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Abstract—A new tunable electro-optical and thermal-
optical modulator based on a liquid crystal (LC) filled side hole
fiber (SHF) in fiber ring laser (FRL) system has been proposed
and experimentally demonstrated. The LC is penetrated into
the air hole of SHF, and the refractive index (RI) of LC will be
altered when an external electrical field or temperature differ-
ence is applieddue to thermal-opticaleffects and electro-optic
effects. SHF is used as both a filter and a sensing head
in the laser cavity. Besides, the resonance wavelength is
more sensitive to the temperature variations due to high
thermal-optic coefficient when incident light interacts with
the internal infiltrated LC. Meanwhile, the sensor has good
performance with a high extinctionratio (>42 dB) and a narrow
3-dB bandwidth (less than 0.08 nm). The consequent thermal and electronic sensitivity are measured to be −4.23 nm/◦C
and 0.604nm/V, respectively. Moreover, the excellent and reliable performance expected to monitor the temperature and
electric field as the wavelength-tunable electro-optical devices within a small temperature change range is needed.

Index Terms— Electro-optical modulator, thermal optical modulator, fiber ring laser sensor.

I. INTRODUCTION

OVER the past few years, optical fiber modulator, typ-
ically side hole fiber (SHF) based modulator have

drawn a great deal of attention due to their high sensibil-
ity, low cost, compact size and immunity to electromag-
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netic interference [1]–[3]. Various fiber-optic modulators are
designed to measure magnetic fields [4], electric fields [5],
temperature [6], acousto-optic [7], etc., in the power industry,
biology, environmental sustainability, and medical systems.
Among them, modulation methods based on liquid crystal
filling, such as Fabry-Perot interferometer [8], adjustable
Sagnac filter [9], [10], tilted fiber grating [11], side hole
fiber [12], whispering gallery mode micro-resonator [13], [14]
and photonic crystal fiber (PCF) [15]–[17], have been widely
studied in thermo-optic and electro-optic modulation.

Nevertheless, the electric field and temperature modulator
based on the traditional super-continuous broadband light
source (SBS) have disadvantages such as low extinction
ratio, low intensity, wide 3dB bandwidth, etc., which limit
its application. Eric studied the effect of filler metal on
the birefringence optical properties of integrated electrode
photonic crystal fiber [18]. M. Fokine proposed an Integrated
fiber Mach–Zehnder interferometer for electro-optic switch-
ing [19]. At present, the combination of fiber ring laser and
fiber modulator is a good solution in the sensing field [20].
The inherent characteristics of fiber laser are high signal-
to-noise ratio, peak light intensity and narrow 3dB band-
width, thus improving the sensitivity and detection accuracy.
Lin et al. demonstrated a FRL sensor with Er doped fiber
peanut structure to detect refractive index and temperature.
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Fig. 1. (a) The schematic diagram of the LC-SHF structure (b) Cross
section of the designed SHF (c) photography of the fabricated device.

The temperature sensitivity is 0.158 nm/◦C without using
additional filters [21]. Tapered fibers filled with isopropa-
nol [22] and cascaded Sagnac rings [23] are also designed
for temperature modulation. The sensitivities are 4.031 nm/◦C
and 1.92 nm/◦C, respectively.

The novel Electro-Optical and Thermal Optical Modulator
presented here comprises a SHF, whose effective refractive
index varies with the temperature and external electric field
intensity. The modulator is manufactured by filling one of the
edge holes of the SHF with a commercial E7 LC (Suzhou
King Optronics Co., Ltd., China). Because of thermal-optical
effect and electro-optic effect, the interference of core mode
and cladded mode appears in LC-SHF. Under the interference
effect, LC will shift its wavelength when the electric field and
temperature change. The experimental results show that the
emission wavelength of the fiber ring laser is blue shifted with
the increase of temperature, and the sensitivity is 4.23 nm/◦C,
respectively. Resonance wavelengths can be electrically tuned
from 1530nm to more than 1560nm, with an average sen-
sitivity of 0.604nm/ Vrms. In addition, compared with the
traditional electro-optic modulator, the proposed thermo-optic
and electro-optic modulator based on fiber laser cavity has the
advantages of high intensity, high optical signal-to-noise ratio,
narrow band and so on, and has great application potential in
remote electric field and temperature measurement.

II. EXPERIMENTAL SETUP AND PRINCIPLE

The schematic diagram of the device is shown in
Fig. 1(a) and (b). The designed SHF consists of a fiber core
and two air holes, with a pore diameter of 40 μm and a pore
spacing of 200 μm. The cladding diameter of SHF is 5 μm
mismatch the cladding diameter of standard single-mode fiber
which leads to interference between modes. The SHF was

Fig. 2. Fabrication process of the infiltrated liquid crystal single mode
fiber-side hole fiber-single mode fiber MZI electric field sensor.

not fully filled with LC, and the air core of the two splicing
points were spliced into Mach-Zehnder interferometer (MZI).
To selectively fill the unilateral stomata with liquid crystals.
We glued a small amount of UV glue to an air hole in the SHF
by manually driving the motor of the fuse adapter (FSM-60s
Fujikura, Tokyo, Japan). Finally, the glue curing operation is
carried out. At this time, only one pore of SHF remains open,
and the liquid crystal can be easily filled to the unblocked pore
of SHF through capillary effect. Optical fiber devices based
on MZI belong to optical phase modulation type. When the
external temperature or electric field changes, the phase of
the transmitted light also changes. By using MZI technol-
ogy, the phase change can be transformed into the wave-
length change, and the corresponding physical quantity can
be detected. The photograph of the assembly is shown in
Fig.1 (c). In order to avoid the collapse of pores during weld-
ing. Before performing the welding operation, the welding
program of the welding machine (Fujikura, FSM-60S, Japan)
must be edited to optimize the discharge time to 400ms and the
discharge power to the standard 45bit. At the same time, avoid
the vibration of the side hole optical fiber filled with liquid
crystal, which may overflow to the flat end of the optical fiber.

In the experiment, SHF was inserted into a glass slide with
liquid crystal droplets. Due to capillary action, PCF can be
filled with liquid crystal in a very short time as shown in
fig.2(a). Apply a small amount of UV glue on the single-mode
fiber, and then put it into the fusion splicer. Move the SHF
by manually driving the welding machine, and then offset the
fiber by a certain distance to ensure that the single-mode fiber
is aligned with only one air hole on the left SHF. Glue one of
the air holes with the glue of the air hole to ensure that the
other air hole is not stuck as shown in fig.2(b) and (c).

As shown in Fig. 3(a) and Fig. 3(b), the LC-SHF used
for the sensor is a liquid crystal cell made of indium tin
oxide (ITO) conductive glass (thickness 1.05 mm). Before
LC injection, conductive grade is placed on both sides of
ITO glass to fix the initial orientation of liquid crystal. A vari-
able AC voltage source load is applied to the SHF-coated
ITO glass. If the switch is off, no voltage is applied and
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Fig. 3. (a) When the liquid crystal molecule is grounded, the LC molecule
is parallel to the optical axis; (b) LC molecules rotate under an electric
field when the liquid crystal molecules are electrified.

the LC molecules are parallel to the optical axis. But if
the switch is turned on, the LC molecules are rotated by
an electric field and the effective core refractive index is
modulated regularly. Similarly, when the ambient temperature
is changed, the effective refractive index is modulated by
the thermo-optical effect of the liquid crystal to change the
orientation of LC molecules. According to the principle of
SHF, the coupling core mode and cladding mode satisfying the
phase matching condition are determined, that is, the resonant
wavelength is determined.

The output light of the intensity interference spectrum can
be expressed by the following equation [24]:

I = I1 + I2 + 2
√

I1 I2C OS

[
2π L

(
ncl

e f f − ne f f
cm,n

λ

)]
(1)

where I is the intensity of the total interference intensity,
I1 and I2 are the intensity of the core and cladding modes,
respectively. Where λ is the wavelength of the transmitted
light, L is the interference length, ncl

e f f is the effective refrac-

tive index of the core mode, nef f
cm,n is the effective refractive

index of the J-order cladding mode. When the optical pass
is modulated by the modulator, the difference between the
cladding mode and the core mode can be expressed as [21]:

�ϕ = 2π L
(

ne f f
cl − ne f f

cm,n

)/
λ (2)

λdip = 2L
(

ne f f
cl − ne f f

cm,n

)/
(2m + 1) (3)

Under the influence of thermal-optical effect, when the tem-
perature changes, the RI of LC filled in the SHF micropores
will change significantly, so the mode relative refractive index
between the fiber core and cladding will change correspond-
ingly. The change of effective refractive index is shown in
Fig.4. The relationship between RI change of characteristic
wavelength and ambient temperature is as follows [25]:

�nef f (T ) = �ne f f + ∂�nef f

∂T
|T = T0�T (4) (4)

T0 is the initial temperature. �ne f f changes will result in a
shift of λdip . The displacement of the wavelength due to the

Fig. 4. Thermal-optic characteristics of E7 in the temperature range of
15 ◦C to 50 ◦C.

temperature change �T can be expressed as:
�λm

dip = 2

2m + 1

∂�nef f

∂T
�T · L = λm

dipβ�T (5)

where β is the effective thermal optical coefficient of LC-SHF.
LC has a Frederick transform threshold Eth [21]. When the

nematic liquid crystal E7 fills SHF, LC molecules are aligned
axially along the pores. The y-axis is set as the direction of the
applied electric field, and the x-axis is set along the horizontal
direction. The structure diagram is shown in Fig. 2. Then,
when LC molecules rotate, they form an angle with the air
axis. The relation between the angle of LC molecule and the
applied electric field is [25]:

θ = π

2
− 2tan−1

[
exp

(
− Eef f − Eth

30Eth

)]
, Eef f > Eth (6)

where, Eth is the threshold electric field dependent on
LC properties, and Eef f is the effective electric field acting
on LC molecules to determine their arrangement. When the
electric field is higher than ETH, LC molecules are rearranged
along the liquid crystal cell, and the angle changes with the
electric field. RI of LC molecule in x and y directions can be
expressed as [24]:

nx = n0 (7)

ny =
(

sin2 (θ)

n2
e

+ cos2 (θ)

n2
o

)− 1
2

(8)

where no is the ordinary refractive index of LC; ne is the
extraordinary refractive index of LC. The effective RI of
LC is expressed as:

ne f f =
√

n2
y + n2

x

3
(9)

Due to the existence of thermal-optical effect, thermal
expansion effect and elastic-optical effect, the central wave-
length of side-hole fiber will drift with the change of external
temperature, and the responsiveness of the resonant wave-
length in two polarization directions is different due to the
different elastic-optical effect. When the light is incident from



LIN et al.: TUNABLE ELECTRO-OPTICAL AND THERMAL OPTICAL MODULATOR 27513

Fig. 5. The intracavity sensing system based on FRL.

Fig. 6. Transmission spectrum of LC-SHF structure in supercontinuum
light source.

the single-mode fiber through the first fusion point between the
single-mode fiber and SHF, a part of the core mode excites
the cladding mode. The core mode and the excited cladding
mode meet and are coupled to the single-mode fiber at the
second fusion point between the alcohol-filled SHF and the
single-mode fiber. Due to the different effective refractive
index of the core and cladding of the LC filled SHF, and the
length of the LC filled SHF, the interference occurred at the
second fusion point, forming a MZI.

First, the interference spectra of the prepared LC-SHF
structure were observed by using a supercontinuum light
source and an optical spectral analyzer (OSA, Yokogawa
AQ6370D) with a resolution of 0.02 nm. The detection results
are shown in Fig.6. The structural diagram of the proposed
FRL modulator is shown in Fig. 5. A 980nm laser diode
(PL-974-500-FC/APC-P-M) and a 1.6-m erbium-doped fiber
(EDF) are connected via a 980/1550nm WDM. The laser
diode works as a pump source. The effect of isolators is to
suppress unwanted reflections. The light is then transmitted to
a 5.5-mm-long SHF filled with the E7 liquid crystal, which
is used as both a wavelength selection filter and a sensing
head due to clad mode and core mode interference effects.
Finally, the output spectrum is connected to the 10:90 coupler,

Fig. 7. Transmission spectrum evolution in supercontinuum light source
with temperature change from 22◦C to 27◦C.

where 10% of the optical port is extracted to the spectrome-
ter (OSA) and the other port is fed back into the laser cavity.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The pre-experiment based on a broadband light source was
monitored at room temperature (22◦C-27◦C). The LC-SHF
structure is fixed by two conductive glasses, and the modulator
is placed inside the thermostat (CB1701, Biopioneer Tech Co.,
Ltd, China). Set the temperature interval at 1◦C and change
the temperature every half an hour. When the temperature
is stable and the output laser spectrum no longer drifts, the
readings are recorded to ensure the accuracy of the obtained
data. Conductive glass side walls are not fully encapsulated to
increase the interaction between ambient temperature and LC.
The temperature was increased at a step of 1◦C each time.
At the beginning of the experiment, the ambient temperature
of SHF structure was 22◦C. Each test was left standing
for 45 minutes to ensure the reliability of the results. Fig.6
shows the transmission spectrum of the temperature from
22◦C to 27◦C. As the temperature rises, the shift of laser
peak indicates that the laser peak has a blue shift and the
light wavelength moves to a shorter wavelength. According to
Equation (5), the shift of laser peak wavelength depends on
the change of effective refractive index difference. It shows
that the effective refractive index difference decreases with
the increase of temperature due to thermo-optic effect. The
corresponding spectrum is shown in Fig.7. The test results
show that the wavelength is shifted from 1520nm to 1495nm.
It shows good linear stability with a sensitivity of 4.79nm/◦C,
as shown in Fig.8.

Fig. 9 shows the transmission spectrum excursions of the
sample from 80 Vrms to 104 Vrms at 2kHz AC voltage.
When an electric field greater than the threshold voltage and
perpendicular to the air axis is applied, the LC molecules will
overcome the effects of surface anchoring energy and thermal
motion and reorient under electric field modulation. In this
structure, the threshold voltage of E7 LC is 80Vrms, and the
resonance wavelength at about 1500 nm in the transmission
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Fig. 8. Function relationship between the temperature and the Interfer-
ence peaks wavelength with temperature change from 22◦C to 27◦C.

Fig. 9. Transmission spectrum evolution in supercontinuum light source
with electric field change from 80Vrms to 104Vrms.

spectrum is red shifted. When the applied voltage exceeds this
threshold value, LC molecules in the air hole are arranged
regularly in the direction of the electric field, resulting in both
regular RI changes and linear wavelength shift. Yang et al. [23]
described and explained this phenomenon. As shown in Fig. 9,
when the applied voltage is further increased from 85 Vrms to
104 Vrms, the interference peak shifts linearly from 1496nm
to 1512nm. The results of linear fitting show that the tuning
efficiency of the device is up to 0.615 nm/Vrms. These high
sensitivity results from the critical phase matching condition
between the fiber core mode and the liquid waveguide mode,
and the resonant wavelength is determined by the intersection
between the dispersion curve of the fiber core mode and the
liquid waveguide mode. When the RI of the liquid waveguide
changes slightly, such as when the temperature or electric
field changes, the resonant wavelength usually shifts greatly.
This means that our device has good potential for high
sensitivity wavelength demodulation temperature and electric
field sensing.

Fig. 10. Function relationship between the electric field and the
Interference peaks wavelength with electric field change from 80Vrms
to 104Vrms.

Fig. 11. Transmission spectra of the FRL based temperature modulator
when T changes from 22◦C to 30◦C with the steps of 1◦C.

A related point is that upon excitation by the AC voltage
source, some power dissipation should occur in the LC filled
hole and the temperature should increase (which would lead to
a blue shift). The net shift is still towards longer wavelengths
so the voltage induced shift competes successfully with the
opposite thermally induced one. In this case, the change in
the electric field remains linear. This is a good proof that the
sensor can still work under the influence of temperature.

Further, the FRL system was used to test the temperature
range from 22 ◦C to 30 ◦C to investigate the performance of
the modulator. The results are shown in Fig. 11 and 12. As is
known to all, with the increase of temperature, the effective
RI decreases affected by thermo-optic effect. The transmission
spectrum of fiber ring laser will shift to shorter wavelength and
the emission wavelength will appear blue shift. The detection
sensitivity is up to 4.23nm/◦C, a five-fold improvement over
conventional FRL based temperature sensors. Compared with
the broadband light source, the detection sensitivity is slightly
lower, which we think may be due to the physical deviation
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Fig. 12. Variations of the emission wavelength when T changes from
22◦C to 30◦C with the steps of 1◦C.

Fig. 13. Transmission spectra of the FRL based electric field modulator
when electric field change from 80Vrms to 128Vrms with the steps
of 8Vrms.

caused by the interference spectrum clutter after the injection
of liquid crystal. However, as shown in Fig. 12, the tem-
perature modulator based on the FRL system still maintains
good linearity. Interference peaks also exist between 1525nm-
1560nm according to the spectrum of broadband light source.
This is within the laser pump gain threshold, so that the peak
laser output can be obtained as the external parameters change.

Fig.13 shows the transmission spectrum of the FRL modu-
lator from 80 Vrms to 128 Vrms at a 2kHz AC voltage. A high
SNR (greater than 30dB) and a narrow 3dB bandwidth (less
than 0.15nm) can be found in Fig.13. This means that our
modulator has good potential for long-range, highly sensitive
electric field demodulation. As can be seen from Fig. 14,
the detection sensitivity is 0.604 nm/Vrms. Good consistency
was maintained with the data shown in the pre-experiment
in Fig. 9.

An important parameter to judge the performance of an FRL
modulator is its stability, which determines the application

Fig. 14. The fluctuation of the laser output within 5 min at each inclination
angle.

Fig. 15. Test for time stability of wavelength shift and power fluctuation.

TABLE I
SENSITIVITY COMPARISON WITH OTHER

TEMPERATURE SENSING STRUCTURES

field of FRL. The transmitter wavelength and output power
of the modulator designed in this experiment were tested
for more than 3 hours, as shown in Fig.15. The wavelength
difference was less than 0.16nm and the power change was
less than 0.1dB, which verified the good performance of the
modulator.

The performance of the previously reported work is sum-
marized and compared with our device as shown in Table I.
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It can be seen from Table I that the proposed thermo-optic
and electro-optic tuner based on LC-SHF modulation has
advantages in sensitivity. In addition, the device manufacturing
method is very simple, easy to mass production; It can meet
most testing requirements.

IV. CONCLUSION

A SHF ultra-high sensitivity electric field and temperature
modulator based on LC penetration in FRL system is proposed
and demonstrated experimentally. SHF can form a temperature
and electric field modulator under the combined action of the
high thermal and photoelectric effect of the liquid crystal and
the interference of the core mode and cladding mode in SHF.
Based on this, SHF in the system acts as a laser filter and
sensor head at the same time. In addition, the LC-Filled PCF
has a temperature sensitivity of up to 4.23nm/◦C due to the
special temperature response of the LC. The sensitivity of elec-
tric field modulated by electro-optic effect is 0.604nm/Vrms.
Furthermore, the FRL system has a high signal-to-noise ratio
(∼30dB), a 3dB band width (less than 0.15nm), and good
stability. Therefore, thermo-optic and electro-optic modulator
proposed has potential to be applied to remote environmental
monitoring and power engineering.
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