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Magnetic Field Positioning Technology
of Indoor Sports Bodies
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Yan Han , Cunsuo Pang , and Huihua Kong

Abstract—Aiming at the problem of the failure of the global
positioning system in the satellite denied environment, and
facing the needs of the navigation and positioning in indoor
space, the technology of indoor magnetic field vector posi-
tioning and navigation have been studied. Based on the geo-
magnetic matching technology, the wavelet analysis method
is used to estimate the noise components and statistical
characteristics of the magnetic field three-dimensional sig-
nal; combined with the Kalman filtering algorithm, through
estimating and optimizing the magnetic field vector signal,
an indoor magnetic positioning signal processing algorithm
with wavelet analysis and Kalman fusion is established, real-
izing the optimization of the measurement accuracy of the
geomagnetic signal and the accuracy of the fingerprint map.
The experimental results indicate that the signal-to-noiseratio
of the test sequence is increasedby 3db, the root mean square error is reducedby about 30%, and the maximum positioning
error reaches 1.34m, which can meet the requirements of indoor positioning.

Index Terms— Geomagnetic filtering algorithm, indoor navigation, Kalman filtering, satellite denial, wavelet analysis.

I. INTRODUCTION

S INCE people spend most of their time in an indoor
environment in daily life, location-based services (LBS)

play a more important role in the scenario such as security
rescue operations, navigation in buildings, and big data analy-
sis [1]. Indoor location service is applied in large indoor scenes
such as large warehouses, factories, airports and convention
centers. Under complex indoor environment conditions, indoor
location technology can effectively provide personnel location
information. Indoor positioning can provide indoor navigation
and personnel positioning services for operators, and can be
used for protection management of hospital isolation area,
patrol inspection of large equipment in the factory, personnel
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control in office area, personnel location determination of
rescue operations, etc. However, when used in an indoor
environment, Global Positioning System (GPS) service may
fail to provide LBS due to too long signal propagation and
too much signal attenuation of the satellite to penetrate the
buildings [2]. Therefore, it is necessary to research other
methods to provide indoor positioning services in GPS denied
environment. Researchers have used the technologies such
as pedestrian dead reckoning (PDR), camera image recog-
nition [3], ultrasonic positioning [4], Wifi positioning [5],
ultra-wideband (UWB) [6], infrared [7], radio frequency iden-
tification (RFID) [8], LED visible light [9], ZigBee [10],
Bluetooth [11], and geomagnetism [12] to build up indoor
positioning systems, which are mounted on the devices such
as robots [13] and drones [14] for indoor positioning scenarios
such as indoor vehicles and personnel navigation. Among
the above indoor positioning technologies, the positioning
technologies based on WiFi received signal strength indication
(RASS) [15], Bluetooth, smartphone, lighting, etc. rely on the
infrastructure in the building, with high positioning accuracy,
and the positioning effect are greatly affected by the visibil-
ity and positioning distance in the environment [16]. Using
ultrasonic, UWB [17], infrared light, RF, ZigBee and other
technologies need to set up additional signal transmitting
devices in the positioning area, while PDR system, image
recognition and positioning technology based on camera and
geomagnetic positioning technology do not depend on the
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infrastructure and additional signal transmitting devices in
the building. Only the signal acquisition device is needed to
collect indoor information, and the effect is hardly affected
by the presence of obstructions. The indoor environment area
is small, the magnetic field change in small area is small,
the magnetic field distribution is relatively uniform, and the
difference of magnetic field intensity is small; However, there
are many magnetic fingerprint data in large outdoor areas,
the magnetic field distribution is uneven, and the magnetic
field intensity varies greatly. Therefore, the fingerprint location
method based on parameters such as magnetic field vector is
suitable for providing location services in small indoor areas.

The positioning technology relying on indoor infrastructure
is often limited by the working conditions of infrastructure,
and the geomagnetic field exists at any time. Therefore,
indoor positioning through geomagnetic field characteristics
is more stable.Theoretically, the geomagnetic field feature
information at any point in the near-Earth space is unique.
Taking the geomagnetic field data characteristics at each point
in the geographic location as the basis for indoor positioning,
the magnetic field positioning technology matches the data
collected by the magnetic sensor with the magnetic finger-
prints in the geomagnetic fingerprint to provide LBS [18].
The characteristic parameters of the geomagnetic field can
be the total magnetic field vector or the components in
three directions decomposed from the total magnetic field
vector according to a three-dimensional coordinate system
with three axes perpendicular to each other [19]. Since the
magnetic field intensity of the geomagnetic field is weak
and the spectrum range is wider, the magnetoresistive sensor
is very susceptible to interference from the carrier or other
magnetic fields when detecting the geomagnetic field [20].
As the collected information contains a variety of noises and
there exist many points with similar magnetic field parameter
values on the single-axis geomagnetic fingerprint, these two
magnetic signal characteristics tend to affect the accuracy of
geomagnetic positioning, and the filtering processing of the
collected magnetic field information is conducive to improving
the accuracy of geomagnetic matching. In order to reduce the
interference of noise on the positioning accuracy, researchers
have proposed different solutions. Xiaokang Qi et al, used the
Kalman filter algorithm to match the magnetic field spatial
angle of the positioning point to the magnetic gradient map,
achieving the positioning function, improving the positioning
accuracy of the road sign system to cm [21]; Yuanchao Shu et
al, used the positioning method of the ground magnetic field
signal and the WiFi signal fusion, and the initial position of the
magnetic field matching was limited by the WiFi positioning,
and the percentage of error of the results less than 1m was
increased [22]; Kok-Meng Lee et al, applied the improved
Dynamic Time Warping (DTW) methods to one-dimensional
magnetic map matching. By estimating the optimal route, the
total amount of matching sequence was significantly reduced,
and the corner path point error in the experiment prediction
was approximately 0.15m [23]; Binhee Kim et al, proposed
to use a Bayesian filtering algorithm based on the measured
difference (MD) likelihood function to predict the position, the
experimental results indicate that this algorithm had reduced

the complexity of the algorithm matching process [24]; Bimal
Bhattarai et al, used a three-layer deep recurrent neural net-
work (DRNN) model to classify the landmarks corresponding
to the magnetic field data, and the experimental effect was
better than that of the traditional shallow neural network
structures such as KNN, SVM, logistic, etc [25]. Professor
Lingfeng Shi’s team proposed the technology of eliminating
fingerprint time accumulation error using general sensory
calibration source (GSCS) and relevant measurement indica-
tors, and applied it to the indoor magnetic map positioning
method of inertial sensor and magnetic sensor fusion [26]; the
team also proposed a geomagnetic and accelerometer indoor
positioning matching algorithm integrating particle filter and
pedestrian dead reckoning (PDR), which uses gait detection
error to limit the area of particle generation [27], reducing
the computational complexity of particle magnetic fingerprint
matching. Professor Xiaoji Niu’s team used the extended
Kalman filtering method to estimate the mileage scale and
wheel angle error of the navigation robot, constrained the
time cumulative error of the inertial navigation system, and
improved the accuracy of yaw angle measurement in the
navigation process [28]. Alwin Poole team designed a Kalman
filtering algorithm integrating accelerometer, gyroscope and
magnetometer data. Compared with using a single sensor, the
average heading error is as small as 4.72◦ [29]. Grottke, Jan’s
team combines inertial navigation unit and fingerprint based
positioning unit, provides indoor positioning service based on
smart phone with the help of sensors, wireless LAN, Bluetooth
and other devices, and uses Bayesian filtering method to
weight the position estimated by multiple sensors [30].

At present, the filtering algorithms related to geomagnetic
positioning mainly include particle filtering (PF), Bayesian fil-
tering, Kalman filtering (KF), etc, of which the particle filters
are mostly used to process geomagnetic data, and the filtering
convergence effect is affected by the indoor geomagnetic
distribution, and the sampling according to the probability dis-
tribution is prone to the circumstance of filtering divergence,
which will eventually lead to larger positioning errors [31];
Bayesian filtering cannot obtain analytical solutions in most
cases without limiting conditions. Kalman filtering as the
further derivation of Bayesian filtering for system state values
conforming to Gaussian distribution can obtain the analytical
signal when filtered off in the case of known noise statistics.

Compared with single system positioning, many combined
systems have better positioning accuracy. For example, the
average positioning error of common fusion PDR and WiFi
systems is about 1.5m-2m, which is better than WiFi finger-
print and trilateral measurement methods [32]. Multiple com-
bined systems often weight the results of multiple positioning
technologies, which reduces the error of the overall system
and obtains more accurate positioning results. Reducing the
positioning error of a single system is helpful to improve
the positioning accuracy of the combined system. Specific
to the problem that the statistical characteristics of noise
are unknown in the process of magnetic field positioning,
a geomagnetic positioning method with the fusion of wavelet
analysis and Kalman filtering is proposed in this paper, which
utilizes the wavelet analysis method to estimate the multi-
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source noise components and statistical characteristics in the
three-dimensional magnetic field signal, filters and optimizes
the single-point magnetic field signal, and matches the signal
with the magnetic field fingerprint map to realize the position-
ing function, combined with the Kalman filtering algorithm.
Under the precondition that the geomagnetic signal is assumed
to satisfy the Gaussian distribution, the denoising effectiveness
of the wavelet-Kalman fusion filtering method and the wavelet
analysis method on noisy signals is simulated and compared in
this paper, verifying the feasibility of this filtering algorithm;
100 reference points within a 5.4m∗5.4m indoor area are
acquired to plot the geomagnetic fingerprints, the position
coordinates of the 16 segments of stationary sequences in the
test sequence are matched and located, and the error range of
the positioning points is calculated.

The rest of the paper is organized as follows——Section 2
introduces the relevant principle knowledge of indoor posi-
tioning using magnetic signal. Section 3 introduces the
related algorithms of fingerprint matching and magnetic sig-
nal processing using magnetic signal. Section 4 gives the
experimental device and result analysis. Finally, section 5
summarizes the work of this paper and gives the future
development direction.

II. RELATED KNOWLEDGE

This section will briefly introduce the relevant principles
of magnetic field positioning, including geomagnetic posi-
tioning principle, magnetic signal processing and estimation
algorithm.

A. Geomagnetic Positioning
The geomagnetic field is one of the natural features of the

earth, expressed as the size (approximately the total intensity
is about 23 − 66μT ), direction, and spatial distribution, and
the geomagnetic data characteristics at each point in the
geographic location are unique [33]. When collecting the
three-axis magnetic field intensity on the same location at
different moments within one day for about 1 minute of
magnetic field data at each moment, the average value is
calculated and plotted to obtain Table I, from which it can be
known that the three-axis magnetic field intensity at different
moments at the same point changes little, with the maximum
difference of the uniaxial magnetic field intensity less than
10μT, so the intensity of the geomagnetic field can be used as a
basis for positioning. When comparing the collected three-axis
magnetic field data with the off-line three-axis geomagnetic
field fingerprints, the location to be positioned {x, y} can be
determined.

The indoor positioning based on the geomagnetic field is
essentially the geomagnetic field matching, which is usually
achieved by calculating the correlation degrees between the
three-axis magnetic data of the point to be located and the
geomagnetic field fingerprint with the process as shown in
the figure: each magnetic fingerprint includes two-dimensional
position coordinates and triaxial magnetic field component
information, a large number of three-axis geomagnetic field
data is collected in advance to plot 3 geomagnetic fingerprint
maps, as shown in Fig. 1 (a), including the coordinates of

TABLE I
SCHEMATIC DIAGRAM OF THE MAGNETIC FIELD INTENSITY AT

DIFFERENT MOMENTS AT A FIXED POINT

each point and three-axis magnetic field intensity, compared
with the single axis magnetic field information, the matching
accuracy of fingerprint is higher. The prerequisite for drawing
geomagnetic fingerprint maps is to collect a large number
of geomagnetic field intensity data in the experimental area,
but the collected reference points corresponding to the area
of the experimental area is relatively small, for which a
two-dimensional interpolation method can be used to expand
the points and corresponding data in the reference map, which
is helpful to establish an indoor geomagnetic field map,
including Kriging interpolation method, weighted interpolation
method [34], neighbor interpolation method, etc. and the
nonlinear Gaussian process regression method, etc. Then, the
magnetic field information at the point where the object is
located, as shown in Fig. 1 (b) is matched with the magnetic
field information at each point in the corresponding single-axis
geomagnetic fingerprint map to perform fingerprint recogni-
tion on the basis of the existing geomagnetic field fingerprint
map to finally identify the current position where the object
locates. Magnetoresistive sensors can collect magnetic field
intensity components in three directions perpendicular to each
other. Different magnetoresistive sensors may collect different
readings for the same magnetic field; as can be seen from
Fig. 1 (c), the magnetic field component data collected by the
sensor contains noise information, that is, the curve segments
parallel to the time axis in the figure contain glitch fluctuations
in different sizes. It can be known from physics that the
geomagnetic field data will be interfered by different sources.
For example, electromagnetic interference sources such as
indoor computers, mobile phones, machinery equipment will
interfere with the intensity of the geomagnetic field. Therefore,
it is necessary to perform the filtering smooth processing on
the raw data collected by the sensor, so as to get the images
with better effect, for which the common filtering methods
include wavelet threshold denoising, FIR filtering, Butterworth
filtering, moving average filtering, median filtering, and so on.
The filtering algorithm is studied in this paper specific to the
collected data by a single-type magnetoresistive sensor and
an MPU9250 sensor is selected to collect the geomagnetic
field data, during which one point is measured multiple times
to reduce the influence of equipment noise and measurement
errors, and a filtering algorithm is used during the data
processing session to further reduce noise, and compare the
processed magnetic field data with the data in the geomagnetic
fingerprint map, which is beneficial to improve the matching
accuracy of geomagnetic positioning.
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Fig. 1. Diagram of geomagnetic positioning process.

B. Kalman Filtering
In the process of positioning using magnetic field informa-

tion, the data collected by magnetic sensor contains noise, and
the distribution model of noise is similar to Gaussian distribu-
tion [35], and Kalman filter is suitable for processing the signal
whose noise statistical characteristics comply with Gaussian
noise. Therefore, the positioning technology proposed in this
paper uses Kalman filter method to process the data collected
by sensor. Kalman filtering method estimates the state value
of the next time based on the system state and linear function
of the previous time. For the static magnetic field information
acquisition process, the state transition of the previous time
and the next time conforms to the linear equation, and the state
values of the previous and later times are the same constant
value.

As for a certain dynamic system, formula (1) can be used
to describe the relationship between the state quantity and the
observed quantity.�

X (k) = �X (k − 1) + �W (k − 1)
Y (k) = H X (k) + V (k)

(1)

In the formula, k represents the moment of discrete,
X (k) is the state value of the system at moment k, which
can be represented by the state value X (k − 1) at the previous
moment and the input noise W (k − 1) in the system between
the two moments, � is the state transition matrix, and �
is the noise drive matrix that reflects the change of the
input noise; H is the measurement matrix, which reflects
the connection between the state quantity and the observed
quantity in the system, and V (k) is the noise introduced during
the observation process.

When using Kalman filtering algorithm to process single
variable data, the basic formula is as shown in formula (2):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P(k + 1|k) = �P(k|k)�T + �Q�T

X̂(k + 1|k) = �X̂(k|k)

ε(k + 1) = Y (k + 1) − H X̂(k + 1|k)

K (k + 1) = P(k + 1|k)H T [H P(k + 1|k)H T + R]−1

X̂(k + 1|k + 1) = X̂(k + 1|k) + K (k + 1)ε(k + 1)
P(k + 1|k + 1) = [In − K (k + 1)H ]P(k + 1|k)

(2)

The process of Kalman filtering is as follows: In the first
step, it is necessary to estimate the variance matrix P(k +
1 |k ) at the next moment based on the variance matrix P(k |k )
at the previous moment, and to estimate the new state value
X̂(k + 1 |k ) based on the state value and the state transition
matrix at the previous moment; the second step, calculate the
error ε(k + 1) between the estimated value and the observed
value and the Kalman gain K (k + 1); the third step is to use
the error value and the Kalman gain to predict and update
the previous state estimation value to obtain the final filtering
result X̂(k + 1 |k + 1 ).

This section only introduces the basic general formula of
Kalman filter. When Kalman algorithm is used to process
magnetic signals, the state equation and observation equation
of the system where the magnetic sensor is located can be
determined to effectively use Kalman algorithm to process
the magnetic field signals collected in the positioning system.
Therefore, the five matrices in the equation are very important.
The details of determining the correlation coefficients of the
two equations in the Kalman algorithm will be described in
Section B of part III.

III. GEOMAGNETIC SIGNAL PROCESSING

After the sensor collects the magnetic field data, it enters
the second stage of geomagnetic positioning. It is necessary to
compare and match the data to be matched with the three-axis
magnetic fingerprint to obtain the coordinates of the points to
be located. The time range of the data segment to be matched
is short, and the noise has a great impact on the magnetic field
data. The original signal needs to be filtered and compared
with the fingerprint after reducing the influence of noise, which
can improve the positioning accuracy of matching.

A. Matching Algorithms for Magnetic Field Positioning
Commonly used geomagnetic matching algorithms include

the Magnetic Contour Matching (MAGCOM) algorithm based
on correlation analysis, the geomagnetic matching algorithm
based on Iterative Closest Contour Point (ICCP), and the
geomagnetic matching algorithm based on the artificial fish
swarm [36], of which the matching algorithms based on
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correlation analysis mainly focus on the similarity degree,
difference degree, and Hausdorff distance of the data any ref-
erence point in the measurement data and fingerprint map. The
algorithms matched based on the similarity degree of the two
include cross-correlation (COR) algorithm, correlation coeffi-
cient (CC) algorithm, product correlation (PROD) algorithm,
and normalized product correlation algorithm (NPROD); the
algorithms matched according to the disparity degree between
the two include mean absolute difference (MAD) algorithm,
mean square error (MSD) algorithm, absolute difference (AD)
algorithm, square difference (SD), and sum of absolute differ-
ences (SAD) algorithm [37]. The SAD algorithm is selected
in this paper for magnetic field data matching. This algorithm
is often used in image matching algorithms with the basic
process as: selecting a certain sequence from the test data, and
then dividing the fingerprint into several image collections of
the same size as the sequences, and calculating the difference
between the corresponding elements in the sequences, sum-
ming up, and finally selecting the sequence with the minimal
sum of errors as the matching sequence. The correlation index
function of the SAD algorithm is as shown in formula (3):

Ci =
M�

s=1

N�
t=1

|Hi(s, t) − A(s, t)| (3)

In the formula, M and N are the number of rows and columns
of the image to be matched, and Ci is the absolute differences
between the i-th sub-image in the reference image and each
point of the sequence to be matched. For the matching of
single-point magnetic field intensity, this paper chooses to
compare the processed magnetic field components with the
fingerprint maps of the three-axis geomagnetic field compo-
nents respectively, that is, as shown in equation (4):

Di =|HX (i)−Hx(A)|+��HY (i)−Hy(A)
��+|HZ(i)−Hz(A)|

(4)

In the formula, HX (i), HY (i), HZ(i) represents the three-
axis magnetic field intensity value of the i-th reference point
in the magnetic fingerprint map, and Hx(A), Hy(A), Hz(A)
represents the three-axis magnetic field intensity data of Point
A to be matched. The point with the minimal sum of absolute
error between the measured point and the matched point is
selected as the optimal matching point; when the matching
points are finally connected and displayed, the positioning
error can be obtained by comparing the theoretical routes with
the matching process as shown in Fig. 2.

B. Data Processing Method Based on the Fusion of
Wavelet and Kalman Filtering

The Kalman filtering algorithm is used to process the signal
of three-axis magnetic field intensity collected by the magnetic
sensor, which can reduce the noise in the magnetic field data.
It is assumed that the system where the magnetic sensor
is located conforms to the state equation and observation
equation, as in formula (5):�

X (k) = X (k − 1) + �W (k − 1)
Y (k) = X (k) + V (k)

(5)

Fig. 2. Operation flow chart of SAD matching algorithm.

In the formula, X = [x1, . . . , xn] is the measured value,
which is substituted into the geomagnetic field intensity com-
ponents of the x-axis, y-axis, and z-axis, respectively, the data
processed in this paper is the magnetic field strength data
of a certain point in the static state. Theoretically, the state
value at any time is the same value, that is, the magnetic field
strength data at the previous time and the later time are the
same, so the state transition matrix is 1. As process noise, the
noise in the original signal can be filtered by wavelet analysis
to obtain the statistical characteristics of process noise. Y =
[y1, . . . , yn] is the data of the magnetic field component
of each axis from Kalman filtering; the state quantity and
the observed quantity are both the components of three-axis
magnetic field, therefore, the observation matrix H is 1;
V = [v1, . . . , vn] is the unknown system observation noise,
the variance of observation noise is a statistical parameter.
After long-term probability statistics on the data measured
by the sensor, the measurement error of magnetic sensor
and the variance of observation noise can be obtained, since
the geomagnetic field intensity of the fixed point is filtered,
the geomagnetic field intensity hardly changes, and the state
transition matrix � in the state equation can be regarded as 1.

When using Kalman filter to process the three-axis magnetic
field component data of a fixed point, the precondition is
that the estimated value X̂(0) of the initial state, the initial
variance P(0), the process noise variance Q of the system
and the observed noise variance R are known. X̂(0) is the
estimate of the initial magnetic field state X (0), which satisfies
the formula X̂(0) = μ0, and the value that is acquired is
the average value of multiple sampling values; P(0) is the
variance of the initial magnetic field observed value, which
satisfies the formula P(0) = P0, and the value that is acquired
is equal to the square of the difference value between the initial
measurement value and the predicted initial observed value,
that is

P(0) = 1

n

n�
j=1

(X j − 1

n

n�
i=1

Xi )
2.

The observed noise variance is a statistical characteristic para-
meter of noise, reflecting the accuracy of the data collected by
the magnetic sensor, which can be represented by the variance
of the magnetic field intensity of a certain point continuously
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Fig. 3. Flow chart of wavelet and Kalman fusion filtering.

collected by the sensor; the process noise variance is the
variance of other noise signals in the collection process.

The noise signal in the acquisition process is unknown. The
wavelet analysis method is adopted in this paper to denoise
the signal to be matched. By calculating the difference of
signal A to be matched with signal B obtained after wavelet
denoising, the estimated value C of the noise from the wavelet
analysis on the process that the magnetic sensor collects the
geomagnetic component information can be obtained, that is,
the estimated value of noise is C = A − B . When calculating
the noise variance according to the estimated noise C , fusing
the Kalman filtering method, and re-performing the filtering
processing of the signal to be matched, the filtering effect is
better than that of the wavelet analysis method.

The flow chart of Kalman filtering algorithm combined
with wavelet analysis algorithm is shown in Fig. 3. The main
advantage of this filtering algorithm is to use wavelet analysis
to estimate the system noise and white noise in the collected
magnetic field data. The noise signal in the acquisition process
is unknown, and the traditional Kalman filter is lack of
necessary conditions. The wavelet analysis method can be
used to reduce the noise of the processed signal. Through the
subdivision of the original signal by wavelet in time and space
frequency, part of the noise of the original signal is filtered,
and the signal after wavelet denoising is obtained; Then, the
original signal A is compared with the signal B obtained after
wavelet denoising, and the estimated value C of noise in the
process of collecting geomagnetic component information by
wavelet analysis can be obtained, that is, the estimated value
of noise filtered by wavelet analysis is C = A − B . The
variance R of the observation noise V (k) can be calculated
according to the estimated noise C , and the variance Q of
the process noise W (k) can be estimated according to the
variance of the data collected by the sensor for a long time.
The Kalman filtering method is fused to filter the signal to be
processed again. The process of Kalman filtering is as follows:
in the first step, the new state value X̂(k + 1 |k ) is estimated
according to the state value and state transition matrix of the
previous time, and the variance matrix P(k +1 |k ) of the next
time needs to be estimated according to the variance matrix
P(k |k ) of the previous time; The second step is to calculate
the error ε(k + 1) and Kalman gain K (k + 1) between the
estimated value and the observed value; In the third step, the

Fig. 4. Schematic diagram of analog filtering.

error value and Kalman gain are used to predict and update
the previous state estimation value to obtain the final filtering
result X̂(k + 1 |k + 1 ).

The signal with constant function plus noise is used to verify
the above filtering algorithm, where the constant function
signal is I = 1, Gaussian white noise with SNR 10d B is
added, and the constant function signal and the noisy signal
are shown in Fig. 4 (a), their noise energy is smaller than
that of useful signal. Formula SN R = 10 log Ps

Pn is used to
calculate the SNR, of which Ps is the signal energy and Pn
is the noise energy, and the SNR is 19.9187d B , the formula
for calculating the root mean square error of the observation
signal is

RM SE =
	

�1

n

n�
i=1

(Ini − Ihi )
2,

where In is the observation signal, Ih is the real signal value,
and the root mean square error (RMSE) of the original signal is
0.0980; at this moment, for which the wavelet analysis method
is sued to denoise the noisy signal, and the obtained signal
is shown in Fig. 4 (b), and the SNR is 29.6622d B at this
moment; the statistical characteristics of the noise estimator
are obtained through wavelet denoising, and the calculated
noise variance is substituted into the Kalman filtering process
and the filtered signal obtained by Kalman filtering on the
analog acquisition signal is shown in Fig. 4 (b), the SNR is
23.2309d B and RMSE is 0.0684 at this moment, resulting in
that the signal waveform after Kalman filtering is smoother
than the unfiltered signal waveform with fewer spikes, the
signal-to-noise ratio is reduced by about and the mean square
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Fig. 5. Schematic diagram of analog filtering.

error is reduced by about 0.0296. These two indexes for
evaluating the filtering results show that the deviation between
the Kalman estimated value and the real value is smaller than
that between the noisy signal and the real value, from which
it can be seen that this filtering method can effectively filter
off the noise in the test sequence signal and improve the SNR.

IV. EXPERIMENT ON GEOMAGNETIC POSITIONING

In order to verify the magnetic field positioning technology
proposed in this paper, we select some areas of the laboratory
conference room as the experimental area, which is a small
square area of 5.4m ∗ 5.4m, in which 9 conference tables are
placed.

A. Establishment of Geomagnetic Reference Map
The data collected by the magnetoresistive sensor includes

the three-axis magnetic field intensity data of 100 reference
points in the experimental area. The position distribution of
100 reference points is shown in Fig. 5. At present, the
magnetic field fingerprint is two-dimensional, that is, the
magnetic field distribution close to the ground height. The data
collection time at each reference point in the experimental area
is not less than 30s to reduce the error of the magnetic field
component information of the magnetic field reference point
caused by abnormal data values. Choosing a small area for
indoor positioning experiment has the following advantages:
1. Uniform magnetic field distribution and obvious magnetic
field characteristics; 2. The three-axis magnetic field strength
parameters of each reference point have little difference, and
the positioning error can be calculated better.

It is very important to plot a high-precision magnetic field
component fingerprint map for magnetic field positioning.
The more the number of magnetic field reference points is,
the higher the positioning accuracy. Therefore, interpolation
methods are needed to expand the data. Commonly used
three-dimensional interpolation methods include Kriging inter-
polation, Scatteredinterpolant interpolation, etc. When com-
paring the interpolation results, Kriging interpolation method
with a better interpolation effect is selected to interpolate
the original 10∗10 grid data to a 50∗50 grid to make the
fingerprint data more detailed to facilitate subsequent data
matching. When obtaining the magnetic field intensity data

Fig. 6. Magnetic field distribution map of the positioning area.

of multiple magnetic reference points by averaging method,
a kind of grid drawing software is employed to draw the
contour map of the magnetic field components, as shown
in Fig. 6 (a), (c), (e), and a kind of data analysis software
is used to draw the fingerprint map for geomagnetic field
component, and the magnetic field characteristic fingerprints
are used to establish a fingerprint library for geomagnetic
field components as shown in Fig. 6 (b), (d), (f), including the
magnetic field component fingerprint maps of X-axis, Y-axis,
and Z-axis, in which the black dots are the reference points
where the actual data are collected, the grid intersection points
are the reference points after interpolation, and the value
of the involved magnetic field component data is taken as
the mean value of multiple sampling measurements. In the
subsequent positioning process, the magnetic field components
collected from the stationary segments of each signal in the
walking route are compared with the fingerprint maps of the
geomagnetic field components to achieve positioning.

B. Kalman Filtering of Test Data
The error of magnetic sensor obeys Gaussian distribution,

image display of the three-axis magnetic field data collected
during the motion is performed, as shown in Fig. 7, from
which it can be seen that a total of 16 segments of the
sequences with relatively stable magnetic field intensity are



226 IEEE SENSORS JOURNAL, VOL. 22, NO. 1, JANUARY 1, 2022

Fig. 7. Diagram for three-axis magnetic field intensity in the test
sequences.

collected during the test process. These stationary sequences
should be the magnetic field intensity data collected by the
sensor at a certain fixed point when pausing for a longer time
(about 10s). The coordinates of such a point can be estimated
by matching the geomagnetic fingerprints on this stationary
sequence. In this case, the sensor has successively passed these
points, and when these points matched with these stationary
sequences are connected in chronological order, it can roughly
reflect the path that the sensor traverses in the test process.

Filtering experiment: Data processing is performed on the
geomagnetic data at each segment of the stationary sequences,
the magnetic field intensity component of the X-axis is first
selected for wavelet analysis, where the wave with appropriate
db is selected for multi-layer decomposition and denoising,
to get the signal after wavelet denoising as shown in Fig. 8.
By calculating the difference of the original signal with the
signal after wavelet denoising, the noise estimate is obtained;
when the statistical characteristics of the estimated noise are
calculated and fused into the Kalman filtering algorithm, the
signal obtained by Kalman filtering on the original data is
shown in Fig. 8, from which it can be seen that, compared
with the wavelet analysis method, the method proposed in this
paper has a better filtering effect on the data collected by the
magnetic sensor, with less noise and higher SNR.

Positioning experiment: The magnetic field component data
of the 16-segment stationary sequences after filtering process-
ing are compared with those of the reference points in the
three-axis geomagnetic fingerprint map. Assuming that the
noise satisfies the Gaussian distribution, the range of matching
points is limited according to three sigma error rate; the
absolute error sum of the distance from the matching point
to the previous matching point is calculated, from which the
point with the minimum absolute error sum is selected as the
final matching point and saved in the matching result matrix;
after the matching, the coordinates in the matrix are output.

C. Analysis on Positioning Experiment Results
The sensor moves in the region of the geomagnetic fin-

gerprint, which meets the following assumptions: Suppose

Fig. 8. Noise estimator extracted by wavelet denoising.

Fig. 9. Schematic diagram of matching path.

A, the sensor is periodically stationary at a certain distance(
staying at 16 checkpoints for about 10s), which is to facilitate
the generation of magnetic fingerprint; Suppose B, the sensor
moves along the preset route during the movement, and the
three-axis coordinate system of the sensor does not change
relative to the ground coordinate system. This assumption
simplifies the course judgment process in the positioning
process. The sensor moves along a preset route and collects
magnetic fingerprints at 16 stationary points, the relative
positions of the 16 points are shown in Fig. 9, the theoretical
route shows the preset trajectory of the sensor, which can
be used as a priori information to calculate the error of the
positioning point in the matching route; The processed test
data are matched by the SAD algorithm and the location
of this point can be roughly determined according to the
magnetic field intensity components in three directions at a
certain point, and the sensor’s motion path can be plotted
as shown in Fig. 9. Comparing the coordinate information
of the matching positioning point with that of the theoretical
positioning point, it is calculated that there are errors between
the three matching points and the theoretical points with the
position errors as: 0.6m, 0.8485m, and 1.34m. The maximum
error of the positioning point in the positioning experiment
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is 1.34m. The positioning experiment is carried out in the
indoor area as shown in Fig. 5. The triaxial magnetic field
distribution is shown in Fig. 6. The magnetic field distribution
in the small area is uniform and the difference of magnetic
field strength is small. The result error obtained after matching
the test sequence is small and the positioning effect is good.

V. CONCLUSION

An indoor magnetic positioning method with fusion of
wavelet analysis and Kalman is proposed in this paper,
which utilizes the wavelet analysis method to estimate the
multi-source noise components in the three-dimensional mag-
netic field signal, and filters off and optimizes the single-point
magnetic field signal combined with the Kalman filtering
algorithm. Under the precondition that the geomagnetic signal
is assumed to satisfy the Gaussian distribution, the denoising
effectiveness of the wavelet-Kalman fusion filtering method
and the wavelet analysis method on noisy signals is simu-
lated and compared in this paper, verifying that this filtering
algorithm can effectively improve the signal-to-noise ratio
of the magnetic field signal to be matched; 100 reference
points within a 5.4m∗5.4m indoor area are acquired to plot
the geomagnetic fingerprints, the position coordinates of the
16 segments of stationary sequences in the test sequence
are matched and located, and the position error between the
matching positioning point and the theoretical positioning
point is calculated, of which the maximum error of the posi-
tioning point in the positioning experiment is 1.34m, which
can meet the basic requirements of indoor positioning.

Here are some additional discussions. Firstly, several factors
will affect the accuracy of magnetic field positioning, such as
magnetic sensor calibration, working time, etc. These are not
the focus of this paper, but we will study these factors in the
future in order to improve the accuracy of indoor magnetic
field positioning methods. Secondly, although our magnetic
field fingerprint only reflects the magnetic field distribution
in two-dimensional plane, this technology can be applied to
the magnetic field distribution in multi-dimensional and three-
dimensional space. For example, we can collect the magnetic
field information in space by placing multiple magnetic sen-
sors with different heights and establish a three-dimensional
magnetic field distribution fingerprint.
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