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Abstract—Bacterial extracellular vesicles (EVs) are nano-
scale lipid-enclosed packages that are released by bacteria
cells and shuttle various biomolecules between bacteria or
host cells. They are implicated in playing several important
roles, from infectious disease progression to maintaining
proper gut health, however the tools available to charac-
terise and classify them are limited and impractical for many
applications.Surface-enhancedRaman Spectroscopy (SERS)
provides a promising means of rapidly fingerprinting bacterial
EVs in a label-free manner by taking advantage of plasmonic
resonances that occur on nanopatterned surfaces, effectively
amplifying the inelastic scattering of incident light. In this
study, we demonstrate that by applying machine learning
algorithms to bacterial EV SERS spectra, EVs from cultures of
the same bacterial species (Escherichia coli ) can be classified
by strain, culture conditions, and purification method. While
these EVs are highly purified and homogeneous compared to
complex samples, the ability to classify them from a single
species demonstrates the incredible power of SERS when
combined with machine learning, and the importance of con-
sidering these parameters in future applications. We anticipate that these findings will play a crucial role in developing
the laboratory and clinical utility of bacterial EVs, such as the label-free, noninvasive, and rapid diagnosis of infections
without the need to culture samples from blood, urine, or other fluids.

Index Terms— Plasmonic, SERS, biosensor, extracellular vesicles, Raman spectroscopy, nonlinear optics, Escherichia
coli, outer membrane vesicles, exosomes.
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I. INTRODUCTION

RAMAN spectroscopy is a unique and powerful tool for
noninvasively fingerprinting the chemical structure of

materials by measuring the inelastic scattering of incident
light. This technique has been used extensively for biological
applications, from cancer diagnosis and classification [1]–[3]
to viral and bacterial identification [4]–[6]. The investi-
gation of Escherichia coli using Raman spectroscopy is
of particular interest, given this bacterium’s complex role
in both maintaining and adversely affecting human health;
with applications pursued to detect it in food and drinking
water [7], [8], investigate its resistance to antibiotics, and
classify it based on its strains or pathogenic potential [9]. The
need for label-free, rapid, and highly sensitive identification
is especially evident when considering that some E. coli
strains can lead to high human health risk even at very low
doses [10], [11]. However, due to the bacteria’s small sizes
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and rarity in complex environmental and human bodily fluids,
it can be challenging to effectively identify or classify them
using conventional Raman spectroscopy.

To overcome the limitations of conventional Raman spec-
troscopy, techniques such as Surface-enhanced Raman Spec-
troscopy (SERS) [12] and laser tweezers Raman spectroscopy
(LTRS) [13] have been applied to characterising bacteria
cells. SERS benefits from strong plasmonic interactions of
incident laser light with the electrons of noble metals on
a substrate’s surface [14], [15], creating strong localised
electric fields at specific hot spots by confining the light
in the nanoscale geometric surface features. In doing so,
any nonlinear light-material interactions, including Stokes and
anti-Stokes inelastic scattering, are substantially amplified.
This technique is capable of identifying biomolecules at
extremely low concentrations and is even capable of single
molecule detection. Plasmonic nanoparticles conjugated with
antibodies have also been used in immunoassays for the
selective detection of E. coli from complex fluid samples
[16]. In addition, SERS has been used for the label-free
detection of E. coli strains by the direct acquisition of the
Raman signal of cells and subsequent multivariate analysis
techniques [17].

Recently, there has been growing interest in using SERS for
both labeled [18]–[23] and label-free [24]–[29] characterisa-
tion of mammalian cell-derived extracellular vesicles (EVs).
Bacteria, as their eukaryotic counterparts, also release EVs,
which are lipid-enclosed nanoscale packages that are derived
from the membranes of parental cells and can harbour a diverse
molecular cargo such as proteins, DNA, RNA, glycolipids,
organic small molecules, etc [30]. Therefore, analysing bac-
terial EVs using SERS could provide valuable information
related to a range of biomolecules and help identify the
condition of the parental bacteria cells. Although EV isola-
tion techniques have become more rapid, less laborious, and
require less expensive or specialised equipment, leading to
the development of novel downstream characterisation tools
including SERS, bacterial EV research itself still faces a
multitude of experimental-dependent factors. Most bacterial
EV research has been performed in vitro, where hundreds
of different culture conditions (e.g. media, growth mode or
stage, temperature, oxygen, +/− stimulus) along with different
EV isolation methods can produce significantly different EV
compositions, mainly quantified based on protein [31]–[33]
and RNA [34]–[36] content.

Recently, SERS has proven to be a promising method for
the early detection and classification of various diseases such
as cancer [37], [38]. As all bacteria release EVs into their
surrounding space, translating into numerous biological roles
in their host or their own life cycles [39]–[50], circulating
bacterial EVs may also hold potential as a substrate for
infection detection and identification. Importantly, the rapid
growth pace of bacteria allows cells to release EVs in quick
response to changes in environmental cues, resulting in EV
molecular compositions that may represent specific temporal
or environmental conditions [32]. The bacterial EV field has
focused mainly on conventional proteomics-based methods
of bacterial EV characterisation, as bacterial EV proteins

have shown to be diverse, abundant, highly responsive to
environmental conditions, and informative about biogenesis
mechanisms or potential virulence roles [51]. More recently,
RNA-seq has also provided the ability to characterise bacterial
EV RNA content. However, RNA’s variable presence or low
abundance in EVs, combined with time-consuming methods
and advanced equipment or skills needed have restricted
efficient progress. Clearly, there is a need for a platform which
enables analysis and profiling across all the molecular cargo
present in bacterial EVs, and SERS could provide a powerful,
comprehensive, and sensitive tool to characterise and classify
them, or even classify their parental bacteria cells’ identity or
condition.

To date, only one recent study demonstrated the use
of conventional Raman spectroscopy for characterising bac-
terial EVs, where changes in the chemical profiles of
Pseudomonas chlororaphis O6 (PcO6) cells and resultant
EVs were identified according to different abiotic stres-
sors. In addition, they showed that the bacterial EVs had
higher relative concentrations of proteins, lipids, and nucleic
acids than PcO6 cells [52]. However, to the best of our
knowledge, no studies to date have examined whether bac-
terial EVs could be successfully fingerprinted or classified
using SERS.

In this study, we demonstrate for the first time, that by
combining label-free SERS with machine learning, E. coli EVs
can be classified based on differences in strain, culture con-
dition, and purification method. Probiotic (Nissle), uropatho-
genic (UPEC), and laboratory model (K12) E. coli strains
were classified in both pairwise and collective approaches.
In addition, manifold machine learning proved to be a viable
method of dimension reduction for EV SERS spectra visu-
alisation. We believe that these results will encourage and
support other researchers towards utilising SERS for bacterial
EV characterisation in a multitude of laboratory and clinical
applications.

II. MATERIALS AND METHODS

A. Bacteria Culture and EV Isolation
Three Escherichia coli strains were used for this study:

Uropathogenic E. coli (UPEC) strain 536 (O6:K15:H31)
[53], probiotic Nissle 1917 [54] and laboratory model
strain MG1655 (K-12, ATCC® 47076) [55]. Culture and
EV isolation methods have been previously published
in detail [32]. Briefly, bacterial cells were grown in
either of two iron conditions: iron restricted, in plain
RPMI 1640 medium (R) (Thermo Fisher Scientific) or iron
sufficient, in RPMI medium supplemented with 10 µM
iron(III) chloride (RF) to better reflect physiological condi-
tions. At the desired incubation time, bacterial cells were
removed from the culture by centrifugation and filtration.
Cell-free EV-containing supernatants were concentrated to
smaller volumes with 100 kDa Vivaflow 200 cassettes (Sar-
torius AG) and EVs were pelleted by ultracentrifugation at
75,000 ×g for 2.5 h at 4 oC (Beckman Avanti J-30I), then
resuspended in PBS. EVs were then further purified with
either of two well-established purification methods: Density
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Fig. 1. Nanocup SERS substrate characterisation showing (a) SEM of 300 nm beads trapped in the nanocup SERS hot spots (scale bar = 4 µm),
(b) optical microscopy image of tightly packed nanocup structures across the entire surface (scale bars =5 µm), and (c) AFM of the nanocup SERS
demonstrating the desired structure.

Gradient Centrifugation (DG) using an iodixanol (Optiprep,
SigmaAldrich) gradient or Size Exclusion Chromatogra-
phy (SEC) using a qEV Original column (70 nm, Izon Science)
[32]. For the remainder of this study, EV samples are referred
to using the notation “Strain-Culture Medium-Purification
Method”. For example, EVs from UPEC cells grown with iron
supplementation and purified with size exclusion chromatog-
raphy are referred to as “UPEC-RF-SEC”.

B. EV Characterisation
EV-rich fractions from both SEC and DG purification meth-

ods were determined by protein (Pierce BCA Protein Assay,
ThermoFisher) and particle quantification using nanoparticle
tracking analysis (NTA) using an NS300 Nanosight (Malvern
Panalytical), then pooled for analysis. Once EV-rich fractions
were pooled, they were diluted at a 1:250 ratio in PBS and
three 30 second videos were taken under low flow conditions
(Screen gain:2, Camera level:14) and characterised using the
Nanosight 3.4 software (Screen gain:10, Detection threshold:6)
to calculate mean and mode particle diameters, concentration,
and size distributions. Prior to TEM or SERS, EV samples
were transferred from PBS buffer to ultrapure water by loading
200 µl of the purified EVs into a Vivaspin 500 (Sartorius AG)
centrifugal concentrator with a 100 kDa cutoff and centrifug-
ing at 10,000 ×g until most of the PBS had flowed through the
filter (roughly 10 minutes). Ultrapure water (ThermoFisher),
450 µl, was then added to the filter and the centrifugation
process was repeated twice more before finally suspending the
EVs in 100 µl ultrapure water. Negative staining TEM of puri-
fied EVs was conducted by adsorption onto Formvar-coated
copper grids (Electron Microscopy Sciences) for 10 minutes.
Excess liquid was removed with filter paper (Whatman) and
the copper grid was then transferred to 20 µL of 2% filtered
uranyl acetate for 2 minutes. Excess liquid was again removed
with filter paper and the grid was allowed to dry under a
lamp for 10 minutes. Grids were visualised on Tecnai G2
Spirit TWIN (FEI, Hillsboro, OR, USA) transmission electron
microscope (TEM) at 120 kV accelerating voltage. Images
were captured using a Morada digital camera (SIS GmbH,
Munster, Germany).

C. SERS Preparation, Characterisation, and
Measurements

A gold plasmonic microresonator was fabricated as
previously reported [56]–[59]. Briefly, 1 µm polystyrene
beads (Sigma) were carefully spread onto glass slides and
baked, then a PDMS mold was taken of the resulting bead
monolayer. Following demolding, the PDMS was sonicated
in acetone and isopropyl alcohol to remove residual beads
and baked overnight. Gold was deposited by sputter coating
(Q150R S, Quorum) with the rate of 0.5 nm per minute until
a 12.5 nm thickness was achieved, then the deposition rate
was increased to 6 nm per minute until a final thickness
of 50 nm. Moreover, the reproducibility of this SERS for
chemical species and EV samples of similar size have been
experimentally validated previously [58]. This SERS design
was found to have more than one million times Raman
enhancement and works effectively to trap EVs in its hotspot
areas [24]. Scanning electron microscopy (SEM) of 300 nm
diameter polystyrene beads released on the SERS substrate
was performed using a Hitachi SU-70 SEM to illustrate its
trapping capability for EV-sized particles (Fig. 1 (a)) and
optical microscopy demonstrates the consistent and tightly
packed patterning of cup-shaped structures across the entire
surface (Fig. 1 (b)). Atomic force microscopy (AFM) was also
performed to further validate the nanocup structure of the
fabricated SERS substrate using an Asylum Cypher ES AFM
system.

For all SERS measurements, a total volume of 20 µl, result-
ing in roughly 1 µl of EVs (in an ultrapure water suspension)
per square millimeter with the concentration of ≈ 1 × 1010

EVs per millilitre, were dropped on the SERS surface and
dried quickly in a 40 oC oven (20 square millimeters of EV
coating total). This was done to increase the homogeneity of
the EVs’ distribution on the SERS surface by minimizing the
coffee ring effect, which would be worse if the sample was left
to air dry at ambient conditions [24]. Raman measurements
were carried out using a Horiba LabRAM HR Evolution
confocal Raman microscope by using 785 nm laser and 50×
microscope objective. 50 SERS spectra were taken for each
EV sample from 800-1800 cm−1, with a minimum distance
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of one laser spot size between acquisition locations. The laser
power at the surface of SERS was controlled using neutral
density filter and set to 10 percent of the maximum power
(100 mW). A 10 sec acquisition time for the detector was
chosen per measurement. Then, the baseline was established
and noise was removed automatically using previously estab-
lished asymmetric least squares smoothing [60].

D. Machine Learning Analyses
All machine learning and multivariate analyses were per-

formed using the established Python library, Sklearn [61].
Some rationale behind the classification methods are explained
within results and discussion section for added clarity.

III. RESULTS AND DISCUSSION

A. EV Characterisation
NTA data demonstrated that all UPEC EVs exhibited similar

sizes, with an average mean diameter of 115.4 +/− 6.5 nm and
mode of 89.7 +/− 4.5 nm (Fig. 2 (a)). Interestingly, the NTA
size distribution for Nissle-R-SEC EVs showed noticeably
larger particles with a mean diameter of 135.8 nm and mode
of 101.2 nm, while K12-RF-SEC yielded smaller EVs mean
diameter of 71.1 nm and a mode of 62.9 nm. Negative staining
TEM imaging demonstrated similar EV morphologies for
all samples, and representative TEM images for EVs from
each E. coli strain are shown in Fig. 2 (b). However, the
slight differences in particle size measured by NTA were not
apparent in the TEM images, potentially due to the random
adsorption to the copper grids.

The post-processed SERS spectra for all E. coli EVs
investigated in this work are shown in Fig. 2 (c). These
spectra were normalised using euclidean normalization and
thus any information related to the amplitude of SERS spectra
were removed. The mean, maximum/minimum and standard
deviation around the mean was calculated and presented with
red, yellow and cyan colour, respectively. The correspondence
of Raman bands to the known types of biomolecules are
shown using vertical colour bands [62]. As most EV spectral
peaks are the result of contributions from the chemical bonds
of many different biochemical species in combination, only
general indications about their contents are noted. For both
EV size distributions and SERS spectra, mean, min/max, and
standard deviation are represented as red, yellow, and cyan,
respectively.

B. Multivariate Analysis and Classification
Samples were classified using standard machine learning

algorithms in two different scenarios. In the first scenario,
data from the three relevant pairwise comparisons based on
strain, culture medium, or purification method were used for
training and classification. This analysis was performed first
to determine the effect of each individual parameter at a time.
In the second scenario, the machine learning algorithms were
trained to identify the EVs from all 6 subtypes simultaneously,
such that the spectra of all EVs were used for training.

1) Paired Subset Classification: For the purpose of strain
classification, paired subsets {Nissle-R-SEC, UPEC-R-SEC}
and {K12-RF-SEC, UPEC-RF-SEC} were used as they are dif-
ferent strains but were grown in identical culture medium and
purified identically. Similarly, the paired subsets of {UPEC-
R-DG, UPEC-RF-DG} and {UPEC-R-SEC, UPEC-RF-SEC}
were used for the investigation of culture medium as they
are the same strain and purified identically, but grown in
different culture media. Lastly, {UPEC-R-SEC, UPEC-R-DG}
and {UPEC-RF-SEC, UPEC-RF-DG} were used for the eval-
uation of purification methods as they are the same strain and
grown in identical culture medium, but purified using different
methods.

To effectively present the variance of the obtained SERS
spectra we investigated all the components of each spectra.
Each of the obtained spectra consists of 1512 data points
between Raman shifts of 800-1800 cm−1. These are, in fact,
an array of 1512 dimensions and the vast number of dimen-
sions severely limits the visualisation of the variance within
the data. Principle Component Analysis (PCA) was used to
transform the obtained spectra in a way which reduces the
spectral dimensions while preserving the maximum variance
between the data after transformation. This was done firstly
for the sake of the visualisation and secondly as means of
classification in lower dimensions between samples.

To demonstrate the possibility of the automatic classifi-
cation, we used four different types of established machine
learning algorithms, including Linear Discriminant Analysis
(LDA), Gaussian Process Classifier (GPC), K-Nearest Neigh-
bour (KNN), and Support Vector Classifier (SVC) with RBF
kernel. All the machine learning algorithms were employed
over the PCA transformed data to calculate the probability of
each point in the PCA plane to be classified as the correct
type within each subgroup. The average SERS spectra for
K12-RF-SEC and UPEC-RF-SEC, PCA transformation, and
probability distribution obtained using machine learning algo-
rithms, as well as first and second PCA scores are depicted in
Fig. 3. Similar results of classification and PCA transformation
for the other pairwise strain comparison, culture medium
comparisons, and purification comparisons are available in
Supplementary Fig. 1-5.

For the paired comparison of K12-RF-SEC and UPEC-
RF-SEC (Fig. 3), clear differences in several peaks can be
visually discerned, resulting in an expected and highly efficient
classification by all the machine learning algorithms tested.
By comparison, relatively subtle differences can be seen in
the averaged SERS spectra for Nissle-R-SEC and UPEC-
R-SEC (Supplementary Fig 1), and while the classification
is not as efficient, all the machine learning algorithms tested
were still largely effective. For pairwise comparisons between
plain and iron supplemented culture media (Supplementary
Fig 2-3), clear differences in several peaks can be easily
discerned, resulting in highly efficient classification in both
cases. Lastly, differences between SEC and DG-purified UPEC
EVs from both types of culture media can also be effectively
classified (Supplementary Fig 4-5), although not quite to
the level of efficiency as when comparing different culture
media.
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Fig. 2. EV characterisation showing (a) size distributions of all bacterial EV samples from NTA, (b) representative TEM of UPEC-R-DG, Nissle-R-
SEC, and K12-RF-SEC E. coli EVs (scale bars = 200 nm), and (c) acquired SERS spectra of all E. coli EV samples after baseline establishment
and denoising with mean, min/max, and standard deviation represented as red, yellow, and cyan, respectively.

2) Classification of All Samples: Based on the initial success
of classification using simple pairwise comparisons, a more
challenging investigation of classifying all the samples simul-
taneously was explored. For the purpose of whole data clas-
sification, we first trained all the machine learning algorithms
over each of the normalised spectra used to produce Fig. 2 (c)
without PCA transformation. The confusion matrices produced
when 60% of the data was used for training and the other 40%

was used as a testing set are shown in Fig. 4 for the all chosen
machine learning algorithms used previously, in addition Arti-
ficial Neural Network (ANN) and Random Forest (RF). Of the
six classification methods tested, five produced efficiencies
above 90%, with GPC, SVC, and ANN all resulting in greater
than 95%. LDA performed the worst, but still produced a
classification efficiency of 86.8%. Collectively, these results
demonstrate the power of combining SERS with machine
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Fig. 3. Machine learning results for classification by strain between K12-RF-SEC and UPEC-RF-SEC showing (top) averaged EV SERS spectra,
(middle) Linear Discriminant Analysis (LDA), Gaussian Process Classifier (GPC), K-nearest neighbour (KNN), and Support Vector Classifier (SVC),
and (bottom) first and second PC scores.

learning, as even subtle differences between normalised bacte-
rial EV fingerprints can enable highly efficient classification,
even from the same species of bacteria.

We also performed the same algorithms on the
PCA-transformed data. Cumulative explained variance
and the first, second, and 100th PCA scores are depicted
in Fig. 5 (a), (b), (c) and (d), respectively. The accuracy of
SVC and ANN machine learning algorithms when different
PCA dimensions were considered for training are shown in
Fig. 5 (e) and (f), demonstrating that the acceptable accuracy
is achieved when few (5-10) PCs are used. Interestingly,
increasing the number of components beyond a certain point
does not lead to better classification result. One of the main
reasons for this phenomena may be the natural variance in

the E. coli EV biochemical contents within each subtype
and the noise level due to weak Raman intensity of EVs.
In fact, the 100th PC depicted in Fig. 5 (d) contains little
biochemical information about the EVs and thus adding more
PCs for classification purposes can actually lead to weaker
classification results.

3) Effects of Culture Medium on SERS Spectra: To further
investigate the effect of culture medium on the SERS spectra,
which is known to significantly affect the proteome of E. coli
EVs according to a previous study [32], two dimensional PCA
transformation of the whole data set is plotted in Fig. 6 (a)
with the plain (R) and iron(III) chloride-supplemented (RF)
medium marked by {red, green, blue} and {purple, orange,
brown}, respectively. Clearly, the first principal component
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Fig. 4. Confusion matrices showing classification efficiency for all E. coli EVs using different machine learning methods, including (a) LDA, (b) GPC,
(c) KNN, (d) SVC, (e) ANN and (f) RF.

Fig. 5. All sample classification following PCA transformation showing (a) cumulative explained variance vs the number of principal components,
scores of (b) first, (c) second, and (d) 100th principal components, (e) SVC and (f) ANN accuracy when different number of principal components
are considered.

can effectively separate the data of E. coli EVs produced in
the different media. This is likely due to the fact that the

SERS spectra of EVs is mostly determined by the surface
biochemical makeup of the EVs, which appears to be heavily
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Fig. 6. Result of the manifold machine learning approaches comparing (a) conventional PCA to (b) t-SNE and (c) UMAP for all E. coli EV SERS
spectra.

influenced by the culture medium. In this study, the spectra
below a Raman shift of 800 cm−1, which would contain
peaks related to iron, were not acquired to focus on the
EV biochemical contents rather than any free iron bound to
the EV surfaces, while also increasing the speed of spectral
acquisitions. This strong influence of culture media on the
SERS spectra not only corroborates the previous study [32],
but indicates that the type of fluid in which bacterial cells are
cultured may need to be carefully considered in future EV
SERS comparisons. This could be particularly important in
clinical applications, as different bodily fluids may confound
specific species or strain identification.

C. Manifold Machine Learning for Improved Data
Visualisation

As shown in Fig. 6 (a), 2 dimensional PCA transformation
can not effectively illustrate the variance of the data as the
data points of each subgroup are mixed with no clear spacing
between them. From the results of the classification algorithms
using PCA-transformed data in Fig. 5 (e) and (f), we can
see that the 5 dimensional PCA transformation, however,
results in a very good classification accuracy. In other words,
in 5 dimensional PCA space, the data corresponding to each
sub-type of E. coli EVs are effectively separated with clear
boundaries between them. Given the challenges conceptual-
izing anything beyond 3 dimensions, a better dimensional
reduction technique could ideally reduce the dimensional
complexity. To achieve this, we employed t-SNE [63] and
UMAP [64] as unsupervised manifold machine learning and
non-linear dimensional reduction techniques, with the results
presented in Fig. 6 (b) and (c), respectively. In clear contrast to
the standard PCA transformation (Fig. 6 (a)), the variance and
differences between the spectra of each E. coli EV subtype are
much more clear in two dimensional UMAP and t-SNE planes.
These results encourage the future use of manifold machine
learning and non-linear dimensional reduction techniques for
EV SERS studies.

IV. CONCLUSION

In this study we demonstrate, for the first time, that EVs
from bacteria can be effectively characterised using SERS and

that the acquired spectra have the potential to be used for
classification purposes. Several parameters appear to influence
the SERS spectra of E. coli EVs including strain, purification
method, and culture medium, which can be classified using
standard machine learning approaches. In addition, manifold
machine learning algorithms t-SNE and UMAP, which to the
best of our knowledge have not yet been applied to EV
SERS analysis, appear to be very effective for dimension
reduction and visualisation of all the obtained SERS spectra.
Collectively, these findings establish the incredible sensitiv-
ity and potential utility of SERS for bacterial EV analysis,
as classification-enabling differences were seen in each sample
subtype, despite the fact that all of the samples tested were
from the same species of bacteria.

Future SERS experiments will include EVs from other
species of gram-negative bacteria, as well as gram-positive
bacteria and mycobacteria. As each have different cell and EV
membrane compositions and proposed EV biogenesis mecha-
nisms, the different EV envelope and contents will likely affect
the SERS spectra, enabling rapid and label-free classification
approaches. In addition, the isolation of bacteria-specific EVs
from more complex samples like host bodily fluids could
be performed by targeting appropriate bacterial EV surface
antigens. As the field of bacterial EVs continues to grow,
we anticipate that these findings will enable and encourage
other researchers to examine bacterial EVs using this highly
sensitive technique for a nearly limitless range of laboratory
or clinical applications.
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