
modelled may be slightly different in simulations. While these
sources of errors are not significant individually, the smaller
rank 3 GMPT coefficients and the cumulative sum of these
errors, leads to greater inaccuracies in their measurement when
compared to those of the MPT. To improve the accuracy
of GMPTs significantly would require the design of a new
coil arrangement that is optimised to produce non-uniform
H0 fields, which can be predicted with a high level of
accuracy, and address the points raised above.

VIII. CONCLUSION
In this work we have explained the limitations of using an

MPT spectral signature alone to characterise objects since the
object is then characterised by just 6 complex coefficients as
a function of τ. For objects with rotational and/or reflectional
symmetries the number of independent coefficients is much
fewer and this makes it difficult to discriminate between
objects in object classification and to determine which way an
object is pointing. Using GMPTs provides additional complex
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coefficients as a function of τ, which can aid with discrim-
inating between objects and, hence, they have the potential
to improve classification. We have shown, for the first time,
that GMPT coefficients and their spectral signature can be
obtained in practice from measurements of (Hα−H0)(x) from
a coil arrangement. The resulting measured GMPT spectral
signature we have obtained are in good agreement with the
simulated GMPT spectral signatures we found from numerical
simulations using finite elements, while the larger measured
MPTs that exhibit a very high level of accuracy. We have
illustrated that including the GMPT object characterisation
information is important to accurately predict (Hα − H0)(x)
whenever the background field is non-uniform for a sequence
of copper, brass and steel cones placed at different locations.
Our future work includes designing and building a new mea-
surement system that can achieve greater accuracy of GMPT
coefficients.

In this work, we have limited consideration to objects with
μ∗ = μ0 and to the cone geometry. For magnetic objects, N
can not be neglected and includes important characterisation
information. Furthermore, many practical objects have fewer
(or no) symmetries compared to the cone, which increases the
number of MPT and GMPT coefficients needed to characterise
the object. The effect of an object’s symmetry group on GMPT
coefficients will be the subject of a forthcoming work.
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