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Recent Advances in Quantitative Gait Analysis
Using Wearable Sensors: A Review
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Abstract—The current gold standard for gait analysis
involves performing the gait experiments in a laboratory envi-
ronment with a constrained space. However, there is growing
interest in using flexible, efficient, and inexpensive wearable
sensors as tools to perform gait analysis. This review aimed
to identify and summarize the current advances in wearable
sensors for various aspects of gait analysis, such as the
application of wearable gait analysis systems, sensor sys-
tems and their attachment locations, and the algorithms used
for the analysis. The PRISMA guideline was adopted to find
relevant studies from the period 2011 to 2020 from several
scientific databases. A total of 76 articles were selected based
on the inclusion and exclusion criteria. A wearable inertial
measurement unit (IMU) attached to the lower limb region was
found to be the most common approach for gait analysis.

Common framework of wearable-based gait analysis
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Temporal, spatial, and spatiotemporal features were the most common quantitative gait features extracted from the
wearable sensors. The proposed frameworks showed varying performances, and an increased number of sensors did
not necessarily improve the estimation performance metrics. A few studies have integrated various machine learning
techniques for classification problems, correction algorithms, crosschecking functions, and scoring functions. Finally,
this review paper discusses the challenges and future direction of the research on quantitative gait analysis.

Index Terms— Gait analysis, wearable sensors, inertial
applications.

measurement units, machine learning, walking, clinical

|. INTRODUCTION

AIT is often interpreted as the manner of walking.

Quantitative gait analysis is the in-depth analysis of the
gait of a person based on various quantifiable parameters.
Gait analysis has wide applications ranging from sports to
clinical investigations. In sports, gait analysis is often utilized
to assess the performance of athletes, prevent injuries, and
provide a training guide [1], [2]. In clinical applications, gait
analysis is performed to characterize certain gait pathologies,
track rehabilitation progress, and evaluate the effectiveness of
certain treatments [3]-[5]. In addition to these applications,
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gait analysis can be used to predict the risk of falling in elderly
subjects [6], [7].

Several approaches can be used to perform the gait analysis.
In most clinical settings, a combination of observation and
qualitative assessment by clinicians and self-reported assess-
ments by patients is employed [8], [9]. Observations collected
by clinicians such as doctors or physical therapists may pro-
vide some quantitative gait features such as distance covered,
total walking time, gait speed, and cadence. Nevertheless,
these are subject to inter-observer variability and human error.

Presently, it is very common to perform quantitative gait
analysis in a laboratory environment by using a gold standard
measurement such as the combination of motion capture and
force plate systems. Motion capture enables precise tracking
of the spatial information of human motion in 3D, whereas
the force plates provide dynamic features such as ground
reaction forces and moments. However, the use of these
specialized instruments is limited to only a few clinics or
research facilities and have limited capture volume; thus,
they may not necessarily capture the natural gait of the
subject [10]. Another concern is the considerable time required
for preparing for the experiment, such as placing markers and
conducting anthropometric measurements, which may not be
convenient for patients participating in the study.
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The recent vast developments in sensor systems and com-
putational methods have made it possible to assess the
gait outside the laboratory through wearable sensor systems.
In addition to gait analysis, wearable sensors have been
investigated to predict several clinical conditions based on the
resting heart rate, temperature, and other features [11], [12].
In this review, we focus on the recent advancements in
wearable-based gait analysis, which has recently been widely
adopted in various applications. The number of sensors used
may depend on the subject of interest. For example, sensors
attached to both legs are preferred for a highly impaired
gait [13]. Wearable inertial sensor-based gait analysis also
serves as a supplementary assessment of the physical function
of patients undergoing total hip arthroplasty [14] and in clini-
cal analysis of idiopathic normal pressure hydrocephalus [19].
Several studies have discussed the long-term assessment of
gait using wearable sensors [15]. In clinical applications,
it has been reported that there is a strong correlation between
accelerometer-based motor fluctuation measurement and the
gait item in the Unified Parkinson’s Disease Rating Scale-
Part III [16], which suggests that the accelerometer may be a
useful tool for monitoring Parkinson’s disease (PD) patients.
Wearable inertial sensors have also been used in biofeedback
systems for gait and balance training of PD subjects [17], [18].
Gait quality metrics were found to be robust in assessing the
gait of two matched groups of multiple sclerosis patients at two
separate locations with different experimental protocols [20].
In assessing gait ataxia in people with spinocerebellar degener-
ation, the accelerometer-based assessment is more responsive
than the standard clinical scale for the assessment and rating of
ataxia [21]. Nevertheless, the performance accuracy and types
of analysis are dependent on many factors such as the types
of sensors, number of sensors, their positions on the body, and
the methods and algorithms used. Therefore, this study aimed
to address the recent advances in wearable-based gait analysis
based on the above mentioned factors. The overall scientific
contributions of this review paper are as follows:

« It presents an overview of the recent state of the art in
quantitative gait analysis using wearable sensors, which
have been validated against the gold standard measure-
ment or other measurement systems.

o It provides key insights into the existing wearable-
technology-based gait analysis in terms of the number and
types of sensors, gait features, positioning of the sensors
on the body, as well as the method and algorithms used
in each study.

« It highlights the current applications of wearable tech-
nology based gait analysis for both general purposes
such as sports and clinical purposes related to various
pathological conditions.

o It discusses the issues, challenges, and future research
direction for researchers and clinicians working in this
field.

The remainder of this paper is organized as follows.
Section II presents the methods for locating relevant papers
on gait analysis, as well as the exclusion and inclusion criteria
for the paper to be reviewed. Section III presents the results of
the literature search, which are classified based on key topics

such as type and number of sensors, application of wearable
gait analysis, sensor positions on the body, and algorithms
implemented to extract the gait features. Section IV discusses
the findings, current challenges, and possible future research
directions. Finally, Section V concludes the review.

Il. METHODS

The method used to find relevant references containing
state-of-the-art techniques followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guideline [22], which is commonly used for reporting sys-
tematic reviews. The search was conducted on several data-
bases including PubMed, IEEE Xplore, Scopus, and IST Web
of Science for the period from 2011 until 2020. The time
constraint was added to ensure that only recent advances
in this topic were considered for the review. Search key-
words and combinations were formulated, as shown in Fig. 1.
In the case of abbreviated search terms such as IMU and
GREF, the search was repeated with their expanded forms,
i.e., “inertial measurement unit” and “ground reaction force,”
respectively. We limited the search to only the titles of the
articles along with the time constraint from 2011 to 2020.
Gait was a necessary word in the document title, followed by
any combination of keywords, as depicted in Fig. 1.

The database search was performed on February 8, 2021.
A total of 1550 records from all the databases were included
in the selection process. These results were then imported into
the Mendeley® Desktop reference management software (ver-
sion 1.19.4, Elsevier). Duplicate records were automatically
removed by the software if an exact match was detected. In all,
860 duplicates were identified, resulting in 690 records that
needed to be screened.

The screening stage excluded certain studies on the topics
depicted in Fig. | based on the title and abstract. Assistive
walking technologies were not included in this study, as most
of these placed the sensors on the walking device, such as on
a cane or a walker. Studies using non-wearable sensors, such
as studies employing cameras or Kinect or any combination of
these systems, were excluded. Smartphone-based studies were
excluded because they are not a fully dedicated system and are
mostly used for activity recognition or human authentication
as opposed to the detailed gait analysis targeted in this review.
Other unrelated studies such as those on sensor development,
sensor-to-body alignment, underwater gait, and person/gender
recognition were also detected and excluded in the screening
stage. At the end of the screening stage, 344 records were
excluded based on the set criteria, leaving 356 articles for the
next stage.

In the eligibility stage, the full-text articles were accessed
to find relevant studies to review the state of the art. The
inclusion criteria for full-text screening are shown in Fig. 1.
We preferred studies that set a benchmark or compared their
proposed framework/system with a gold standard system or
other existing studies. Moreover, each of the studies addressed
various gait features, as depicted in Fig. 1. Nevertheless,
we found some studies that used sensors with cables tethered
to a data processing unit such as a computer, and those studies
were discarded. Another criterion was that the studies must
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Search these terms on :
Document Title

AND

Formulated keywords

Wearable
Sensor
Sensin*
IMU
Accelero*
Gyro*
GRF
footswitch

Assessment
Evaluation
Measurement
Analysis
Feedback
Haptic
Audito*
Visual

AND

OR

Databases: IEEE (199) PubMed (256) Scopus (590) Web of Science (505)
Time constraint : 2011- 2020 (search performed on Feb 8, 2021)

i

‘ Records from database searching (1550) ‘

Identification

Records with duplication (n=860)

‘ Records screened (n=690) ‘

Screening

Records excluded by title and abstract screening (n=344) :

Assistive walking tech. (24)

Camera/vision-based analysis (31)
Clinical/Intervention/Case study (24)
Conference/meeting abstract (55)

Duplicate (15)

Fall-risk/prediction study (22)

Non-human study (23)

Non-wearable sensors/ Combination with wearables (31)
Other non-related study (105)

Using smartphone (14)

Full text accessed for eligibility (n=346)

Eligibility

Records excluded by full-text screening (n=270) :

Inclusion criterion:

Study showing benchmark to the gold standard, or to other
method from existing study, or at least referencing the
validated method they use.

Sensors used must be wearable with no attachmentor
cables to system out of the body.

It should address several gait features such as gait events,
temporal features, spatial features, spatio-temporal
features, gait indices, biomechanical features, statistical
features, or new gait metrics.

Included

Studies included (n=76)

Fig. 1. Formulated search keywords on several scientific databases with the time constraint, followed by the PRISMA flowchart for inclusion process
and exclusion criterion of the articles selected in this study. Asterisk (*) indicates wildcard for the search term.

address more than one gait feature. At the end of this stage,
76 articles were found eligible for a systematic review. The
overall flowchart of the article selection process is depicted
in Fig. 1, and the distribution of eligible articles is depicted
in Fig. 2.

A. Existing Review
While doing this process, a total of 21 review papers were
also identified regarding this topic. Among them, there are

six review papers published in 2020, which are described
briefly as the following. Kobsar et al. on [23] addressed a
specific application of wearable inertial sensors for adults
with osteoarthritis. Gondim et al. [24] discussed the use of
the portable accelerometer to evaluate the gait of people
with Parkinson’s disease. Junior et al. [25] was focused on
reviewing gait assessment in children. However, all of the
above papers discussed a very specific subject and conditions.
Diaz et al. [26] discussed a wider scope of gait that includes
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Fig. 2. Distribution of the eligible articles based on year (bar chart) and
publication types (pie chart).

balance and range of motion analysis using wearable sen-
sors. Dasgupta er al. [27] was focused on acceleration gait
measure for motor skill assessment. Hence, it was specific
to motor skills instead of gait. Saboor et al. [28] discussed
the latest trend on gait analysis using wearable sensors
combined with machine learning-based methods. However,
the study selected was constrained from 2015 onwards with
limitations only to machine learning methods. Other notable
review papers are from Tao et al. [29] in 2012 that discussed
basic human gait analysis and sensors system, Lopez-Nava
and Munoz-Melendez [30] in 2017 that focused on wearable
inertial sensors for motion analysis, and Caldas et al. [31] that
specifically discussed inertial sensors and adaptive algorithms
for gait analysis.

The differences between this review to the above works are
this review aims to provide a comprehensive review of quan-
titative gait analysis using wearable sensors with no constraint
on specific subject groups nor the method of analysis. Thus,
it covers a wider range of gait analysis that includes various
applications such in general walking gait, running gait, and
different kinds of pathological gait. In addition to that, this
review is intended to summarize the last decade’s advancement
of this topic, identify challenges in recent studies, and give
future directions on research on this topic.

Ill. SYNTHESIS OF RESULTS

We ensured that all the included papers validated their
proposed techniques by comparison against the gold standard

Healthy .

Age: Pathological

Children Parkinson’s Disease

Mid-age Multiple Sclerosis

Elderly Stroke
Huntington’s Disease

Gait types: Cerebral Palsy

Walking 46 23 Osteoarthritis

Running Alzheimer Disease
Spinocerebellar Degeneration

Terrain: Hemiparetic

Level Cerebellar Ataxia

Ramp Other Joint/neurological diseases

Stairs

Fig. 3. Identified application of wearable-based gait analysis.

Twenty-three studies discussed the application to both healthy control
and patients with certain pathological conditions.

measurement such as motion capture and/or force plate sys-
tems or other widely accepted measurement methods, such as
using an instrumented treadmill or the GAITRite® system.
There were some exceptions to this criterion, such as studies
that used force-based sensors [54], [94] on the foot to directly
estimate the initial/terminal contact of the foot, analyzed only
the statistical features from the raw data [55], employed
a machine learning-based algorithm for classification [80],
[111], or cited their previously validated framework [78], [88].

This section addresses several important points about
wearable-based gait analysis, starting from the applications,
sensors used and location attachment, gait features that can
be extracted, data processing method, algorithms, as well as
experiments and validation methods. Table [-IV summarize
those important points from all of the eligible studies.

A. General Application of Wearable Gait Analysis

Based on the results of the literature search, we identified
that 46 (61%) of the eligible studies tested their framework
only on healthy control subjects, whereas 23 (30%) included
both healthy control and patient groups. We did not dis-
criminate the healthy subjects based on age; thus, children
or the elderly were also considered as general applications.
Analyses specific to the elderly [58], [62] or children [75], and
comparisons between age groups such as normal middle-aged
subjects and the elderly [49], [53], [61], [105] were examples
of general application by age difference.

In terms of assessing different gait types, we identified a
few studies that discussed both walking and running [38], [51],
[91], [96]. The analysis of walking on different terrains such as
ramp walkways, walking up- and downstairs, or outdoors was
discussed in [68], [76], [96], [104], and [111]. Temporal, spa-
tial, and spatiotemporal gait features were found to be the most
commonly analyzed features within the studies. These features
could be further derived into certain gait indices or gait metrics
such as gait regularity and symmetry index [37], [102], which
are mostly used in clinical applications. Estimation of lower
limb joint angles [45], [51] and joint moments [50] were also
conducted using wearable sensors.

B. Clinical Application of Wearable Gait Analysis

In addition to the general application of gait analy-
sis, we identified several clinical applications such as
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TABLE |
STATE OF THE ARTS OF QUANTITATIVE GAIT ASSESSMENT USING WEARABLE SENSORS
Ref.  Subjects (n) Sensors Experiments/ Benchmark Algorithms/ Data Pro-  Gait features [Performances metrics]
(Location) cessing
Healthy (3) 7 IMUs (lumbar, Overground indoor walk, Non-ML/ Online (joint  Stride length, joint angles (hip, knee, ankle)
[36] thighs, shanks, variable-speed treadmill/  angles), Offline (stride [RMSE < 4 deg]
feet) Motion capture length)
Healthy (5) 1 IMU (left heel) 20 m corridor walk with  Non-ML (threshold ~ Stride count, cadence, gait speed, ratio of
[37] various speed/ Camera based, sliding window)/  swing/stance, stride regularity, stride length
Real-time [err. < 3%], walking distance [err. < 2%]
Healthy (5) 2 IMUs (shanks)  Treadmill walk at [2,4] kph  Non-ML (threshold  Gait events (HS and TO [err. < 1%], MSw) ,
[38] and run [8,12] kph/ Motion  based)/ Offline stride time [err. < 1.6%] , swing, stance time.
capture
Healthy (22) 1 acc. (L4-L5) Level walk, 10m, barefoot/ Non-ML (peak detec-  Step length, stride length [p > 0.05], {stride,
[39] Motion capture tion, integration)/ Of-  step, stance, swing, DS, SS} time, gait speed
fline [p > 0.05], cadence, foot symmetry
Healthy (10), 4 IMUs (shanks 50 m corridor walk/ Motion = Non-ML/ Offline Joint angles (multi-segment foot angles)
[40] OA(12) and foot) capture [RMSE < 2 deg, Mean RoM diff. < 4 deg]
Healthy (10), 1 acc (thorax 4.8 m level walk/  Non-ML (Inverted pen-  Gait speed [ICC(CI) 0.95(0.75,0.97)], ca-
[41] pre-HD (10), level) GAITRite® dulum)/ Offline dence [ICC(CI) 0.95(0.75,0.97)], stride length
HD (14) [ICC(CI) 0.89(0.77,0.95)], step length, step
time, step time asymmetry, step-stride regular-
ity
Healthy (8) Textile socks 2 min walk on treadmill at Non-ML (direct use of  Gait events (HS [0.08 £+ 0.08 s], TO), stride
[42] 4 kph/ F-scan sensors data)/ Offline time [err. < 3.5%], stance time
Children (1), 7 IMUs (lumbar, 10m walk preferred speed/  Non-ML (COutwalk”  Joint angles [RMSE < 4 deg]
[43]  Children with  thighs, shanks, Motion capture protocol)/ Offline
CP (6) feet)
Older (10), 2 IMUs (upper 2x20 m and 4x50 m walk  Non-ML/ Offline Gait speed [2.8 £ 2.4 cm/s], stride length [1.3
[44]  PD (10) shoes) with 180 deg turn/ Motion + 3.0 cm], swing width, path length
capture
Healthy (5) 7 IMUs (pelvis, 5m indoor level walk/ Mo-  Non-ML/ Offline Joint angles [RMSE < 10.14 deg] and 2D joint
[45] thighs, shanks, tion capture and force plates trajectories
feet)
Healthy (10) Instrumented in- S5m indoor level walk/ F- Non-ML/  Real-time  Step time, stance time, swing time
[46] soles scan (Data streaming)
Healthy (10) e-AR Treadmill walk with vari- Non-ML  (recursive)/  Stride time [err. < 1.47%], stance time [err. <
[471 able speed and inclina-  Offline 4.84%], swing time [err. < 8.03%]
tion/ Instrumented tread-
mill, High speed camera
(250Hz)
Children (15), 2 IMUs (feet) 6 m straight walk and figure ~ Non-ML/ Offline Gait speed [4.3 £ 4.2 cm/s], stride length [3.4
[48] Children with 8 walk for benchmark; 200 + 4.6 cm] , % {stance, swing, DS}, cadence,
CP (14) m walk in clinical setting heel-toe clearance, strike [0.5 £ 2.9 deg] and
with self selected speed for lift off [3.9 + 5.8 deg] angles
testing/ Motion capture
Healthy (12), 1 IMUs (L5) 5x25 m route on preferred Non-ML (continuous  Step time and count, stride time [ICC 0.994-
[49] Older (12) and fast speed/ GAITRite®, wavelet transform)/  0.999], step length [ICC 0.756-0.929], step ve-
camera Offline locity [ICC 0.853-0.942]
Healthy (4) 3 IMUs (thigh 3 m walking straight indoor/  Non-ML/ Offline Joint moments [3.5 % < NRMSE < 21 %]
[50] [right], shank, Motion capture and force
foot) and force plates
sensors
Healthy (3) Soft sensing suit Instrumented split-belt  Non-ML/ Offline Joint angles (hip, knee, ankle) [RMSE < 15
[51] treadmill with 5 speeds (3 deg]
walk and 2 run)/ Motion
capture
Healthy (10) 2 acc. (L3-L4  Instrumented split-belt ~ Non-ML/ Offline Gait events (IC, TC), stride time [RMSE <
[52]¢ and shank) and 1  treadmill with 5 speeds (all 1.6%], step time [RMSE < 4.3%], DS time
gyro (shank) walk)/ Motion capture [RMSE < 25.7%], stance and swing time
Young (9), 2 IMUs (ankles) Self-selected speed walking  Non-ML/ Offline Heel [3.22 + 1.50 cm] and toe [1.69 + 0.70
[53] Mid-age (5), with variation on stride ve- cm] clearances, foot angle [2.49 £ 1.21 deg]
Old (6) locity and stride length/ Mo-

tion capture
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TABLE Il
STATE OF THE ARTS OF QUANTITATIVE GAIT ASSESSMENT USING WEARABLE SENSORS

Ref.  Subjects (n) Sensors Experiments/ Benchmark Algorithms/ Data Pro-  Gait features [Performances metrics]
(Location) cessing
Healthy (10) Sensorized Treadmill walk at 2 km/h/  Non-ML/ Real-time Gait phases
541/ insoles Not needed
Healthy (25), 2 IMUs (lower 6 min walking/ Not needed  Non-ML/ Offline Statistical (Mean amplitude and Coefficient of
[55] SCD (25), PD  back, upper back) Variation)
(25)
Older (19), 3 IMUs (C7, L5, 2 min walking on 25 m cir-  Non-ML/ Offline Statistical (Magnitude, attenuation, harmonic
[56] PD (13) back of head) cuit/ GAITRite® ratio)
Healthy (15), 2 IMUs (feet) 10 m straight walk normal ~ Non-ML/ Online Gait events (HS [0.125 + 0.01 s], TO [0.089 +
[57] PD %), speed/ FSR sensors 0.015 s]), {stride, stance, swing, walking} time,
Stroke (4) stride count, stride length, gait speed, cadence
Older (82) 1 acc. (L3-L4) 2x40 m round walkway at  Non-ML/ Offline (Cadence, gait speed, step length, step time)
[58] comfortable walking speed/ [ICC 0.91-0.96], variability and asymmetry in-
GAITRite® dices
ACL  (23), e-AR 6 min walking on the corri-  Non-ML/ Offline Asymmetry(|acc|) [MSE=0.044]
[59] TKR (31) dor/ Pressure insoles
Healthy (10),  Smart shoes 15 m walking straight/ ML (SVM)/ Real-time Gait phases (IC, FF, HO, TO, swing) [Accuracy
[60] OA (14) Force plates 94.08 %]
Healthy (10), 1 acc. (waist) 10 m walking/ Video cam- ML (K-means cluster-  Gait event (IC), step detection [Sensitivity
[61]  Older (21) era ing)/ Offline 99.33 %], frail classification
Older (24) 2 IMUs (shoes 5 min walking on treadmill Non-ML/ Offline Gait speed [RMSE < 0.089 m/s], stride length
[62] lateral) with variable slope/ Instru- [RMSE < 0.336 m], stride time [RMSE <
mented treadmill 0.004 s], cadence [RMSE < 0.098 steps/min]
PD (3) Sensorized 18 m walking straight with ~ Non-ML/ Offline Gait phases (IC, FF, TC, swing), step length
[631F insoles, 6 IMUs  variable pace/ Motion cap- [Mean diff. 0.9 cm]
(hips, shanks, ture
feet)
Healthy (10) Smart shoes Free walking and 4x5 m  Non-ML/ Real-time  Gait phases (HS, stance, HO, swing) [Error
[64] walk/ Motion capture (Data streaming) range between 0.036-0.110 s]
Healthy (16), 2 IMUs (feet) Walking with preferred Non-ML/ Real-time  Stride length [RMSE 0.05 m], step length, ca-
[65]  Neurologic pace/ Kinect (Data streaming) dence, gait speed, {stride, stance, swing [RMSE
patients (6) 0.02 s]} time, foot clearance, turning rate
Healthy (12), 7 IMUs (pelvis, 14 m walk straight/ STEP32  Non-ML/ Offline Cadence, % gait phases, ROM (ankle, knee,
[66] Obese (10) thighs,  shanks, hip) [Range of ICC 0.43-0.72]
feet)
Healthy (16), 2 IMUs (shins) TUG (3 m walk)/ Motion = Non-ML/ Offline Step velocity, stride length, stride time, ca-
[67] PD with FoG capture and video camera dence, FoG detection [Accuracy 98.51 %]
(26) non FoG (for FoG)
(16)
Healthy (6) 1 IMU (foot) Level ground walking, stairs ~ Non-ML/ Offline Step count, walking distance [Err. j0.81 %], %
[68] climbing/ Motion capture gait phases, 3D trajectory [RMSE 0.28 m]
Healthy (7) 2 acc. (heels) 12 m walk/ Motion capture =~ Non-ML/ Offline Gait events (HS [7.2 + 22.1 ms], TS [0.7 £+
[69] and video camera 19.0 ms], HO [3.4 £ 27.4 ms], TO [2.2 £+ 15.7
ms]), {stride, stance, swing} time [Range of
ICC 0.87-0.98], heel clearance
Healthy (15), 2 IMUs (shanks) Various walking tasks/ Ac-  Non-ML/ Offline Step count, {stride [6 + 9 ms], step [6 £+ 7
[70] MS (45) tivity monitor, Inertial sen- ms], swing [25 £+ 19 ms]} time
sors
Healthy (25) 4 IMUs (ankles, 15 m  walk normal Non-ML/ Offline Cadence [SEM 5.24 steps/min], gait speed
[71] mid of superior speed/ Motion capture, [SEM 0.14 m/s], stride length [SEM 0.21 m],
iliac spine, C2) GAITRite® {stride [SEM 0.04 s], stance [SEM 0.04 s],
swing [SEM 0.02 s]} time, {strike [SEM 2.11
deg], lift-off [SEM 3.33 deg], pelvis, spine}
angle
Stroke (25) 1 IMU (LS5) Laboratory and real-  Non-ML/ Offline Step velocity [ICC 0.744 m/s], step length [ICC
[72] life  longitudinal  study/ -0.411 m], {step [ICC 0.797 s], swing [ICC

GAITRite®, OPAL, video
camera

0.431 s], stance [ICC 0.759 s]} time, step
width, asymmetry and variability indices
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TABLE IlI
STATE OF THE ARTS OF QUANTITATIVE GAIT ASSESSMENT USING WEARABLE SENSORS

Ref.  Subjects (n) Sensors Experiments/ Benchmark Algorithms/ Data Pro-  Gait features [Performances metrics]
(Location) cessing
Healthy (14), 3 IMUs (L2-L3, 30 strides at various speed/  Non-ML/ Offline Statistical (Pearson’s r, variance ratio, harmonic
[73]  children (10), thighs) FSR sensors ratio), Gait segmentation [Sensitivity 83.34 %
CP (22) (CP), 96.67 % (Healthy)]
Older (23) 2 IMUs (feet) Combination of normal and  Non-ML/ Offline Cadence, gait speed [ICC 0.34-0.96], step time
[74] fast speed with added cog- [ICC 0.22-0.27], step length [ICC 0.45-0.84]
nitive task/ GAITRite®
Children (10) 6 IMUs (sternum, 7 m walk straight at self- Non-ML/ Offline Stride length [RMSE 6.43 % of subject’s
[75] wrists, L4-L5, selected and fast speeds/ height], gait speed [RMSE 7.80 % of subject’s
shanks frontal) Motion capture height], {stride [RMSE 0.014 s], stance [RMSE
0.026 s]} time
Healthy (20) 4 acc. (left wrist,  Indoor, Outdoor, Treadmill =~ Non-ML/ Offline Gait events: (HS,TO) [F1 Scores (0.98,0.94)
[76]¢ waist, ankles) walk and run/ FSRs sensors indoor, (0.82,0.53) outdoor]
Healthy (35) 5 IMUs (L5, 2 min walk at 10 m path  Non-ML/ Offline Gait events (HS, TO), {step, stance} time
[77]¢ shanks, dorsal  back and forth/ Force plates
shoes)
AD (16) 1 acc. (LS) Lab-based and free-living/  Non-ML/ Offline Step velocity, step length, {step, swing, stance}
[78] Prev. paper [5] time, step width, asymmetry and variability
indices
Knee 2 IMUs (below 6 m walk straight at self- Non-ML/ Offline Gait events (IC, TO), {stride [RMSE 0.036 s],
[79] arthoplasty knees) selected/ Motion capture stance [RMSE 0.041 s], swing [RMSE 0.049
patients (16) s]} time
Healthy (27), 8 IMUs (chest, 15 m walk straight at self- ML (SVM)/ Offline Step length, gait speed, {step, stride} time,
[80]¢ PD (27) lumbar, thighs, selected and fast speeds/ {hip, knee, ankle} ROM, Patient vs. control
shanks, feet) Not needed classification [Highest accuracy 79.96 %]
Healthy (30), 7 IMUs (waist, Walk straight >15mon cor- Non-ML/ Offline Stride length, gait speed, stride freq., {stride,
[81] Stroke (20), thighs, shanks, ridor/ Motion capture stance, swing} time, foot clearance, knee ROM
Joint disease  feet) [Position err. <0.015 m]
(20
Healthy (24) 7 IMUs (waist, 6 min walk test/ Motion Non-ML/ Real-time Step [RMSE 0.04 m] and stride length, step and
[82] thighs, shanks, capture swing width [RMSE 0.03 m], cadence [RMSE
feet) 3.1 steps/min], {step, stride, stance, SS, DS,
swing} time [RMSE 0.02 s], gait speed [RMSE
0.03 m/s]
Healthy (10) 1 IMU (CoM) Walking at self-selected  Non-ML/ Offline Step length [Abs. Err. 5.6 %], gait speed [Abs.
[83] speed/ Motion capture Err. 13.5 %], walking time [Abs. Err. 14.9 %],
walking distance
MS (4), HSP  IMUs, FSRs 10 m walk, may use walking ~ Non-ML/ Offline Gait events (IC, TC), % DS [3.89 + 2.61 %],
841 (9) aid/ GAITRite® DS time [0.064 + 0.060 s]
Healthy (16) Flexible sensors 6 m walk at preferred speed/  Non-ML/  Real-time  Knee angle [RMSE 1.2 + 0.4 deg]
[85] Motion capture (Data streaming)
Healthy (15) 1 IMU (foot) 50 strides walk/ Motion  Non-ML/ Real-time = Walking distance [Accuracy 95.24 %], stride
[86]¢ capture (Data streaming) count [Accuracy 95.47 %], {stride, stance,
swing} time
Older (20) 1 acc. (waist) Real-world setting/ Video  Non-ML/ Offline Step detection, gait speed [Mean diff. -0.206
[87] camera m/s (for speed < 1 m/s), and -0.045 (for speed
1-1.5 m/s]
Healthy (20), 2 IMUs (ankles) 10 m corridor walk at pre- Non-ML/ Offline Cadence, gait speed, stride length, stride time,
[88]  Neurological ferred speed/ Prev. paper % stance and swing, ankle ROM, gait symmetry
(20) and regularity [Position Error < 1%]
Healthy (20), 6 IMUs (thighs, 15 m obstacle-free corridor =~ Non-ML/ Real-time  Cadence, gait speed, stride length, stride time,
[89] Stroke (20),  shanks, feet) walk/ Motion capture (Data streaming) % stance and swing, foot clearance, knee ROM
Joint disease and dorsiflexion-plantar angles [Err. < 3 deg]
(20)
Healthy (5) 2 IMUs (feet) 11 m walk indoor/ Motion =~ Non-ML/ Offline Gait events (HS, TO), gait speed [Rel. Err. 6.3
[90] capture + 2.2 %], stride length [Rel. Err. 5.9 + 3.3 %],
% DS phase [Rel. Err. 4.3 £ 3.3 %]
Healthy (49) 2 IMUs (feet) Treadmill run at comfort- Non-ML/ Real-time Step length [ICC 0.968-0.975], step frequency,
[91] able speed/ High speed stance [ICC 0.813-0.896] and swing [ICC
camera 0.807-0.857] time
Healthy (10) 4 IMUs (shanks, Treadmill walk with vari- Non-ML/ Real-time Gait events (HS, TO), Gait phases (stance [Ac-
[92]f feet) able speeds/ Motion capture curacy 97.9 %], swing [Accuracy 96.3 %]),

ankle angle [RMSE 3.24 £ 0.67 deg]
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TABLE IV
STATE OF THE ARTS OF QUANTITATIVE GAIT ASSESSMENT USING WEARABLE SENSORS

Ref. Subjects (n) Sensors Experiments/ Benchmark Algorithms/ Data Pro-  Gait features [Performances metrics]
(Location) cessing
Stroke (25) 2 IMUs (feet) Walking with total distance ~ Non-ML/ Offline Stride time [Err. 0.003(0.020) s], stride length,
[93] of 120 m/ Motion capture cadence [Err. -0.341(0.467) steps/min], gait
speed [Err. 0.002(0.003) m/s], % gait phases
; Note=[Err.=Non-paretic(Paretic)]
Healthy (17), Textile insoles 20 m corridor walk back  Non-ML/ Real-time  Plantar pressure, stride time, stride count
941/ hemiparetic and forth at self-selected/ (Data streaming)
(18) Not needed
Healthy (30) 1 IMU (L5) 6 m indoor walk at preferred ~ Non-ML/ Offline Gait speed [ICC 0.92], cadence [ICC 0.96],
[95] speed/ GAITRite® stride length [ICC 0.88], stride time [ICC 0.93],
% gait phases (SS, DS, Swing, Stance) [ICC
0.18, 0.12, 0.47, 0.47]
Healthy (3) 3 IMUs (waist, Walk and run on treadmill, ML (Random Forest)/  Gait phases (SS, DS, swing) [Accuracy 98.94
[96] thigh, shank) up and down stairs walking/  Offline % (walk), 98.45 % (run)]
Footswitch insoles
Healthy (22), 3 IMUs (chest, 5 m walk back and forth/ ML (Random Forest)/  Gait speed, cadence, gait ataxia quantification.
[97]  cerebellar ankles) Motion capture Offline [RMSE 0.18]
ataxia (29)
Healthy (10) 3 IMUs (chest, 7 min treadmill walk at Non-ML/ Real-time  Gait events (HS, TO), stride time [RMSE 5.027
[98] wrist, thigh), 4  various speed/ Instrumented  (Data streaming) ms], stride count [Accuracy 99.6 %]
FSRs treadmill
Healthy (9), 2 IMUs (feet) Walk at  self-preferred  Non-ML/ Offline Step length [Mean Err. 4.50 £ 2.54 %] , step
[99] PD (6) speed/ GAITRite® time [Mean Err. 2.97 + 2.51 %]
Healthy (5) 4 Ultrasonics 8.5 m walking back and Non-ML/ Offline Gait events, ankle angle [Mean diff. 0.19 +
[100] sensors forth at normal speed/ Video 1.19 deg], toe clearance [Mean diff. 0.02 + 0.84
camera cm]
Healthy (30), 8 IMUs (waist More than 15 m level Non-ML/ Offline Stride length, cadence, gait speed, ankle ROM,
[101] stroke (30) [left and right], ground corridor walk/ Mo- gait symmetry, stance/swing ratio, foot clear-
knees, ankles, tion capture ance [Position Err. 0.02 m]
feet)
Healthy (6) 2 IMUs (shoes 4.5 m and 11 m indoor Non-ML/ Offline Gait events (IC [4.22 4+ 15.48 ms], TO [-
[102] posterior) walk back and forth at 8.31 £ 21.02 ms], % gait phases, gait speed,
self-preferred speed/ Mo- stride length [Accuracy 93.23 %], heel clear-
tion capture, force plates ance [2.22 & 5.28 cm], {stride, stance, swing}
time, variability and asymmetry indices
Healthy (3) E-textile socks 11 m indoor walk at various ~ Non-ML/ Real-time % Gait phases, cadence, stride length [Pear-
[103] speeds/ Motion capture (Data streaming) son’s r = 0.283], gait speed
Healthy (11) 7 IMUs (CoM, Walking on various terrain ML (Neural Network)/  Joint angles [NRMSE < 0.092 (knee joint)]
[104] thighs, shanks, (level ground, stairs, ramp)/  Real-time
feet) Inertial sensors
Healthy (20), 5 IMUs (chest, Figure eight walk at normal ~ Non-ML/ Offline Stide length [Abs. Err. 0.02 £ 0.03 m], gait
[105] older (20) wrists, ankles) speed on laboratory envi- speed [Abs. Err. -0.01 £ 0.02 m/s], step width,
ronment/ Motion capture % gait phases, cadence, stride time, foot clear-
ance, arm-related metrics
Healthy (5) 2 IMUs (top of 60 m total walking distance = Non-ML/ Offline Stride count, stride length [RMSE 5.0 cm],
[106] shoes) with variable stride length/ stride time [RMSE 0.04 s]
Optogait system
Healthy (8) 6 IMUs (thighs, 4.5 m straight walk with ML (kNN)/ Real-time Stride time, stride length [RMSE 3.33 cm]
[107] shanks, feet) variable speeds and tasks/
Motion capture
Healthy (9) 2 IMUs (lateral 20 m straight walk at pre- ML (Neural Network)/  Gait phases classification [Accuracy 92.63 %]
[108] shoes) ferred speed/ Motion cap-  Offline
ture
Healthy (40), 1 IMU (L5) 10 m indoor straight Non-ML/ Offline Cadence [MSE Healthy(PD) 4.78(15.28)
[109] PD (24) walk at preferred speed/ steps/min], gait speed [MSE Healthy(PD)
GAITRite® 0.02(<0.01) m/s], stride time, stride length, %
gait phases [MSE 17.40 % (for double support
on PD)
Healthy (40) Pressure insoles 10 m indoor walk with var-  Non-ML/ Offline Cadence [ICC 0.99], {stride, step, swing,
[110] ious speeds/ GAITRite® stance, SS [ICC 0.65-0.96], DS [ICC 0.55-

[111]

Healthy (20)

1 IMU (ankle)

Walking on various terrain/
Not needed

ML (Random Forest)/
Offline

0.79]} time
Gait activity classification [Accuracy 98.2 %]
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Parkinson’s Disease (PD), Huntington’s Disease (HD), Cere-
bral Palsy (CP), Multiple Sclerosis (MS), Osteoarthritis (OA),
post-stroke patients among much more clinical application
within the literature. We found that most of the studies dis-
cussed the comparison from one disease group to the healthy
control group or other disease groups. Other investigations on
each of the mentioned disease groups are discussed below.

1) Parkinson’s Disease: PD is a brain disorder that causes
difficulties in walking, balance, coordination, and talking.
Gait analysis performed in PD patients can provide several
insights, such as the difference between the OFF and ON
states of medication [44] and detection of freezing of gait
(FoG) [67]. Quantitative gait analysis can provide clear quan-
tifiable features that can track the progress of patients.

We found nine studies [44], [55]-[57], [63], [67], [80], [99],
[109] that implemented a wearable sensor approach for gait
analysis in PD patients. All of these studies used IMU sensors
with a combination of two to eight IMU units. One study [63]
proposed a combination of sensorized insoles and six IMUs to
estimate the gait phases and step length while also providing
rhythmic auditory feedback to the user.

The PD group has also been used as a disease con-
trol group to identify other neurological conditions such as
spinocerebellar degeneration [55]. Other applications such
as analysis of the upper body and postural control were
discussed in [56], whereas the comparison of several machine
learning-based classifications of PD patients was extensively
discussed in [80].

2) Stroke: Stroke is caused by an interruption of blood
supply to the brain, usually in the form of a blood clot.
In the case of stroke or post-stroke patients, gait analysis
is usually performed to track the rehabilitation progress. Six
studies discussed the application of wearable gait analysis for
stroke patients [57], [72], [81], [89], [93], [101]. A study
used six IMUs on the lower limb [89] to provide a solution
for tracking the rehabilitation progress of different groups of
patients, including stroke patients, by estimating their pre- and
post-treatment knee ROM.

All studies used various combinations of one to eight IMUs.
A study, which used two IMUs on the feet [57], showed sig-
nificant differences in several spatiotemporal features between
stroke patients and healthy control groups. Another study [81],
[101] also reported clear differences in gait features between
the compared subject groups.

An extensive reliability and validation study of a single
trunk-attached (L5) IMU [72] showed moderate to good
agreement with the GAITRite® system in estimating the
stance time and several step-based features. Another validation
study using a foot-worn IMU [93] showed good to excellent
agreement on various spatiotemporal gait features for both the
paretic and non-paretic sides, and moderate agreement for the
stance and swing phases.

3) Huntington’s Disease: HD is a neurodegenerative con-
dition characterized by progressive movement disorders.
In [41], an accelerometer was used at the thorax level to
extract various spatiotemporal features based on an inverted
pendulum model [32]. A comparison between three distinct
groups of healthy controls, pre-manifest HD, and manifest HD

was presented. The results showed that there was a strong
agreement between the sensor and the GAITRite® system,
and the gait features extracted from the accelerometer proved
effective in differentiating between the groups, especially the
pre-manifest and manifest HD groups.

4) Cerebral Palsy: CP is the most common motor disability
among children. CP is classified into three types: ataxia
(poor balance and coordination), dyskinesia (uncontrollable
movement), and spasticity (stiff muscles). Three studies [43],
[48], [73] discussed the application of wearable sensors for
gait analysis of CP patients.

In [43], a specific protocol was developed for children with
CP, called the “Outwalk” protocol, to estimate the joint angles
using seven IMUs. In [48], the authors pointed out significant
differences between children with CP and typically developing
children, as indicated by various spatiotemporal and kinematic
features. Another study [73] showed that the three subclasses
of CP subjects could be distinguished based on their motor
function by analyzing their unique statistical features.

5) Multiple Sclerosis: MS is a disease that affects the central
nervous system (brain and spinal cord) and causes communi-
cation problems between the brain and other body functions.
Two studies [70], [84] employed wearable sensors for gait
analysis in MS, as discussed below. Both studies employed
IMU sensors; in [70], two units were used on the shanks,
and in [84], an IMU was combined with three force sensing
resistor (FSR) sensors inside the insole to form a wearable
system.

In [70], various walking protocols were designed with
variable walking speeds to assess the MS group. The gait
event detection algorithm was adapted from [33] and the gait
parameters were further categorized into temporal features.
Their proposed framework was validated against an activity
monitoring system (GT3X) and a commercially available iner-
tial sensor (MTXx). The results showed that there were 2 £+ 2, 6
4 9 ms, and 25 £ 19 ms errors in the step count, stride time,
and swing time, respectively. By comparing the MS group
with the healthy control group, it was found that the proposed
system could detect significant (p < 0.01) and distinct gait
characteristics between the two groups. The authors of [84]
proposed the use of sensorized insoles consisting of three FSR
sensors and an IMU to extract the temporal gait features of
patients with gait disorders such as MS and hereditary spastic
paraplegia. Initial contact (IC) and terminal contact (TC)
events were labeled manually based on the heel FSR and
lateral FSR, respectively. The results showed that there was
a mean error of 64 60 ms in the double support (DS) time,
expressed as 3.89 & 2.61% of the DS phase by analyzing
1321 strides of all participants.

From both studies, we found that temporal features were the
main gait features used to characterize MS patients. Several
temporal features, such as stride time and step time, were
found to be effective in differentiating between healthy and MS
subject groups. Moreover, it was demonstrated that temporal
features could also distinguish MS subjects based on the
disease severity level [70].

6) Joint Diseases: Articles on various joint-related diseases
such as osteoarthritis (OA) were found in the search pool.
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OA is a degenerative joint disease, which occurs when the
protective cartilage at the ends of bones is worn down. In this
case, gait analysis was performed to assess the effectiveness
of the treatment plan. Six studies have discussed various
joint-related diseases, such as OA [40], [60], anterior cruciate
ligament (ACL) reconstruction [59], knee arthroplasty [79],
and other joint diseases [81], [89].

The estimation of kinematic features such as foot angles
was found to be effective in differentiating between healthy
control and ankle OA groups [40]. A study using an ear-worn
accelerometer [59] provided various asymmetry metrics to
monitor the recovery gait of patients who underwent ACL
reconstruction or total knee replacement. Integrated FSRs and
IMU sensors on smart shoes were used to extract the gait
phases of OA patients by using the SVM algorithm in real
time with 94 % accuracy [60]. Two IMUs placed below the
knees were used to extract the temporal features in [79] for the
analysis of knee arthroplasty patients after knee replacement
surgery. The studies [81] and [89] used seven and six IMUs,
respectively, and extracted the gait features, which mainly
comprised the temporal, spatial, spatiotemporal, and kinematic
features. Knee ROM was chosen as one of the primary features
to track the prior and post-treatment gaits of the patients.

C. Sensors and Their Locations

In this review, we simplify the sensor categorization to
IMU-based, non-IMU, and a combination of IMU and other
sensors (IMU+4). IMU-based sensors were found to be the
most common wearable sensors used in this study. An IMU
generally consists of an accelerometer, a gyroscope, and a
magnetometer. Using all three components can provide the
orientation and relative position information by means of the
sensor fusion method. Nevertheless, in this review, we found
that these three components are not always used together.
Some studies used only the accelerometer [39], [55], [56],
whereas others used only the gyroscope unit [38]. In addition,
we found unique sensor systems such as textile-based [42],
[103], ultrasonic-based [103], and flexible [85] sensors.

In terms of sensor location, we found that 42, 17, and
12 studies proposed the attachment of the sensor on the lower
limb, both the trunk and lower limb, and only the trunk,
respectively. From the 42 studies that proposed lower-limb
attachment, we found that 31 of those studies proposed the
foot-based sensors which accounts for either ankle, instep,
heel-level, or lateral foot sensor attachment, or could also
be in the compact form of either socks, insoles, or smart
shoes. Only two papers proposed a head-attached sensor,
both of which were from the same authors who proposed
an ear-attached sensor [47], [59]. Interestingly, two papers
proposed the attachment of the sensors on the upper limb,
trunk, and lower limb; reference [75] focused on the gait
assessment in children, whereas [76] compared several algo-
rithms and tested them on various terrains/environments. One
study proposed a combination of sensors attached on the
trunk and head [56] for the assessment of gait in elderly and
PD patients. The distribution of the sensors and their locations
are depicted in Fig. 4.
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Foot (31)
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Fig. 4. (a) Distribution of wearable sensors used, where IMU-based
sensors account for 80%, and IMU+ which is combination of IMU and
other sensors account for 5% of the total eligible studies. (b) Location of
sensor attachment to the body, where the most was found at lower limbs
(42 studies) followed by lower limbs and trunk attachment (17 studies).
Overall, foot-based sensor attachment (31 studies) was favored over
the last ten years. (c) The detailed view of attachment of sensors
in different region of human body as summarized from the eligible
papers.
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Fig. 5. Classification of gait features that are extracted from wearable
sensors, which comprised of gait event/gait phases, spatial, temporal,
spatiotemporal, gait index/metrics, biomechanical features, statistical
features. In this review, biomechanical features are any kinematic or
kinetic-based gait features such as joint angles and joint moment.

D. Gait Features

In this review, gait features are quantifiable parameters or
characteristics of gait that are measured directly from wearable
sensors or estimated through sets of algorithms. We classi-
fied the gait features into seven categories, as depicted in
Fig. 5. The first category is the gait event or gait phase.
Gait events are instantaneous events that occur based on
the set detection algorithm, whereas the gait phase marks
the time period between the initiation and termination of
that phase. The most important gait events are IC and TC,
which represent the instants when the stance phase and swing
phase are about to commence, respectively. In some of the
identified studies, IC and TC may also be called heel-strike
(HS) and toe-off (TO), respectively. Other important gait
events identified throughout the review are midswing (MSw),
toe-strike (TS), and heel off (HO). These events were used as
markers to identify gait phases, which under the new terms
of gait classification are classified into eight distinct phases:
IC, loading response, mid-stance, terminal stance, pre-swing,
initial swing, MSw, and terminal swing. In addition to those
phases, we also identified single support (SS), double support
(DS), and foot flat (FF), in the eligible studies.

The second category encompasses the temporal features,
which contain time-based information. Stride time, step time,
stance time, swing time, SS time, DS time, and cadence are the
widely known temporal gait features. Usually, these features
are computed using information from gait event detection. For
example, stride time, which is defined as the time taken to
complete a gait cycle, can be estimated from the results of
the HS or TO event. The stance time is estimated from the
point of IC or HS to the point of TC or TO. The SS and

DS times are estimated from the information corresponding
to both sides of the foot, where the SS time is equivalent to
the time elapsed when only one foot is in contact with the
ground. The DS time is the time elapsed when both feet are
in contact with the ground. Cadence is the number of steps
walked per minute. Other than these features, some studies
also computed the total walking time, which is the sum of the
stride times per walking trial.

The third category encompasses the spatial features that
contain the length-based information, such as stride length
and step length. In addition, we also identified several spa-
tial features such as swing width, path length, walking
distance, traveled arm distance, and foot clearance (heel
and toe).

The fourth category encompasses the spatiotemporal fea-
tures, which are derived based on both spatial and temporal
features. In this case, the gait speed and step velocity were
defined as the spatiotemporal gait features.

The fifth category encompasses the biomechanical features,
which consist of kinematic and kinetic features. The joint
angles such as the hip, knee, and ankle angles are the
most commonly analyzed kinematic gait features. In addition,
we also identified the strike and lift-off angles, which are the
angles at which the foot is about to contact the ground and
is lifted from the ground, respectively. We found a clinical
gait analysis study, which extracted and used the pelvis and
spine angles of all axes [71] for their analysis. In another
study, we noticed the use of the turning rate feature to assess
the turning movement performed by the subject. Regarding
dynamic features, we identified some studies that estimated
the joint moments and extracted the plantar pressures from
pressure-based insoles.

The sixth category encompasses the statistical features
derived from the raw sensor data. We observed that the
magnitude, RMS value, harmonic ratio, mean amplitude, coef-
ficient of variation, Pearson coefficient, and variance ratio were
extracted and classified as the statistical features within the
reviewed studies.

The seventh category encompasses the gait index or gait
metrics, which are unique features derived from any of
the major gait features mentioned previously. For exam-
ple, the variability, symmetry, and asymmetry indices were
identified based on the step length, stance time, and swing
time. Another commonly reported gait metric is the stride
or step count, which is the total number of strides or steps
in a particular walking trial. Stride and step regularity, ratio
of swing and stance, joint trajectory, and stride frequency
were also used in the eligible studies. Regarding clinical
gait metrics, we found a few studies that discussed frailty
classification in the elderly [61] and the FoG metric in
PD patients [67].

E. Data Processing

Raw data from sensors can be processed in an offline,
online, or real-time manner. We found that most of the studies
in this review adopted offline data processing. This may
have been due to the need for proper experimental proce-
dures designed carefully to validate the proposed framework
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against the gold standard system such as motion capture
and force plates. Online data processing was presented in
two studies [36], [57]. The first study [36] used seven IMUs
attached to the lumbar, thighs, shanks, and feet to estimate the
joint angles in an online manner. The integral differences in
the angular velocity between the two sensor locations, coupled
with the Kalman filter (KF), was proposed to estimate the
joint angles. The results showed that the root mean squared
error (RMSE) of the joint angle estimation varied depending
on the walking speed, where the slowest walking speed
resulted in the lowest RMSE. The second study [57] used a
threshold-based algorithm to estimate the HS and TO events
from a foot-mounted IMU. Several spatiotemporal features
were derived and compared between the subject groups by
conducting a 10 m walking experiment followed by online
data processing. Their method was validated against the results
of FSR sensors and by comparison with the results of some
existing studies. The proposed method showed good agree-
ment with the FSR sensor-based method and was comparable
to the existing method. Moreover, some of the extracted
spatiotemporal features showed a significant difference
(p < 0.05) between the stroke patients and healthy controls,
and PD patients and healthy controls.

Real-time data streaming has become more common in
recent years [46], [64], [65], [85], [86], [89], [94], [98], [103]
and has contributed to improved processing time efficiency.
Real-time data processing was implemented in [37], [54],
[60], [82], [91], [92], [104], [107]; in [104], up to seven
IMU units were used for lower limb joint angle estimation.
We briefly discuss the studies that have implemented real-time
data processing. In [37], one IMU was attached to the left heel
to extract the spatiotemporal gait features such as cadence,
velocity, stride length, and walking distance. Threshold-based
algorithms and sliding window techniques enabled real-time
implementation. Real-time data processing was employed
to estimate the gait phases from an insole equipped with
64 pressure-sensitive elements, which simultaneously recorded
the GRF and center of pressure [54].

Smart shoes equipped with seven FSRs and one accelerom-
eter on each shoe were proposed to estimate the gait phases
in real time using a machine-learning-based algorithm [60].
An investigation of the validity and test-retest reliability of
real-time event detection and further spatiotemporal gait fea-
ture estimation using seven IMUs were presented in [82]. The
validity of two commercial wearables, Stryd and RunScribe,
for performing gait analysis was presented in [91], which were
benchmarked against a high-speed video analysis recorded
at 1000 Hz. The use of four IMUs attached to the shank
and foot of both legs for gait phase recognition and ankle
angle estimation in real time was studied in [92]. Another
study [104] used seven IMUs placed near the center of mass,
both thighs, shanks, and feet to estimate the joint angles in
real time. Finally, an open-source application on Python for
gait analysis using six IMUs attached to the thighs, shanks, and
feet was proposed in [107]. kNN followed by correction using
foot acceleration was used as a gait segmentation algorithm
to estimate the TO events. A GUI was developed for the
commands and visualization tools.

F. Algorithms

Treatment of raw data, or data pre-processing, usually
involves applying filtering techniques to remove unnecessary
data or noise from the raw data. For example, Butterworth
low-pass filters with various orders and cut-off frequen-
cies were commonly applied in these studies. The sliding
window technique was implemented in studies proposing a
real-time processing approach [37] or in data preparation for
threshold-based algorithms [76], [108].

We identified various sets of algorithms for processing
the raw data from wearable sensors to perform quantitative
gait analysis. To simplify, we classified the main algorithm
into two classes: ML-based algorithm and non-ML-based
(conventional) algorithm. Most eligible studies employed the
conventional algorithm to extract the gait features. Regarding
gait event/gait phase detection, we identified several algo-
rithms such as peak detection algorithm, threshold-based algo-
rithms, state machines, heuristic rule-based algorithm, and
finding of local minima/local maxima, which have nearly the
same principles. A fast Fourier transform (was implemented
to extract the gait frequency and cadence in a few studies [57],
[97]. Other methods such as continuous wavelet transform
have been implemented to extract the gait events [49], [72],
[78] and perform stride segmentation [69].

Because the majority of the eligible papers used IMU-based
sensors, several sensor fusion algorithms were applied to
estimate the orientation of the sensor position. The KF and
complementary filter are the two most adopted orientation
estimation methods. This orientation position combined with
the knowledge of gait events or gait phases can provide
spatial features such as the stride length and step length,
listed in section III-D. Double-integration combined with
the zero-velocity update method was implemented in several
studies to estimate the stride length. A model-based approach
such as an inverted pendulum [41], [49], [72], [78], [83], [103]
was also used in a few studies to estimate the gait features such
as stride length.

Several studies have implemented ML-based algorithms
such as SVM [60], [80], [104], RF [96], [97], [111], NN [96],
[104], [108], kNN [80], [107], k-means clustering [61], deci-
sion tree [80], [104], logistic regression [96], naive Bayes,
and LDA [80] in their proposed framework for quantitative
gait analysis using wearable sensors. Most of the studies
used ML-based algorithms for classification problems such
as gait event/gait phase classification [60], [80], [96], [108],
and classification of gait on different terrains [111]. Further,
we identified four studies that employed an ML-based algo-
rithm as a supporting algorithm for performing operations
such as crosschecking [61], correction [104], and false phase
detection [107]. Lastly, only one study has proposed a scoring
function for gait ataxia [97].

G. Experiments and Validation

Experiments to capture the gait can be performed in various
ways. The experimental protocols were mostly designed to
suit the objective of gait analysis. Therefore, no experimental
protocol can be deemed better than the rest. In this review,
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we present various experimental protocols developed in the
identified studies, as summarized in Table I-IV. Indoor-level
ground walking was the most commonly adopted proto-
col. Other experiments such as running on a treadmill operated
at various speeds, outdoor walking, figure-eight walk, timed up
and go, walking on a ramp, and walking on stairs with different
distances covered or different number of repetitions were also
identified. We found that the design of the experimental pro-
tocols was highly dependent on the environmental constraints,
subjects in the study, and types of wearable sensors.

We noticed several validation systems that are considered
the gold standard for assessing gait, such as the motion
capture system, GAITRite®, instrumented treadmill, and force
plates. Besides these systems, some studies have validated
their proposed wearable gait analysis framework against
camera-based systems, pressure-sensor systems, and other
inertial sensor-based systems. Each of the studies has its own
method of reporting the benchmark or validation results. The
summary of performance metrics from each of the studies
are presented in Table I-IV. We identified several valida-
tion metrics such as the absolute error, relative error, accu-
racy and precision, RMSE, mean differences, student’s t-test
(p-values), intra-class correlation (ICC), confidence interval,
limit of agreement, Bland—Altman plot, sensitivity and speci-
ficity, F1 score, false-positive rate, and standard error of mean.
The broad range of validation metrics has made reporting a
meta-analysis of the benchmark studies impractical.

IV. DISCUSSION

A. Inferences Drawn From Wearable-Based Gait
Analysis for General Application

As discussed in Section III, 91 % of the eligible papers
implemented their proposed approach on a healthy group
or demonstrated a general application. We found that the
healthy group mostly served as the control variable for com-
parison with other pathological groups. Temporal, spatial,
and spatiotemporal gait features were found to be the most
common assessments for general application. These features
were not only reported as obtained, but could also be utilized
to determine gait index features such as gait regularity or
gait symmetry [88]. A few papers have discussed the differ-
ence between age groups, that is, healthy adult subjects and
elderly subjects [49], [61], [105]. Regarding sports applica-
tions, running-based studies were discussed in [38], [51], [91],
and [96]. Gyroscope-based temporal gait analysis with a peak
running speed of 12 km/h was validated in [38]. Commercial
wearables such as RunScribe and Stryd were evaluated to
be effective wearables for measuring the spatiotemporal gait
features while running at a comfortable speed [91]. In another
study, the spatiotemporal features such as gait speed were
associated with survival in older adults [115]. The importance
of foot clearance assessment among elderly subjects was
explained in [112].

B. Most Influential Features and Challenges in Wearable-
Based Gait Analysis for Clinical Application

No particular gait feature can be considered superior to
the rest for explaining certain gait conditions of a subject.

Each gait condition has its own unique features or markers
that are distinguishable from the other conditions. In certain
cases, a visual inspection can be sufficient to assess certain
pathological markers such as hemiparesis, where one side
of the body is weakened. However, a quantifiable parameter
is required to report the factual condition of the subject.
Temporal gait features such as stride time or step time
were found to be effective in differentiating between three
types of MS patients based on the severity level of the
disease [70]. Detection of FoG, as discussed in [67], was
found to be helpful in the assessment of PD patients. Statistical
features, as described in [73], were found to be successful
in detecting gait impairment in CP subjects. Other studies
have shown that the knee ROM feature can be used to
track the rehabilitation progress of arthropathy and stroke
patients [89]. Furthermore, combining gait and other motions
may provide a more comprehensive assessment of the motor
performance [117].

We identified various clinical applications such as PD,
MS, and post-stroke pathology, as depicted in Fig. 3. The
performance, validity, and reliability of each proposed wear-
able approach have been extensively investigated. Because
each clinical condition may produce a unique gait pattern
disorder, we presume that it will affect the performance
of any of the wearable-based approaches considered in this
review. This issue highlights the importance of benchmark
experiments before applying the proposed approach to new
applications.

C. Challenges in Wearable Sensors Application and the
Importance of Sensor Placement

We found that gyro drift is a major concern when using
IMU-based sensors. There are several methods for reducing
or removing the drift, such as using the KF [36], [65], [68],
[104] and applying zero velocity update [65], [81], [90], [101],
which are widely implemented in the studies examined in
this review. Environmental interference, which affects the
magnetometer, is also a problems observed in this review.
A simple calibration procedure, which is easy to implement,
was proposed in [81] to compensate the interference. Con-
cerns relating to the secure attachment of the device to the
body have also been raised in several studies. Soft-tissue
artifacts have been found to be a source of noise in data
processing [43], [66]. Some studies that used multiple IMUs
were required to perform sensor-to-segment alignment and
calibration [45], [92] to achieve better performance. This may
increase the preparation time but is comparatively faster than
using marker-based systems.

Regarding placement of the sensor, most studies placed the
sensors on the lower limbs, followed by the lower trunk in the
lumbar vertebrae region. To emphasize more on the lower-limb
region attachment, we observed a trend of foot-based sensor
attachment for wearable-based gait analysis over the past ten
years, which account for 31 studies in this review. These
positions were found to be well suited for wearable-based
gait analysis in terms of the number of features that can be
extracted as well as the accuracy of gait feature estimation,
where attaching the sensor to the foot yielded better results of
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gait event detection than attaching to the shank or trunk [77].
The number and location of sensors were found to be more
influential factors than the algorithm used for discriminating
the severity stages of PD patients [80]. The search for the
optimal location of foot-based sensors was investigated in [86],
where the medial aspect of the foot, followed by the posterior
side of the foot, were identified as the optimal locations for
stride-related feature extraction.

D. Contribution of Machine Learning Algorithms in
Wearable Sensor Gait Analysis and Current Challenges

Machine learning algorithms have been employed in several
studies, where they have been mostly used for classification
problems such as gait events or gait phase classification [60],
[80], [96], [108] and gait activity/terrain classification [111].
We also identified a few other applications such as verification
of frailty discrimination [61], joint angle correction [104],
false swing phase detection [107], and scoring algorithms in
gait ataxia [97]. With our search strategy, we did not find
any paper on machine-learning algorithms for extracting gait
features. However, we found a recent study [116] outside our
search criteria, which implemented a deep learning approach
to estimate the spatiotemporal gait features. The dataset for
deep learning and the ground truth were collected from seven
IMUs and motion capture combined with force plate systems,
respectively, with multiple 5 m walk protocols at various
speeds. Another challenge related to machine learning is the
availability of datasets for various sensor positions and the
validated ground truth.

E. Online and Real-Time Data Processing for
Wearable-Based Quantitative Gait Analysis

We found several studies that implemented online or
real-time data processing, as discussed in Section III-E. The
vast development in computing power has enabled easier
implementation of online and real-time data processing. This
provides several advantages for both general users of wearable
devices and for patients and clinicians in clinical settings.
For example, in sports applications, real-time data process-
ing enables the user to directly reflect and possibly correct
their actions in real time for motion improvement based
on the received real-time insights. In the clinical setting,
real-time visualization is favored as real-time insight for
both patients and clinicians. Real-time data processing also
enables real-time feedback to the user, which may act as an
intervention in the case of FoG in PD patients. Nevertheless,
the implementation of online or real-time data processing may
face problems such as data package loss while transmitting
the data to the processing unit; therefore, such methods must
be validated first to ensure the accuracy of the extracted gait
features.

F. Slow Walking Speed and lIts Effect to the Performance
of Algorithms

Slow walking speed is often observed in elderly subject
and pathological groups. In some of the studies, we observed
that the stride detection performance was decreased at a slow

walking speed. For example, a study reported a 97.8 % mean
accuracy on 1.0 km/h speed, while 99.9 % detection accuracy
was observed from speed 1.5 - 4.0 km/h [98]. Another example
relates to the ICC metric, where slow walking speed produced
the lowest ICC value when compared with the comfortable
and maximum walking speeds [110]. The algorithm design
and evaluation process should be improved to accommodate
slower walking speeds for gait analysis in the elderly group.

G. Issues Related to Experiment Protocols and
Validation Metrics

Each of the reviewed studies proposed various experimental
protocols. Most of it can be simplified and referred to as “level
ground walking,” performed in a laboratory, long corridor,
or outdoor setting. Pragmatically, a longer walkway is more
suitable for capturing the natural gait of a subject, as it
provides adequate time and distance for the subjects to adjust
their walking as desired. This study [119] concluded that
a minimum of 25 and 33 strides are required to properly
compute the step symmetry and stride regularity, respectively,
in healthy control subjects. Regarding the experimental pro-
tocol, a study [120] suggested that curved walking instead
of straight walking is more appropriate for assessing people
with gait disorders. However, a treadmill-based experiment
may affect the natural gait of the subject. Further, the authors
of [121] and [122] suggested that self-paced instead of fixed
speed walking allows more natural stride variability.

We found that each of the studies adopted various valida-
tion metrics. This made it difficult to quantitatively compare
the performances of the proposed frameworks. For example,
the gait event detection was validated based on the absolute
error, relative error, accuracy, and precision, as well as the
ICC metric. Therefore, researchers working in this area may
need to report their benchmark and validation studies in terms
of various metrics to allow comparison with the existing state-
of-the-art methods.

H. Integration of Wearable Sensor Gait Analysis and
Feedback System

In this review, several studies were found to analyze the
data from wearable sensors and provide them as feedback
to the user through various modalities such as audio, visual,
and haptic feedback [54], [63], [92], [94]. Feedback strategies
are needed for gait retraining or real-time assessment to
correct certain parameters in rehabilitation or sports applica-
tions. Notwithstanding the studies considered in this review,
several studies have demonstrated immense progress made
in the wearable-based gait feedback system. The auditory
feedback investigated in [118] was found to be effective in the
short-term rehabilitation of stroke patients with hemiparesis.
A biofeedback system for gait and balance training in PD
subjects was proposed in [17] and [18]. In another study [113],
a sensing sock device with smartphone-based feedback based
on various modalities, including combining several feedback
strategies such as auditory, visual, and haptic feedback, was
proposed. By comparing different feedback modalities, a study
concluded that real-time haptic feedback was effective and less
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expensive than visual feedback [114] for gait retraining of run-
ners with high tibial load. Nevertheless, the effectiveness and
correctness of the feedback strategies need to be investigated
further.

V. CONCLUSION

This review investigated the use of wearable sensors for
quantitative gait analysis. The proposed frameworks for wear-
able gait analysis, identified in this review, must be vali-
dated against gold standard measurements or other established
sensor systems to ensure the accuracy of the acquired mea-
surements. The correlation between the number and types
of sensors along with the location of attachment to the
body, proposed method and algorithms used, and number
and types of quantitative gait features that can be extracted
were discussed comprehensively in this review. Future research
should explore the integration between wearable-based gait
assessment and feedback systems to provide real-time feed-
back to users and patients. Another area is to investigate
the performance and validity of wearable-based gait analysis
in other clinical applications. The use of machine learning
algorithms to quantify the gait features and achieve certain
performance scores for clinical application is also a chal-
lenge but necessary for researchers pursuing this research
field.
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