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Characterization of Nonlinear Behavior of
Weakly Coupled Resonators Based

on Nonlinearity Factor
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Abstract—Mode-localization is a promising method to real-
ize high sensitivity sensors, especially in the field of MEMS.
Since these sensors monitor amplitude change of weakly cou-
pled resonators, it is important to grasp condition that induces
multi-valued amplitude-frequencycurve. In this paper, we pro-
vide an efficient tool to characterize the nonlinear behavior of
the weakly coupled resonators. To analyze the nonlinearity,
we solve a two-degrees-of-freedom (2-DoF) coupled equa-
tion of motion with nonlinear spring terms. Two approxima-
tions are employed to solve the equation; Krylov–Bogoliubov
averaging method and approximation based on eigenmode
amplitude-ratio at the resonances. As a result, we obtain
two decoupled Duffing-like amplitude-frequency equations.
We show that nonlinearity of the system is described by fac-
tors contained in the equations. The factors can be explicitly
written in terms of basic parameters of the system, including
coupling spring constant and nonlinear terms. Thus, instead
of relying on numerical calculations, we can find parameter
condition that brings about multi-valued amplitude-frequency
curve. This method can also be utilized to find a condition that
eliminates the nonlinearity. As an example, we apply this method to a weakly coupled resonator which uses parallel plate
electrode as a coupling spring. We demonstrate the effectiveness and validity of this method by comparing the result with
FEM simulations. The methodology and results presented here are general one and can be applied to various systems
described by nonlinear coupled resonators.

Index Terms— Duffing resonator, MEMS, mode-localization, nonlinear, weakly coupled resonator.

I. INTRODUCTION

SENSORS using mode localization, or mode-localized sen-
sors, have been extensively studied to realize various high

sensitivity MEMS sensors [1]–[4]. The high sensitivity is
originating from large amplitude change of weakly coupled
resonators (WCRs). The amplitude change is brought by
small perturbation of mass or spring stiffness that constitute
the WCR. This kind of amplitude-based sensing method is
shown to have higher sensitivity compared to frequency-
based sensing methods [5], [6]. To date, various types of
sensors are proposed based on this method, including mass
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sensors [1], accelerometers [7]–[9], charge sensors [10], and
magnetometers [11].

In mode-localized sensors, large signal-to-noise ratio (SNR)
can be attained for large amplitudes. However, if the amplitude
becomes too large, Duffing-like nonlinearity will emerge in
the amplitude-frequency property. In this case, due to the
hysteresis of multi-valued amplitude-frequency curve, the peak
amplitude condition cannot be sustained by a naive closed-loop
system that does not use phase information. In this sense,
nonlinearity affects dynamic range of the sensor and also
architecture of the sensor system. The nonlinearity is caused
by spring hardening or by nonlinear electrostatic force used for
the coupling spring. Recently, nonlinearity of mode-localized
sensors is investigated from several perspectives. One work
proposes to cancel the mechanical nonlinearity by optimizing
the electrostatic force [12]. Another work tries to eliminate a
nonlinearity originating from electrostatic force by introducing
shaped combs [13]. On the other hand, utilization of nonlinear
regime is proposed to enhance the SNR, with the use of closed-
loop phase feedback [14]–[16].

To design mode-localized sensor system and to explore
possibilities of using nonlinear regime, it is crucial to grasp a
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condition of parameters that brings about nonlinearity. How-
ever, an obstacle in analyzing the nonlinearity of WCRs is
that the equation of motion cannot be solved analytically. This
is due to the coupled and nonlinear nature of the equation
of motion. The theoretical analysis to date therefore needs
to rely on simulations. It is, however, difficult to grasp the
behavior of whole parameter space from such case-by-case
simulations. This paper tries to provide a useful tool for this
kind of nonlinear analysis. Especially, according to the method
provided in this paper, parameter condition that induces multi-
valuedness in the amplitude-frequency curve can be found
without solving the nonlinear equation.

To analyze the WCR equation, we first employ
Krylov–Bogoliubov averaging method [17], [18]. This
is a well-known method to find approximate solutions
of Duffing-like nonlinear equations. However, since our
equations are coupled, this alone will not lead to useful
results. Recently, Yang et al have applied this method
to solve an equation identical to WCR, but their result
was not simple enough, and need to rely on numerical
calculation to demonstrate the result [19]. In view of this,
we introduce another approximation based on eigenmode
amplitude ratio at the resonance. We apply this method
to a general form of nonlinear 2-DoF WCR. Namely,
nonlinearity is introduced up to fourth order for the three
springs, i.e., two springs that support the masses and one
coupling spring. Damping terms are also introduced in the
equation. Furthermore, we consider a case of two independent
external driving forces. Thus, our method can be applied
to the case of double-resonators drive method [7]. If the
two approximations are applied to this system, we arrive at
two decoupled Duffing-like amplitude-frequency equations
corresponding to the two modes. Nonlinearity and coupling
effect of the resonator are reflected in “nonlinearity factors”
contained in the decoupled equation. We show that nonlinear
behavior is represented by these nonlinearity factors, which
are explicitly written in terms of basic parameters of the
system. Especially, we can find combination of parameters
that can cancel the nonlinearity. Finally, the validity of the
result is verified by comparing the theoretical model with
FEM simulations.

This paper is organized as follows: In section II, we review
essence of mode-localized sensors and WCR for the linear
case. Then, in section III, we try to derive an approximate
solution of nonlinear WCR. Nonlinearity factors will be intro-
duced here. Some asymptotic expressions of the nonlinearity
factors are presented, and their meaning are discussed. Finally,
in section IV, we examine a case which employs parallel plate
electrode as the coupling spring. Numerical comparison with
FEM simulations are carried out in this example. Conclusion
of the paper will be given at the end.

II. REVIEW OF LINEAR MODE-LOCALIZED SENSORS

We first review the essence of linear mode-localized sen-
sors. Formulation presented here will also be utilized in the
nonlinear case. Especially, we point out that approximation

Fig. 1. Schematic of coupled resonator system.

Fig. 2. Amplitude A1 and A2 as a function of angular frequencyω. Due to
the coupling spring, both amplitudes have two resonances corresponding
to ω1 and ω2.

based on eigenmode amplitude ratio, which is playing a key
role in the nonlinear case, is also used in the linear case.

A. Brief Summary of Mode-Localized Sensors

We consider a coupled resonator shown in Fig. 1. The
system consists of masses mi (i = 1, 2), damping coefficients
ci , spring constants ki and kc. Position of the mass mi is
denoted as xi . All springs are linear in this case. When an
external force Fi cos ωt is applied to each mass mi , equation
of motion becomes

m1ẍ1 + c1 ẋ1 + k1x1 + kc (x1 − x2) = F1 cos ωt, (1)

m2 ẍ2 + c2 ẋ2 + k2x2 − kc (x1 − x2) = F2 cos ωt . (2)

A stationary state solution of this coupled equation can be
written in a form�

x1
x2

�
=
�

A1 cos (ωt + �1)
A2 cos (ωt + �2)

�
, (3)

where Ai is amplitude and �i is phase. These factors are
function of the angular frequency ω. Since this is 2-DoF
system, it possesses two resonances ω1 and ω2 corresponding
to the two eigen modes. Due to the coupling kc, both A1 and
A2 have two resonances, as illustrated in Fig. 2.

In mode-localized sensors, ratio of the amplitudes at the
resonance, u1 = A2(ω1)

�
A1(ω1) or u2 = A2(ω2)

�
A1(ω2) are

measured. Let’s now suppose that we initially have conditions
k1 = k2 ≡ k and m1 = m2 ≡ m. Then we consider a case
when the spring constant k1 has changed as k → k + �k
due to a physical perturbation. For example, in the case
of accelerometer, �k is caused by an acceleration [7], [8].
We write the initial amplitude ratio as u0

1, u0
2 and amplitude
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ratio after the perturbation as u1, u2. Then when �k � kc,
they are shown to become u0

1 = −1, u0
2 = +1 and

u1 ≈ −1 + �k

2kc
, (4)

u2 ≈ +1 + �k

2kc
. (5)

Therefore if we define sensitivities by S1 = ��(u1 − u0
1)
�

u0
1

��
and S2 = ��(u2 − u0

2)
�

u0
2

��, they are expressed as

S1 = S2 =
�����k

2kc

���� . (6)

This result suggests higher sensitivity can be attained for
smaller kc.

The shift k → k + �k can also be derived by monitoring
the resonance frequency shift � f . Sensing method based on
this frequency-shift is also widely used [5]. In this case, the
sensitivity � f/ f caused by �k is

���k
�
(2k)
��. This suggests

that the sensitivity of mode-localized sensor is higher than
that of the frequency-shift based approach by a factor of��k�kc
�� [2], [3].

B. Derivation of Sensitivity for Linear Case
Extension of the linear approach to nonlinear case will

require detailed knowledge on the linear formulation, which is
essentially an eigenvalue problem of coupled resonators. Here,
we summarize essential points of the linear formulation.

In the following, we assume c1
�

m1 = c2
�

m2 ≡ b. Then
the coupled equation can be rewritten as�

ẍ1
ẍ2

�
+ b

�
ẋ1
ẋ2

�
+ K

�
x1
x2

�
=
�

f1
f2

�
cos ωt, (7)

where f1 ≡ F1
�

m1, f2 ≡ F2
�

m2 and

K ≡

⎛
⎜⎜⎝

k1 + kc

m1
− kc

m1

− kc

m2

k2 + kc

m2

⎞
⎟⎟⎠ . (8)

The matrix K can be diagonalized with a matrix P and can
be expressed as

P−1 K P =
�

ω2
1 0

0 ω2
2

�
. (9)

If we introduce �
z1
z2

�
≡ P−1

�
x1
x2

�
, (10)�

f̃1

f̃2

�
≡ P−1

�
f1
f2

�
, (11)

the equations for zi will become decoupled;�
z̈1
z̈2

�
+ b

�
ż1
ż2

�
+
�

ω2
1 0

0 ω2
2

��
z1
z2

�
=
�

f̃1

f̃2

�
cos ωt . (12)

The stationary state solution of this equation has a form�
z1
z2

�
=
�

a1 cos (ωt + φ1)
a2 cos (ωt + φ2)

�
, (13)

Fig. 3. Eigenmode amplitudes a1 and a2 as a function of ω. Since
ai is amplitude of eigenmode, it has single peak at ωi. This leads to
a1(ω1) � a2 (ω1) and a2 (ω2) � a1(ω2).

where

ai = f̃i�

ω2

i − ω2
�2 + (bω)2

, (14)

φi = tan−1

�
bω

ω2 − ω2
i

�
. (15)

Here, zi ’s are eigenmodes. We would like to call their
amplitude ai as eigenmode amplitude. Multiplying P from
the left to (13), we can obtain x1 and x2. If matrix element
of P is denoted as pi j , then explicit form of Ai and �i are
obtained as

A1 =
�

p2
11a2

1 + p2
12a2

2 + 2 p11 p12a1a2 cos (φ1 − φ2), (16)

A2 =
�

p2
21a2

1 + p2
22a2

2 + 2 p21 p22a1a2 cos (φ1 − φ2), (17)

�1 = −tan−1
�

p11a1 sin φ1 + p12a2 sin φ2

p11a1 cos φ1 + p12a2 cos φ2

�
, (18)

�2 = − tan−1
�

p21a1 sin φ1 + p22a2 sin φ2

p21a1 cos φ1 + p22a2 cos φ2

�
. (19)

Since zi ’s are eigenmodes, eigenmode amplitude ai has
single peak at resonant angular frequency ωi , as illustrated
in Fig. 3. Therefore at ω1, a1 (ω1) � a2 (ω1) holds. This sug-
gests that we can make an approximation based on eigenmode
amplitude ratio at ω1;

A1 (ω1) = p11a1

�
1 + O

�
a2

a1

��
≈ p11a1, (20)

A2 (ω1) = p21a1

�
1 + O

�
a2

a1

��
≈ p21a1. (21)

Here, O


a2
�

a1
�

means that the term is at most proportional
the small quantity a2

�
a1. Thus for the present case, it can

be neglected compared to the first term. Similarly, at ω2,
a2 (ω2) � a1 (ω2) holds. We therefore get

A1 (ω2) = p12a2

�
1 + O

�
a1

a2

��
≈ p12a2, (22)

A2 (ω2) = p22a2

�
1 + O

�
a1

a2

��
≈ p22a2. (23)
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Thus u1 and u2, i.e., amplitude ratios at ω1 and ω2, can be
approximated as

u1 = A2 (ω1)

A1 (ω1)
≈ p21

p11
, (24)

u2 = A2 (ω2)

A1 (ω2)
≈ p22

p12
. (25)

Note that the eigenmode amplitudes ai ’s are cancelled out
and the result just becomes ratio of the matrix elements. This
property is retained even for the nonlinear case. Also, it turns
out that the approximations based on eigenmode amplitude
ratio at the resonance can also be used in the nonlinear
analysis, as we will see later. This approximation is especially
effective in high quality factor resonators.

Now let’s assume that k1 = k + �k, k2 = k, and m1 =
m2 ≡ m. In this case, the amplitude ratio becomes

u1 = �k −��k2 + 4k2
c

2kc
, (26)

u2 = �k +��k2 + 4k2
c

2kc
. (27)

If we further assume �k � kc, we obtain the results of (4),
(5), and the sensitivity (6).

In WCRs, quite small value is used for the coupling spring
constant kc. It is thus tempting to consider the case of kc �
�k. In this case, if we assume �k > 0 and use

�
�k2 + 4k2

c ≈
�k + 2k2

c

�
�k, we get following results by neglecting higher

order terms of kc
�
�k;

u1 ≈ − kc

�k
, (28)

u2 ≈ �k

kc
. (29)

Thus, in the limit of kc � �k, u1 → 0 and u2 → ∞.
Initial states corresponding to �k = 0 are the same as before,
namely, u0

1 = −1, u0
2 = +1. Hence, sensitivities for this case

become

S1 =
�����u1 − u0

1

u0
1

����� ≈ 1, (30)

S2 =
�����u2 − u0

2

u0
2

����� ≈
�����k

kc

���� . (31)

This suggests that when kc � �k, high sensitivity is
attained only in the second mode S2.

III. NONLINEAR WEAKLY COUPLED RESONATORS

We next consider a case when nonlinearity exists for the
three springs k1, k2 and kc. To solve the equations, we employ
two approximations; Krylov–Bogoliubov averaging method,
and approximation based on eigenmode amplitude ratio at the
resonance.

A. Equation of Motion With Nonlinear Springs
In the equation of motion, we introduce nonlinearity up to

fourth order in the displacements. On the other hand, to get

analytical results, we assume m1 = m2 ≡ m and c1 = c2 ≡ c.
Then the equation of motion can be written as

mẍ1 + cẋ1 + k11x1 + k12x2
1 + k13x3

1 + k14x4
1

+ kc1 (x1 − x2) + kc2 (x1 − x2)
2 + kc3 (x1 − x2)

3

+ kc4 (x1 − x2)
4 = F1 cos ωt, (32)

mẍ2 + cẋ2 + k21x2 + k22x2
2 + k23x3

2 + k24x4
2

− kc1 (x1 − x2) − kc2 (x1 − x2)
2 − kc3 (x1 − x2)

3

− kc4 (x1 − x2)
4 = F2 cos ωt . (33)

Note that k1, k2, and kc of (1) and (2) are replaced by k11,
k21, and kc1, respectively. Using a matrix representation as in
the linear case, the equations can be rewritten as�

ẍ1
ẍ2

�
+ b

�
ẋ1
ẋ2

�
+ K

�
x1
x2

�
+
�

gc

−gc

�
+
�

g1
g2

�

=
�

f1
f2

�
cos ωt, (34)

where b ≡ c/m, fi ≡ Fi
�

m,

K ≡
⎛
⎜⎝

k11 + kc1

m
−kc1

m

−kc1

m

k21 + kc1

m

⎞
⎟⎠ , (35)

and gc, g1, and g2 represent contributions from nonlinear
terms,

gc ≡ �c2 (x1 − x2)
2 + �c3 (x1 − x2)

3 + �c4 (x1 − x2)
4 , (36)

g1 ≡ �12x2
1 + �13x3

1 + �14x4
1 , (37)

g2 ≡ �22x2
2 + �23x3

2 + �24x4
2 (38)

with �cn and �in(n = 2, 3, 4) defined by

�cn ≡ kcn

m
, �in ≡ kin

m
. (39)

Applying diagonalization to (34), we obtain�
z̈1
z̈2

�
+b

�
ż1
ż2

�
+
�

ω2
1 0

0 ω2
2

��
z1
z2

�
+ P−1
�

gc

−gc

�
+
�

g̃1
g̃2

�

=
�

f̃1

f̃2

�
cos ωt, (40)

where �
g̃1
g̃2

�
≡ P−1

�
g1
g2

�
. (41)

Explicit forms of the matrix P and the resonant angular
frequencies ω1 and ω2 are given in Appendix.

B. Krylov–Bogoliubov Averaging Method
To solve the nonlinear equation, we first employ

Krylov–Bogoliubov averaging method [17], [18]. This is a
method to obtain an approximate solution of first order non-
linear differential equation

Ẋ = ε f (t) , (42)

where X is a time dependent variable, ε is a small parameter,
and f (t) is a periodic function. If the period is T , f (t) satisfies
f (t + T ) = f (t). This function f (t) can be nonlinear. If the
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change in a period is small enough, f (t) may be replaced with
the averaged value over the period. Namely, the differential
equation can be approximated as

Ẋ = ε � f 	 , (43)

where � f 	 is an average of f (t) over the period T ;

� f 	 = 1

T

� T

0
dt f (t). (44)

This approximation is shown to be valid up to O(ε), which
means that the difference between f (t) and � f 	 is at most
proportional to the small quantity ε. This is the core idea of
the averaging method. Practically, we often need to recast the
equation to the form of (42) so that this method can be applied.
The averaging method is shown to be useful for nonlinear
oscillating system such as Duffing oscillator [18].

Now let’s apply the averaging method to (34). Firstly,
we need to rewrite the equation into a form of first order
differential equation. To this end, we introduce parameters y1,
y2 and recast (34) into state space representation,�

ẋ1
ẋ2

�
=
�

y1
y2

�
, (45)�

ẏ1
ẏ2

�
= −b

�
y1
y2

�
− K

�
x1
x2

�

−
�

gc

−gc

�
−
�

g1
g2

�
+
�

f1
f2

�
cos ωt . (46)

Here, we regard that parameters b, fi , �cn , and �in are all
small and O(ε). The O(ε0) solution, namely, the solution
when these parameters are zero, are given by�

x1
x2

�
= P

�
a1 cos (ωt + φ1)
a2 cos (ωt + φ2)

�
, (47)�

y1
y2

�
= P

�−a1ω sin (ωt + φ1)
−a2ω sin (ωt + φ2)

�
, (48)

where ai and φi are time independent constants. To find the
solution for non-zero parameters b, fi , �cn , and �in , we employ
a method of variation of constants. Namely, we regard that ai

and φi are now time dependent parameters; ai (t), φi (t). Also,
we denote ωt +φi (t) ≡ θi . Then from (45), (46) and recalling
the diagonalized expression (40), we obtain equations for ai (t)
and φi (t) as�

ȧ1 cos θ1 − a1φ̇1 sin θ1

ȧ2 cos θ2 − a2φ̇2 sin θ2

�
=
�

0
0

�
, (49)�

ȧ1 sin θ1 + a1φ̇1 cos θ1

ȧ2 sin θ2 + a2φ̇2 cos θ2

�
= −b

�
a1 sin θ1
a2 sin θ2

�

− 1

ω

�� 

ω2 − ω2

1

�
a1 cos θ1


ω2 − ω2
2

�
a2 cos θ2

�
+
�

σ1
σ2

�
gc

−
�

g̃1
g̃2

�
+
�

f̃1

f̃2

�
cos ωt

�
, (50)

where �
σ1
σ2

�
≡ P−1

�−1
1

�
. (51)

These equations can be solved with respect to ai (t) and
φi (t). The result becomes

ȧ1 = sin θ1

�
−ba1 sin θ1 − ω2 − ω2

1

ω
a1 cos θ1

− 1

ω

�
σ1gc − g̃1 + f̃1 cos ωt

��
, (52)

φ̇1 = cos θ1

�
−b sin θ1 − ω2 − ω2

1

ω
cos θ1

− 1

ωa1

�
σ1gc − g̃1 + f̃1 cos ωt

��
, (53)

ȧ2 = sin θ2

�
−ba2 sin θ2 − ω2 − ω2

2

ω
a2 cos θ2

− 1

ω

�
σ2gc − g̃2 + f̃2 cos ωt

��
, (54)

φ̇2 = cos θ2

�
−b sin θ2 − ω2 − ω2

2

ω
cos θ2

− 1

ωa2

�
σ2gc − g̃2 + f̃2 cos ωt

��
. (55)

Up to here, no approximation is made. To apply the averag-
ing method, we assume ω2 −ω2

1 ∼ O(ε) and ω2 −ω2
2 ∼ O(ε).

This means that for (52) and (53), we are trying to find a
behavior at the vicinity of ω1. Similarly, for (54) and (55),
we are thinking the behavior at the vicinity of ω2. Then, all
the terms in r.h.s. of (52) to (55) becomes O(ε). Thus, we are
now able to apply the averaging method. Let’s first apply the
averaging method to (52). The equation then becomes

ȧ1 = −ba1

�
sin2 θ1

�
− ω2 − ω2

1

ω
a1 �cos θ1 sin θ1	

− 1

ω
�σ1gc sin θ1 − g̃1 sin θ1	 − f̃1

ω
�sin θ1 cos ωt	 . (56)

Here, the bracket �·	 means time averaging over a period of
2π
�
ω. Recalling that θ1 = ωt + φ1, we find

�
sin2 θ1
� = 1
�

2,
�cos θ1 sin θ1	 = 0, and

�sin θ1 cos ωt	 = ω

2π

� 2π/ω

0
dt sin (ωt + φ1) cos ωt

= 1

2
sin φ1. (57)

Thus the equation reduces to

ȧ1 = −b

2
a1 − 1

ω
�σ1gc sin θ1 − g̃1 sin θ1	 − f̃1

2ω
sin φ1. (58)

The remaining bracket �σ1gc sin θ1 − g̃1 sin θ1	 can be cal-
culated explicitly, but since it becomes lengthy, we just
cast them in Appendix. Similarly, we can apply avaraging
to (53)-(55) and the results become

φ̇1 = −ω2 − ω2
1

2ω
− 1

ωa1
�σ1gc cos θ1 − g̃1 cos θ1	

− f̃1

2ωa1
cos φ1, (59)
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ȧ2 = −b

2
a2 − 1

ω
�σ2gc sin θ2 − g̃2 sin θ2	 − f̃2

2ω
sin φ2, (60)

φ̇2 = −ω2 − ω2
2

2ω
− 1

ωa2
�σ2gc cos θ2 − g̃2 cos θ2	

− f̃2

2ωa2
cos φ2. (61)

Explicit forms of remaining bracket terms are also shown
in the Appendix. It should be noticed that as a result of the
averaging, terms originating from x2

i and x4
i in the equation of

motion (32) and (33) have disappeared. This is because these
terms are symmetric with respect to xi = 0 and thus became
zero after the averaging. Thus the third power term x3

i is now
the only nolinear contribution.

C. Approximation Based on Eigenmode Amplitude Ratio
The results after the averaging, (58)-(61), are still compli-

cated and cannot be solved analytically. But here, we can
see that the brackets in (58)-(61) are expressed by terms pro-
portional to a3

1, a2
1a2, a1a2

2 and a3
2. Therefore, approximation

based on eigenmode amplitude ratio at the resonance can be
applied. Note that a1 and a2 are eigenmode amplitudes that
have single peak as indicated in Fig. 3, and they are different
from physically observable amplitudes A1 and A2 shown in
Fig. 2.

Firstly, at ω ∼ ω1, a1 (ω1) � a2 (ω1) holds. Thus, the
brackets in (58) and (59) are expressed as

�σ1gc sin θ1 − g̃1 sin θ1	 = a3
1 · O

�
a2

a1

�
, (62)

�σ1gc cos θ1 − g̃1 cos θ1	 = 1

2
μ1a3

1

�
1 + O

�
a2

a1

��
, (63)

where

μ1 ≡ 3

4

�
�c3σ1ρ

3
1 − �13

�
p−1
�

11
(p11)

3

− �23

�
p−1
�

12
(p21)

3
�

, (64)�
ρ1
ρ2

�
≡ PT
�

1
−1

�
=
�

p11 − p21
p12 − p22

�
, (65)

and



p−1
�

i j are matrix elements of P−1 and PT is transpose
of P . We call the factor μ1 as a nonlinearity factor.

Secondly, at ω ∼ ω2, we have a2 (ω2) � a1 (ω2). In this
case, the brackets in (60) and (61) are expressed as

�σ2gc sin θ2 − g̃2 sin θ2	 = a3
2 · O

�
a1

a2

�
, (66)

�σ2gc cos θ2 − g̃2 cos θ2	 = 1

2
μ2a3

2

�
1 + O

�
a1

a2

��
, (67)

where

μ2 ≡ 3

4

�
�c3σ2ρ

3
2 − �13

�
p−1
�

21
(p12)

3

− �23

�
p−1
�

22
(p22)

3
�

. (68)

The factor μ2 is a nonlinearity factor corresponding to the
second mode. If we only retain lowest order terms of the
eigenmode amplitude ratio, (58)-(61) reduces to

ȧ1 = −b

2
a1 − f̃1

2ω
sin φ1, (69)

φ̇1 = −ω2 − ω2
1

2ω
− μ1

2ω
a2

1 − f̃1

2ωa1
cos φ1, (70)

ȧ2 = −b

2
a2 − f̃2

2ω
sin φ2, (71)

φ̇2 = −ω2 − ω2
2

2ω
− μ2

2ω
a2

2 − f̃2

2ωa2
cos φ2. (72)

This is the result of the second approximation. Note that
the first mode equations (69), (70) and the second mode
equations (71), (72) are now seemingly decoupled. Actually,
the coupling effect due to the coupling spring kc1 still exists in
the form of matrix element pi j and (p−1)i j in the nonlinearity
factors μ1 and μ2.

D. Amplitude-Frequency Equation for Stationary State
Stationary state solutions of (69)-(72) are obtained by

setting ȧi = 0 and φ̇i = 0, which means that ai and φi

are constants. If we eliminate φi , we get equations for the
eigenmode amplitudes ai ;�

b2ω2 +
�
ω2 − ω2

1 + μ1a2
1

�2�
a2

1 = f̃ 2
1 , (73)�

b2ω2 +
�
ω2 − ω2

2 + μ2a2
2

�2�
a2

2 = f̃ 2
2 . (74)

We thus arrived at two Duffing type amplitude-frequency
equations corresponding to the two modes. We can now see
that the nonlinearity factors μ1 and μ2 represent nonlinear
effect originating from the third power terms �c3, �13, and
�23. We can also confirm that the linear expression (14) can
be reproduced when the nonlinearity factors are zero; μi = 0.
Positive and negative nonlinearity factors correspond to spring
hardening and softening, respectively. The expression of μi

shows that they can be positive or negative, depending on
parameters �c3, �13, �23 and the matrix P . This also implies
possibility of eliminating the nonlinearity by optimizing the
parameters of μi . This is already demonstrated for a specific
case [12]. The explicit form of the nonlinearity factors, (64)
and (68), enables to clarify the cancellation condition in
general form.

We can also derive the expressions for the phase φi . They
also become Duffing type;

φ1 = tan−1

�
bω

ω2 − ω2
1 + μ1a2

1

�
, (75)

φ2 = tan−1

�
bω

ω2 − ω2
2 + μ2a2

2

�
. (76)

As before, the linear result (15) can be regained in the limit
μi → 0.

E. Critical Point of Nonlinearity
In this section, we derive a critical point that defines border

of single-valued and multi-valued amplitude-frequency curves.
Let’s consider amplitude-frequency curve described by�

b2ω2 +
�
ω2 − ω2

i + μi a
2
i

�2�
a2

i = f̃ 2
i . (77)
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Fig. 4. (a) Amplitude-frequency curve of critical condition which has
single bifurcation point that satisfies dai/dω = ∞. Eigenmode amplitude
is a single-valued function. (b) Amplitude-frequency curve of double
bifurcation point case. Eigenmode amplitude is a multi-valued function.

We assume that μi is non-zero. If the force f̃i is small
enough, the eigenmode amplitude will become a single-
valued function of the frequency. If f̃i is increased, the
amplitude-frequency curve will exhibit a single bifurcation
point represented by the infinite slope condition dai

�
dω = ∞,

as shown in Fig. 4 (a). In this state, the amplitude-frequency
curve is still a single valued function. But if f̃i is increased
further, multiple bifurcation point will appear as in Fig. 4 (b).
This suggests that the eigenmode amplitude is now a multi-
valued function of the frequency. It also implies emergence of
hysteresis in the amplitude-frequency plot.

Let’s find the critical condition of Fig. 4 (a). This cor-
responds to a case which has only one solution satisfying
dai/dw = ∞ [20], [21]. Solving this, we obtain the critical
eigenmode amplitude

aic =
�

bωi

|μi |

�
1 − b2

4ω2
i

� 1
4

≈
�

bωi

|μi | , (78)

where we assumed b � ωi in the last step, which is justified
for large quality factor. From (77) and (78), we can get the
critical force as

f̃ic =
�

2b3ω3
i

|μi | . (79)

We can also derive the peak eigenmode amplitude;

aimax ≈
�

2bωi

|μi | = √
2aic. (80)

Note that similar arguments hold for fixed force f̃i and
variable nonlinearity factor. Namely, if |μi | is increased for
fixed f̃i , the double bifurcation occurs when

|μi | >
2b3ω3

i

f̃ 2
i

(81)

is satisfied. Thus, together with explicit form of the nonlin-
earity factor μi , we can find the condition that brings about
multi-valued amplitude-frequency curve.

F. Expressions for Extreme Cases
In the above, we derived the analytical results for gen-

eral case. Here, to better understand the nonlinear behavior,
we explore several extreme cases. We categorize the cases
based on the coupling spring kc1 and �k = k11 − k21. Below,
we consider cases of �k � |kc1| and �k � |kc1| for both
positive and negative kc1. Note that no restrictions were made
on �k and |kc1| in solving the nonlinear equation.

1) Positive Coupling Spring (kc1 > 0) and k � kc1: In this
case, the matrix P reduces to

P ≈ 1√
2

⎛
⎜⎜⎝

1 + �k

4kc1
1 − �k

4kc1

−1 + �k

4kc1
1 + �k

4kc1

⎞
⎟⎟⎠ . (82)

Thanks to this simplification, the nonlinearity factors can be
explicitly written in terms of mechanical parameters,

μ1 ≈ − 3

16

�
16�c3 + �13

�
1 + �k

kc1

�
+�23

�
1−�k

kc1

��
, (83)

μ2 ≈ − 3

16

�
�13

�
1 − �k

kc1

�
+ �23

�
1 + �k

kc1

��
. (84)

Note that in the limit of �k
�

kc1 → 0, we get�
x1
x2

�
= P

�
z1
z2

�
≈ 1√

2

�
z1 + z2

−z1 + z2

�
. (85)

This shows that the second mode represented by z2
approaches to in-phase mode, which keeps relative distance
between x1 and x2. The non-existence of �c3 term in μ2
implies that nonlinearity due to the coupling spring can be
eliminated in the in-phase mode, as pointed out in [12].

2) Negative Coupling Spring (kc1 < 0) and k � |kc1|: Next,
we examine the negative coupling spring case (kc1 < 0). This
corresponds to a case when electrostatic attractive force is used
for the coupling spring. The matrix P becomes

P ≈ 1√
2

⎛
⎜⎜⎝

1 − �k

4kc1
1 + �k

4kc1

1 + �k

4kc1
−1 + �k

4kc1

⎞
⎟⎟⎠ . (86)

This indicates that the first mode z1 now becomes in-phase
mode. The nonlinearity factors are written as

μ1 ≈ − 3

16

�
�13

�
1 − �k

kc1

�
+ �23

�
1 + �k

kc1

��
, (87)
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μ2 ≈ − 3

16

�
16�c3 + �13

�
1 + �k

kc1

�
+�23

�
1 − �k

kc1

��
. (88)

This time, nonlinearity of the coupling spring is eliminated
in the first mode, because the first mode is in-phase mode.

3) Positive Coupling Spring (kc1 > 0) and k � kc1: As a third
case, we consider a case of kc1 > 0 and �k � kc1. We assume
that �k is still smaller than k11 and k21. In this case, the matrix
P reduces to

P ≈

⎛
⎜⎜⎝ 1 − k2

c1

2�k2

kc1

�k

− kc1

�k
1 + k2

c1

2�k2

⎞
⎟⎟⎠ . (89)

The nonlinearity factors become

μ1 ≈ −3

4

�
�c3

�
1 + 4kc1

�k

�
+ �13

�
, (90)

μ2 ≈ −3

4

�
�c3

�
1 − 4kc1

�k

�
+ �23

�
. (91)

In the limit of kc1
�
�k → 0, the matrix P becomes

diagonal, which suggests that the coupling due to kc1 becomes
negligible.

4) Negative Coupling Spring (kc1 < 0) and k � |kc1|: Finally,
we consider a case kc1 < 0 and �k � |kc1|. The matrix P
for this case is given by

P ≈

⎛
⎜⎜⎝ 1 − k2

c1

2�k2 − kc1

�k

− kc1

�k
−1 − k2

c1

2�k2

⎞
⎟⎟⎠ . (92)

The expressions of nonlinearity factors are the same as the
previous case,

μ1 ≈ −3

4

�
�c3

�
1 + 4kc1

�k

�
+ �13

�
, (93)

μ2 ≈ −3

4

�
�c3

�
1 − 4kc1

�k

�
+ �23

�
. (94)

This result implies that if �13 = �23, μ1 and μ2 approaches
to the same value in the limit of |kc1|

�
�k → 0.

IV. ANALYSIS OF ELECTROSTATIC COUPLING SPRING

Electrostatic force generated by parallel plate electrode is
often employed in mode-localized sensors to attain ultra-
small coupling spring [2]. But since the electrostatic force is
nonlinear, care should be taken about the maximum amplitude.
If the nonlinearity is large enough and multiple bifurcation
point appear as in Fig. 4 (b), specific type of close-loop system
will be required to sustain the peak amplitude [22]. The
nonlinearity factors presented above can be used to judge the
amount of nonlinearities. To demonstrate this, we numerically
analyze a nonlinearity caused by a parallel plate electrode.
We also confirm the validity of the theoretical model by
comparing the results with FEM simulations.

Fig. 5. Weakly coupled resonator with parallel plate electrodes used as
a coupling spring. The initial electrode gap is d, electrode area is A, and
voltage V is applied between the electrodes.

Fig. 6. Nonlinearity factors μ1 and μ2 plotted as a function of Δk. The
property μ1 → 0 at Δk → 0 implies elimination of nonlinearity due to
the in-phase mode.

A. Coupling Spring by Parallel Plate Electrode
We consider a case when a parallel plate electrode is

employed for the coupling spring, as in Fig. 5. We assume that
initial gap and area of the electrode are d and A, respectively.
In this analysis, we assume that the two outer springs are
linear, namely g1 = g2 = 0. When a voltage V is applied
between the electrodes, the electrostatic potential U(x1, x2)
becomes

U (x1, x2) = − ε0 AV 2
�

2

d − (x1 − x2)

= −ε0 AV 2

2d

∞ 
n=0

�
x1 − x2

d

�n

, (95)

where ε0 is the vacuum permittivity; ε0 = 8.854×10−12 F/m.
Since the electrostatic force applied to the mass mi is given
by −∂U

�
∂xi , gc is written as

gc =
∞ 

n=2

�cn (x1 − x2)
n, (96)

where �cn(n ≥ 2) is

�cn = − (n + 1) ε0 AV 2

2mdn+2 . (97)
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Fig. 7. Amplitude-frequency curves of: (a) x1 at frequency ∼f1, (b) x1 at frequency ∼f2, (c) x2 at frequency ∼f1, (d) x2 at frequency ∼f2. Solid lines
are from the theoretical model and dots are by FEM.

Note that the linear term (n = 1) is excluded from gc and
included in kc1 of (32) and (33). Explicit form of kc1 is

kc1 = −ε0 AV 2

d3 . (98)

The minus sign in kc1 and �cn implies that these are
attractive forces. When applying to our model, we neglect
higher order terms of n ≥ 5.

B. Numerical Analysis of Nonlinearity Factors
To numerically estimate the nonlinear behavior, we assume

parameters as in Table I. According to these values, the cou-
pling spring becomes kc1 = −9.84 × 10−2 N

�
m. We assume

that k21 is fixed and k11 can be determined from �k as
k11 = k21 + �k.

Then the nonlinearity factors μ1 and μ2 can be expressed
as a function of �k, as plotted in Fig. 6. We can see that
μ1 approaches to zero at �k → 0, as predicted by (87).
This elimination of nonlinearity is caused by the fact that
the first mode approaches to in-phase mode, which keeps the
relative distance x1 − x2 and hence avoids the nonlinearity

TABLE I
PARAMETERS OF ELECTROSTATIC COUPLING SPRING

of the coupling spring. This point is suggested in [12], but
our analysis enables to show the occurrence of nonlinearity in
quantitative manner. Also, together with (79), we can estimate
the force value that brings double bifurcation. We can also see
that μ1 and μ2 converge to the same value when �k � |kc1|,
as suggested by (93) and (94). Thus, characterization based on
the nonlinearity factor is useful to grasp the nonlinear behavior
of a system.
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C. Amplitude-Frequency Characteristics
Next, we analyze amplitude-frequency characteristics.

To check the accuracy of the model based on the two approx-
imations, we compare the results with FEM simulations.
We use parameters in Table I and furthermore, we assume
�k = 0.02N/m, which suggests �k � |kc1|. The resonance
frequencies of the two modes are f1 = 26.94k H z and f2 =
26.67k H z. As for the external force, we assume F2 = 0
and consider two cases for F1; F1 = 5.0 × 10−11 N and
F1 = 1.0 × 10−10 N . Amplitude-frequency curves of the
two eigenmodes are described by (73) and (74). Amplitude-
frequency curves of position x1 and x2 can be obtained by
using the matrix P . The results are plotted as solid lines of
Fig. 7.

FEM simulations are carried out for the same parameters.
To calculate the electrostatic force, we assumed electrode
height of 30 μm and width of 100 μm which reproduce the
area A of Table I. Coventor’s multi-physics simulation tool,
MEMS+® is employed to simulate the nonlinear characteris-
tics [23]. To reproduce the multi-valued amplitude-frequency
curve, Frequency Hysteresis (FH) function of the tool was
adopted. FH is a continuation-based algorithms analysis first
implemented by Coventor to study pull-in and lift-off effects
under a static stimulus [24], [25]. This continuation algo-
rithm applied in the frequency domain allows to compute the
multi-valued amplitude-frequency typical behavior of nonlin-
ear resonator such as Duffing. Note that this FEM simulation
is calculating the electrostatic force in its complete form.
Namely, no truncation is made at finite n of (96). In this
sense, the FEM results can be regarded as a reference. The
FEM simulation results are plotted as dots in Fig. 7.

Single-valued amplitude-frequency curves shown in
Fig. 7 (a) and (c) are reflecting small μ1 caused by in-phase
mode, as suggested by Fig. 6. On the other hand, as in
Fig. 7 (b) and (d), multi-valued curves appear for the second
mode, as a result of large nonlinearity factor μ2. Note that
the overhanging direction corresponds to the case of spring
softening. This is due to negative kc1 and �cn . We can also
see that the behavior of x1 and x2 are similar. This is because
every matrix element of P have almost the same magnitude
when �k � |kc1|, as suggested by (86).

Our model matches well with the FEM, especially for the
first mode, (a) and (c), and for small force conditions. Slight
discrepancy emerges when the force becomes larger in the
second mode, (b) and (d). This is likely to be caused by
higher order terms of (96), which will become non-negligible
when the amplitude becomes closer to the electrode gap.
Since the FEM calculates the electrostatic force in full form,
we regard that the FEM is reflecting the reality. But our model
is sufficient to find the condition of multi-valued amplitude-
frequency curve, as can be seen from the curves of small force
value. This result also implies that the two approximations
employed in the model are legitimate and effective in the
analysis of nonlinear coupled resonators.

V. CONCLUSION

We have solved nonlinear version of WCR based on two
approximations; Krylov–Bogoliubov averaging method and

approximation based on amplitude-ratio of eigenmodes, and
arrived at Duffing-like amplitude-frequency equations. The
nonlinearity factors included in the result are found to be
useful in characterizing nonlinear behavior of the system,
since the factors can be explicitly written by basic parameters.
For example, external force value that yields multi-valued
amplitude-frequency curve can be known from the nonlinearity
factor. Thus, instead of carrying out numerical calculations,
we can grasp occurrence and amount of nonlinearity in para-
meter space. This information can be utilized in selecting
sensor system suited for mode-localized sensors. Namely,
if the sensor has to be operated in the double bifurcation
region, a phase-feedback approach need to be employed [22].

The averaging method we have employed is basically the
same as the one of Yang et al [19]. However, our final
amplitude-frequency equations are far simpler than theirs. One
reason is in the second approximation that uses eigenmode
amplitude ratio. Another reason seems to be in the choice of
variables. Yang et al have employed variables corresponding
to x1 and x1 − x2 as the two independent variables. This,
however, introduces complication and makes it more difficult
to grasp the physical meaning.

This paper has introduced nonlinearity up to fourth order.
In principle, however, the averaging method can be applied
even if fifth or higher order nonlinearity is included. We would
like to leave this analysis as our future work.

The main target of this paper is mode-localized sensors that
employ WCR. But nonlinear coupled equation as shown in
this paper appears in many fields. Indeed, Yang et al have
tried to solve the same nonlinear equation but for different
application, i.e., power flow analysis [19]. This means that
the methodology and results presented here can be applied for
versatile nonlinear systems.

APPENDIX

A. Explicit Forms of Matrix P and ω1, ω2

Matrix P that diagonalize the matrix K in the form of (9)
can be obtained by following standard procedure of eigenvalue
problem. If we apply the procedure to the matrix K of (35),
we obtain

P =
�

p11 p12
p21 p22

�
=

⎛
⎜⎜⎜⎜⎝

1�
1 + v2

1

1�
1 + v2

2
v1�

1 + v2
1

v2�
1 + v2

2

⎞
⎟⎟⎟⎟⎠ , (A1)

where

v1 ≡ k11 − k21

2kc1
− kc1

|kc1|

�
1 +
�

k11 − k21

2kc1

�2

, (A2)

v2 ≡ k11 − k21

2kc1
+ kc1

|kc1|

�
1 +
�

k11 − k21

2kc1

�2

. (A3)

Note that v2 > v1 for kc1 > 0 and v1 > v2 for kc1 < 0. The
resonant angular frequencies are obtained by taking square
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root of the eigenvalues;

ω1 =

!""#k11 + k21 + 2kc1 +
�

(k11 − k21)
2 + 4k2

c1

2m
, (A4)

ω2 =

!""#k11 + k21 + 2kc1 −
�

(k11 − k21)
2 + 4k2

c1

2m
. (A5)

B. Explicit Forms of Averaged Results
Here, we show explicit forms of the averaged results,

namely, brackets that appear in (54)-(57). In this case, an aver-
aged result � f 	 of a function f (t) is given by

� f 	 = ω

2π

� 2π/ω

0
dt f (t). (B1)

Calculation of the brackets are straightforward [18], and the
results become as follows;

�σ1gc cos θ1 − g̃1 cos θ1	
= a3

1
1
30 + a2

1a2

1
21 + a1a2

2
1
12 + a3

2
1
03, (B2)

�σ2gc cos θ2 − g̃2 cos θ2	
= a3

1
2
30 + a2

1a2

2
21 + a1a2

2
2
12 + a3

2
2
03, (B3)

�σ1gc sin θ1 − g̃1 sin θ1	
= a2

1a2�
1
21 + a1a2

2�1
12 + a3

2�
1
03, (B4)

�σ2gc sin θ2 − g̃2 sin θ2	
= a3

1�2
30 + a2

1a2�
2
21 + a1a2

2�2
12, (B5)

where


1
30 ≡ 3

8

$
�c3σ1ρ

3
1 − �13

�
p−1
�

11
(p11)

3

− �23

�
p−1
�

12
(p21)

3
%
, (B6)


1
21 ≡ 9

8

$
�c3σ1ρ

2
1ρ2 − �13

�
p−1
�

11
(p11)

2 p12

− �23

�
p−1
�

12
(p21)

2 p22

%
cos (φ1 − φ2) , (B7)


1
12 ≡ 9

8

$
�c3σ1ρ1ρ

2
2 − �13

�
p−1
�

11
p11 (p12)

2

− �23

�
p−1
�

12
p21 (p22)

2
%
{cos 2 (φ1 − φ2) + 2} ,

(B8)
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03 ≡ 3

8

$
�c3σ1ρ

3
2 − �13

�
p−1
�

11
(p12)

3

− �23

�
p−1
�

12
(p22)

3
%

cos (φ1 − φ1) , (B9)
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�
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3

− �23
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p−1
�
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3
%

cos (φ1 − φ2) , (B10)
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8
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2
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�

21
(p11)

2 p12
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�
p−1
�
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2 p22
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8
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�
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2

− �23
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�
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2
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�
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− �23
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%
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and

�1
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8

$
�c3σ1ρ

2
1ρ2 − �13
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�

11
(p11)

2 p12

− �23

�
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�

12
(p21)

2 p22

%
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12
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(p12)
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− �23

�
p−1
�

12
(p22)
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