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CNN-Based Classification for Point Cloud Object
With Bearing Angle Image

Chien-Chou Lin , Member, IEEE, Chih-Hung Kuo , Member, IEEE, and Hsin-Te Chiang

Abstract—Convolutional neural network (CNN), one of the
branches of deep neural networks, has been widely used in
image recognition, natural language processing, and other
related fields with great success recently. This paper pro-
poses a novel framework with CNN to classify objects in a
point cloud capturedby LiDAR on urban streets.The proposed
BA-CNN algorithm is composed of five steps: (i) removing
ground points, (ii) clustering objects, (iii) transforming to
bearing angle images, (iv) ROI selection, and (V) identifying
objects by CNN. In the first step, ground points are removed
by the multi-threshold-based ground detection to reduce the
processing time. Then, a flood-fill-based clustering method is
used for object segmentation. Those individual point cloud
objects are converted to bearing angle (BA) images. Then, a
well-trained CNN is used to classify objects with BA images.
The main contribution of this paper is proposing an efficient
recognition method that uses the information from point
clouds only. In contrast, because most 3D object classifiers use the fusion of point clouds and color images, their models
are very complicated and take a colossal amount of memory to store the parameters. Since the ground point detection and
object clustering process all points along with the scanline-major order and layer-major order, the proposed algorithm
performs better in terms of time consumption and memory consumption. In the experiment, three scenes from KITTI
dataset are used for training and testing the proposed BA-CNN classifier, and the proposed BA-CNN achieves high
classification accuracy.

Index Terms— Bearing angle image, instance segmentation, object classification, convolutional neural network (CNN),
light detection and ranging (LiDAR), point cloud segmentation.

I. INTRODUCTION

W ITH 3D surface measurement devices have been widely
used, much research about 3D modeling and 3D object
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recognition/classification was proposed. 3D modeling is to
align partial overlapping several point clouds with variant
viewpoints into a standard coordinate system. With optimal
translation and rotation, these point clouds can reconstruct the
object’s 3D shape. As for the 3D object recognition/ classifi-
cation, individual objects would be separated and recognized
with their partial surface from a point cloud.

Since road scenes can be scanned easily by LiDAR sensors
equipped on a vehicle and represented as point clouds, object
recognition/classification is essential for the Advanced Driver
Assistance System (ADAS). Basically, ADAS does not replace
the role of a driver in car control but rather assists him in
obtaining information on vehicle operation and its surrounding
environment. In ADAS, object recognition usually relies on
computer vision methods involving variant sensors, including
cameras, sonars, radars, LiDAR (Light Detection and Rang-
ing), and so on.

Computer vision techniques in ADAS fall roughly into
two categories: 2D image-based approaches and 3D data-
based approaches. 2D image-based approach is prevalent in
the traditional computer vision of ADAS because it is more
cost-effective than other sensors. However, the quality of the
images may be affected by other factors, such as uneven
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illumination, leading to massive false alarms. On the other
hand, the 3D image is usually captured through LiDAR, which
emits laser and measures the time of its reflection, and hence it
is more accurate and reliable. Furthermore, unlike 2D flat data,
which are projections of the 3D environment, the 3D images
can keep the spatial information of surface features. LiDAR
sensors generate point clouds that contain a much larger scale
of data than 2D color images. Dimension reduction is required
to improve the performance.

Some 3D object identifiers have recently attempted to fuse
point clouds and color images, which need to calibrate the
coordinate systems of multiple sensors and merge into a
unified coordinate system. Since point clouds and color images
are used, the RGB-D-based approaches have better accuracy
than others. However, the main drawback of these approaches
is time-consuming for the fusion of various resolutions in
sensors.

This paper aims to efficiently and correctly classify objects
solely based on point clouds into three classes: cars, pedes-
trians, and street clutter. It is a great challenge to recog-
nize point cloud objects with CNN since the 3D features of the
point cloud are different from 2D images, and the disordered
point clouds cannot be used in CNN directly. The primary
contributions of this paper could be summarized as follows:

• We propose a novel 3D object detection algorithm
(BA-CNN) by using conventional CNN models.

• The proposed method converts the point cloud to bearing
angle images which preserves the object’s shape and
surface features exactly.

• We performed ablation studies to examine the key factors
that can increase the accuracy of BA-CNN.

• Comparing with the state-of-the-art approaches, the accu-
racy of the BA-CNN is better than others that are solely
based on LiDAR point clouds.

The rest of this paper is organized as follows. The related
works of object registration are reviewed in Section 2.
In Section 3, we propose a CNN-based object classifier.
Section 4 shows and discusses the experimental results.
Section 5 concludes this paper.

II. RELATED WORK

In recent years, object recognition by using laser scanning
data has been widely discussed in many works of literature.
Object recognition aims to identify objects in a scene correctly.
However, due to noise and occlusions, object recognition is
a challenging task. In general, object recognition consists of
several essential steps: segmentation, feature extraction, and
classification. In a crowded scene, the point cloud is firstly
segmented into background and foreground points. To separate
foreground 3D points into several individual groups, some
features, e.g., edge/border of points; normal of points, etc., are
used for segmentation. The points within the same boundaries
are grouped into the same object. The similarities of regions,
e.g., normal of KNN, slope, and distance, are also used for
grouping the points.

Indeed, the classifiers depend on the input types, which are
the features extracted from the individual objects. According to

the input features, the classification can be roughly categorized
into local feature-based approaches and global feature-based
approaches. The local feature is extracted from an interesting
point and its neighbors, such as normal points, FPHF, PCA,
etc. In [1], Guo, et al. proposed the TriSI feature, which
represents the three orthogonal coordinate axes of the Local
Reference Frame (LRF) by using the implicit geometrical
information of neighboring triangular faces to recognize 3D
objects. Bariya et al. encoded the scale variability of the
surface geometry by an interpretation tree for each object [2].
The tree nodes are the object features and contain a hypothesis
formed by the feature correspondences at that node and all its
parent nodes.

While the local feature-based methods use the 3D features
derived by a point and its neighbors, the global feature-based
approaches use the features extracted from the whole objects
for recognition, e.g., 2D contours or 3D voxels. Since more
features can be obtained from the surface of an object, the
global feature-based method is usually more robust than point-
feature-based methods. Another advantage is that the global
features can significantly reduce the data volume to improve
the performance of the classifiers [3]–[5].

In [3], the foreground objects were detected by subtract-
ing two consecutive frames. The differences were clustered
by connected component labeling (CCL). Then, the moving
objects, the foreground, were classified by their aspect ratios.
This method’s main drawback is that it can only be applied
for a sequence of scanning frames. In [5], an appearance-based
identifier projected point cloud objects onto a 2-dimensional
plane and extracted shape features of the 2D images. Since
the proposed classifier used an SVM classifier trained by
2D features, some important 3D features might be discarded,
leading to unstable recognition. In [7], three types of features,
local descriptor histograms (LDHs), spin images, and general
shape and point distribution features, were used to classify
roadside objects. LDHs and spin images were applied for
SVM based classifier. In [8], Yang also used an SVM-based
classifier.

In self-driving applications [9]–[12], the scene understand-
ing which goal is classifying on-road objects, e.g., pedestrians,
cars, bicycles, and buildings, is essential. In [13], objects were
recognized by shapes extracted from partial 3D point clouds
for the localization function of automated guided vehicles
(AGVs). In [14], [15], supervoxel-based methods extract 3D
road objects, including road boundary and light-pole. Super-
voxels are generated by removing background points and clus-
tering volumetric over-segmentations into supervoxels. In [16],
the tracking and motion estimation method of obstacles using
just a 3-D point cloud was proposed. In [9], a classifier using
multi-scale stereo pixels as the features was proposed. A multi-
layer LiDAR captured point clouds, and the density of point
clouds decreased with the distance from the sensor. Therefore,
it is challenging to detect objects far away because few features
are extracted from sparse points.

Recently, convolutional neural networks (CNN) have been
used in image recognition widely, and some works of literature
have adopted CNN as a classifier [17]–[19]. The CNN-based
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Fig. 1. (a) Depth image and (b) bearing angle image, colors represent
different depths.

architectures are potential in segmenting and classifying point
cloud data. For example, in [20], Börcs et al. proposed
a CNN-based object classifier that transforms 3D objects
to depth images. In [21] and [22], a Fully Convolutional
Network (FCN) was adopted for segmentation and classi-
fication for an image containing multiple objects. In [23],
PointNet, a modified CNN, used density occupancy grids as
internal representation to classify objects. However, because
no data structure is suitable for presenting the geometric
relations of points, the point cloud is hard to process for CNN
directly. Therefore, transforming point clouds into 2D images
or voxelizing them to 3D grids is necessary for CNN-based
classifiers.

There are some approaches proposed for transforming point
clouds into 2D images. One of the most common methods
is depth image, representing a point depth as the grayscale.
Such a method preserves only the geometric relations of
objects but not the geometric relations of points. The surface
details of objects were lost. Another technique uses bearing
angle images [10] proposed by Davide et al. to represent
the point cloud objects. A bearing angle image contains the
depth information of the whole three-dimensional object and
the depth relationship between each point and its surrounding
points. As the example of depth image shown in Fig. 1(a),
points of the same object are almost entirely in the same
color, which means they lie at the same distance. Fig. 1(b)
shows the bearing angle image. It is easy to see that the
points of the same plane are almost in the same grayscale,
and the surface details are preserved after transformation.
Therefore, the bearing angle image is adopted in this paper to
secure surface details for recognition. In [24], the BA images
were used for recognizing complex indoor scenes. The SURF
features of BA images were matched. The authors also used
the BA images for robot localization [25].

III. BA-CNN: BEARING ANGEL IMAGE FOR

OBJECT RECOGNITION BY CNN
The proposed algorithm aims to classify objects into

three categories: cars, pedestrians, and others (street clutters,
facades) using only point clouds. The point cloud obtained by
LiDAR mounted on a mobile platform is processed by remov-
ing ground points to reduce the points. Then, rest points are
clustered and separated into individual objects. Those objects
are transformed into bearing angle images which are used
to train the convolutional neural network later. The proposed

Fig. 2. Flow chart of point cloud classification using CNN.

Fig. 3. A scene captured by LiDAR. Points with the same color belong
to the same scan line.

BA-CNN model is adopted as the object classifier. In Fig. 2,
the workflow of the proposed algorithm is composed of five
steps: (1) removal of ground points, (2) object segmentation,
(3) transformation from point cloud data to bearing angle
images, (4) ROI selection, and (5) object classification by
CNN. The details of those five steps are elaborated in the
following sections.

A. Data Structure Based on LiDAR Scan Order
Most applications of point clouds need to compute the

closest neighbor for a given point with techniques like normal
vector estimation, surface simplification, and finite element
modeling. The nearest neighbor researches proposed in recent
decades used specific data structures. The data structure of
the point cloud is an essential factor of performance for
finding the nearest points, e.g., KD-tree. Fig. 3 shows a
frame captured by Velodyne HDL-64E, a multi-beam LiDAR,
64 layers with 2084 points per layer. Points of the same
color belong to the same scan line. A simple data structure
to keep the LiDAR scanning order is a two-dimensional array
that stores x-y-z coordinates of points. Although it is not
convenient for finding the closest neighbors of a point by
this data structure, the proposed ground point detection and
object segmentation methods can take advantage of simple
data structure and process the data by scanline-major order.
The proposed algorithm performs well with the simple data
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Fig. 4. Corresponding relationship in LIDAR and ground point.

structure by consuming less computation and memory usage
than other approaches.

B. Ground Point Detection With Multiple Threshold
Usually, a point cloud has a large amount of 3D points in

which ground points account for a large proportion, approx-
imately 25%-50% of the raw data. Most applications of the
point cloud use ground point removing to reduce the com-
plexity, such as object classification, dynamic object detection,
and so on [5], [6], [20]. In general, approaches of ground
segmentations are based on the heights of points [26], [27],
the slope of two sequence points [28], [29], or features of
areas [30].

The height is one of the essential features for a ground point.
Fig. 4 illustrates that the height of a point can be obtained
by (ρi sin γi + H0), where the extrinsic parameters of LiDAR
mounted on a car are known where ρi is the measured distance
of the point pi and γi (−24.8◦ ≤ γi ≤ 2◦) is the vertical angle
of the laser beam to the horizon. A positive value γi means
the laser is pointing up, and a negative value means the laser
pointing down. Therefore, a ground point can be detected as

|ρi sin γi + H0| < Hth (1)

where the threshold of height is set as 15 cm in this work.
Using only the heights of points to detect ground points is not
accurate enough since the height of the ground is not constant.
For example, on an uphill road, the height of the ground points
varies over time. In this paper, the height criterion in (1) is
only considered as the initial ground point. We further detect
the points from near to far along with two sequent points
from −24.8◦ to 2◦ for each scan line. It is assumed that the
neighboring place around the LiDAR is flat. If the first ground
point a is found, whether the adjacent point b is also the
ground is determined according to the slope formally defined
as

S = |ya − yb|�
(xa − xb)

2 + (za − zb)
2
. (2)

In order to reduce the complexity, it is simplified as

S2
(b,a) = (ya − yb)

2

(xa − xb)2 + (za − zb)2 (3)

Fig. 5. The raw point cloud. The points near the LiDAR are denser than
the area far away from the LiDAR.

Fig. 6. The result of ground segmentation. Red points are ground points,
and green points are object points.

If S is less than the threshold, point b is considered as a
ground point. However, S is sensitive to the distance between
the two points. In Fig. 5, it is easy to see that the points near
the LiDAR are denser than the area far away from the LiDAR.
In other words, the distance of two consecutive points in the
same scan line is directly proportional to their distance to the
LiDAR. Thus, a slight noise of altitude difference in the area
near the LiDAR might change the slope significantly. We pro-
pose three thresholds for S concerning different distances to
make the slope more robust for ground detection. With the
distance d(b,a) of any two consecutive points a and b, the
slope thresholds are defined as follows:
⎧⎪⎨
⎪⎩

T = T0 + α · (dnear/d(b,a))
2, i f dnear ≥ d(b,a)

T = T0, i f d f ar ≥ d(b,a) ≥ dnear

T = T0 − β(d(b,a)/d f ar )
2, i f d(b,a) ≥ d f ar

(4)

where dnear and d f ar are the predetermined distances of the
nearby area and outlying area, respectively. T0 is the threshold
for the points within a middle distance. α and β are constants.
In Fig. 6, ground points are segmented in red, and the points
of objects are colored in green. After removing ground points,
the amount of points is usually reduced to 40% to 60%. Less
reserved points make the clustering easier and faster.
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Fig. 7. Clustering the foreground points into several objects.

Fig. 8. Corresponding relationship in a triangle. Two adjacent points A
and B, and the laser source C.

C. Object Segmentation Based on Flood-Fill Algorithm
While ground points are removed as background in the

previous step, the remaining points are considered as the fore-
ground and have to be grouped into individual objects. Most
existing clustering algorithms can be used in grouping point
clouds, e.g., k-means, random sample consensus (RANSAC),
etc. To cluster the points more efficiently, we adopt the flood-
fill algorithm proposed in [11]. Instead of finding the closest
points, the flood-fill segmentation uses the nearest neighbors
along with scan-line-major order and then layer-major order.

In the first step of the flood-fill algorithm, a new line
segment starts from the first and nearest point of a scan
line if it is not a missing point or a ground point. If the
consecutive point of the same scan line lies within a distance,
it is merged into the line segment. Otherwise, the growth
of the line segment stops, and those points are marked. The
second step is to group those line segments along with layer-
major order within a threshold of distance. In Fig. 7, points
of different objects are marked in different colors.

D. Transforming Point Cloud to Bearing Angle Image
Since extracting 3D features is more complex than extract-

ing 2D features, point clouds of objects are transformed into
2D images after segmentation. A common method is trans-
forming a 3D point cloud into a range image. However, the
gray level of the range image represents only the Z-coordinate

Fig. 9. The BA image of Fig. 7.

Fig. 10. The color image of the same scene of Fig. 9.

of points and neglects the relation between points. To preserve
surface details of objects, the bearing angle image of a point
cloud of objects is used instead of range images. A pixel of
the bearing angle image represents the angle between the laser
beam and the vector from the point to a consecutive point.
In Fig. 8, there are two adjacent points (A, B) and the laser
source C . The bearing angle of A can be obtained by

γ = cos−1
�

a2 + b2 − c2

2ab

�
, 0 ≤ γ ≤ π (5)

where a is the measured distance of A and b is that of B . The
distance c can be derived by

c = �A(x, y, z) − B(x, y, z)� (6)

To forming a BA image, we convert γ to a gray level by

I = γ

π
× 255. (7)

Figs 9 and 10 show the obtained BA image from Fig. 7 and
the same scene’s color image, respectively. Individual object in
the point clouds segmented in the previous step is transformed
into a BA image used as a training image or a test image for
the proposed convolutional neural network (CNN).

E. Recognition by Convolutional Neural Network With BA
Image

Since the shapes of BA images of individual objects are
different, we set the minimum bounding boxes of individual
objects as the regions of interest (ROIs), input to the proposed
CNN. The primary goal of this work is to identify cars,
pedestrians, and street clutters from candidate ROIs.

The proposed architecture is an AlexNet-like convolutional
neural network [31] implemented by the Tensorflow Frame-
work [32]. The model consists of two convolutional layers,
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two pooling layers, one fully connected layer, and one output
layer.

Input grayscale BA images are normalized into a size of
64 × 64. Since the input is similar to the 2D images, 16 filters
are used in convolutional layers. Thus, 16 × 64 × 64 feature
maps are obtained and passed to the rectified linear unit
(ReLU). A ReLU replaces all negative values by zero in the
feature maps. The second hidden layer is the max-pooling
layer (Pooling). A Pooling layer is adopted to reduce the
dimension of each feature map. The result of the previous
procedures can be expressed by

f (xi ) = L RN (Max Pool(σ (Wcxi ))) (8)

where xi is a 64 × 64 BA image and Wc is the convolutional
operator. σ is the ReLU activation function defined by

σ = max(0, Wcxi ). (9)

Then, a pooling layer reduces the dimensions of Max pooling
features that use the maximum value of each local cluster
of neurons in the feature map. To limit the ReLU activation
from increasing the output layer values, a local response
normalization (LRN) is used for lateral inhibition. L RN(·)
is defined as

bi
x,y = ai

x,y/(1 + 10−4
min(N−1,i+4)	
j=max(0, j−4)

(a j
x,y)

2)0.75. (10)

The proposed CNN model with two convolutional layers and
two pooling layers is expressed by

M = ( f ( f (xi ))). (11)

16 × 32 × 32 pooled feature maps are obtained and passed to
the fully connected layer (F). The vector s is calculated from
the model output M using two fully connected layers:
s = F(M)

= F( fi ( f i (xi )))

= F(L RN (Max Pool(L RN (Max Pool(σ (Wcxi ))))) (12)

While the purpose of the convolutional and pooling layers
is feature extraction, the purpose of the fully connected layer
is to learn the classification from the pooled features into three
classes. We use Softmax as the activation function in the output
layer to ensure the sum of output probabilities is 1.

Si = eSp

j eS j

(13)

As for the lost function, categorical cross-entropy (CCE)
loss is adopted.

CC E = 1

M

	M

p
(− log Sp) (14)

Several modified architectures have been experimented with
within this paper to obtain the best result of CNN for object
classification. The details of their performances are given in
the next section.

Fig. 11. (a) Scene 1: Residential area raw data (2011_09_26_drive_
0020) from KITTI. (b) Scene 2: Campus (2011_09_28_drive_0043) from
KITTI. (c) Scene 3: Residential area raw data (2011_09_26_drive_0035)
from KITTI.

IV. EXPERIMENTS AND ANALYSIS

Our experiments take three scenes from the KITTI
dataset [17], including raw data of two residential areas
(Scene1: 2011_09_26_drive_0020 and Scene3: 2011_09_26_
drive_0035) and raw data of one campus (Scene2:
2011_09_28_drive_0043) as shown in Fig. 11. The training
set contains 1255 objects, including 500 pedestrians, 221 cars,
and 534 street clutters from one residential area and the
campus. In our simulation, people riding bikes are regarded
as pedestrians. We use the accuracies of classification as
performance metrics. The accuracies of different classes and
the average accuracy are expressed as follows, respectively.

Accuracy = T P + T N

T P + F P + T N + F N
(15)

Average =



(T Pi + T Ni )

(T Pi + F Pi + T Ni + F Ni )

(16)

We use C++ to implement the proposed algorithm in
Microsoft Visual Studio 2015 with OpenCV 3.2 and Point
Cloud Library 1.8.1. The KITTI dataset was obtained by Velo-
dyne HDL-64E LiDAR scanner, which can scan 360 degrees
in the horizontal direction and +2 to −24.9 degrees in the
vertical direction. Sixty-four scanning lines are distributed
across 26.9 degrees in the vertical order, and the maximum
measurable distance is 120 meters.

A. Ablation Experiment
To obtain the optimal performance of the proposed algo-

rithm, we focus on input format and network architecture in
the ablation study. In the first part of the simulation, we use
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Fig. 12. ROIs with different sizes. (a) Pedestrian within minimal width;
(b) vehicle within minimal width; (c) street clutter within minimal width;
(d) pedestrian within minimal bounding box; (e) vehicle within minimal
bounding box; and (f) street clutter within a minimal bounding box.

two ROI types. One is cropping the target area of a BA
image with a fixed height and the object’s width, and the
other cropped ROI is with a minimal bounding box of the
object. As shown in Fig. 12(a)∼(c), the heights of the three
former ROIs are the same, but their widths depend on objects.
As shown in Fig. 12(d)∼(f), the latter ROIs are the minimal
bounding boxes of three types of objects. Then, the image sizes
of both types of ROIs are normalized as 64 × 64. In Table I,
the first two rows show the accuracy of two different ROIs.
The performance of the cropped ROIs with minimal width
is better than another one since more contour features are
preserved.

In general, the size of the input of CNN affects the com-
putation time significantly. High-resolution inputs in some
applications provide more feature details to be learned in
hidden layers. However, high-resolution inputs might improve
slightly but waste memory and computational costs since
the features obtained from low-resolution images are good
enough. Therefore, in the following simulation, the cropped
BA images are resized to 64 × 64, 96 × 96, and 128 × 128.
The accuracies are listed in the middle of Table I. The input
size of 64 × 64 has performed the best in recognition. As a
result of this experiment, we found that the low-resolution
BA images of the cropped objects have sufficient features for
CNN.

Three different CNN models are tested with the inputs
obtained from the two previous simulations to obtain the best
classifier. The first model consists of two convolutional layers,
two pooling layers, and two fully connected layers. Then, the
convolutional layers and pooling layer are increased to four
in the second model. We use four convolutional layers in
the third model, four pooling layers, and one fully connected
layer. The performances of the three models are listed in the
last three rows of Table I, and the third model has the best
accuracies for pedestrians and cars. Summarizing the ablation
study, the classification accuracies of the proposed algorithm
are up to 94.7%, 99.3%, and 94.0% for pedestrians, cars, and
street clutter, respectively.

B. Performance Evaluation
According to the previous ablation study, the proposed opti-

mal CNN architecture consists of four convolutional layers,

TABLE I
THE TESTING ACCURACY OF EACH CLASS ON DIFFERENT MODELS

TABLE II
ACCURACY OF EACH CLASS AND AVERAGE

ACCURACY ON DIFFERENT APPROACHES

four pooling layers, and one fully connected layer. To further
demonstrate the effectiveness of the proposed BA-CNN classi-
fier, the accuracies of classes of our method are compared with
the state-of-the-art approaches. Accuracies of three classes of
PointGCN [33], PointNet [34], PointNet++ [35], 3DSSD[36],
DesRNet [37], and our method are listed in Table II individ-
ually. The listed approaches are solely based on LiDAR point
clouds except for the DesRNet-3 [37] since DesRNet-3 used
RGB-D data.

In Table II, DesRNet-3 has the best performance, but its
model is very complicated and takes a colossal amount of
memory to store the parameters. While DesRNet-3 used
RGB-D data, the proposed algorithm, BA-CNN, is solely
based on LiDAR point clouds transformed into 2D BA
images. Because the BA image is similar to visual images,
the proposed BA-CNN is faster than DesRNet-3. Despite
being behind the DesRNet-3, the performance of the proposed
BA-CNN is better than all listed approaches solely based on
LiDAR point clouds.

V. CONCLUSION

In recent years, many approaches to point cloud process-
ing have been proposed. Unlike 2D images without depth
information, the point cloud keeps the spatial information of
objects full of surface features. Therefore, 3D images have
been widely used in autonomous systems and machine vision
recently.

In this paper, a novel CNN-based classifier for point cloud
objects is proposed to classify objects into three classes:
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pedestrians, cars, and street clutters. CNN has been widely
used for image recognition with great success recently. How-
ever, it is a great challenge to use CNN to recognize point
cloud objects because the 3D features of the point cloud
are different from 2D images, and the structure of the point
cloud cannot be used in CNN directly. This paper proposes
a method to transform point cloud objects into 2D images
and then use CNN to identify them. The proposed algorithm
consists of four steps: (1) ground point removal, (2) flood-
fill clustering, (3) transforming to BA images (4) classifying
by CNN. The experiment result shows that the proposed
CNN-based classifier has high Accuracy. The Accuracy of
car detection is up to 97.35%, 90%, and 90.4% for precision,
recall, and F1-score. Pedestrian detection accuracy is 98.45%,
73%, and 88.45% for precision, recall, and F1-score. Since
the shapes of street clutter are variant, the accuracy of street
cutters is lower in some cases.

This paper also verifies that the bearing angle images can
be used in convolutional neural networks. In future work,
a CNN-based classifier using the fusion of bearing angle image
and color images might significantly improve the accuracy of
classification.
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