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Missing Data Imputation on IoT Sensor
Networks: Implications for on-Site

Sensor Calibration
Nwamaka U. Okafor , Graduate Student Member, IEEE, and Declan T. Delaney

Abstract—IoT sensors are becoming increasingly impor-
tant supplement to traditional monitoring systems, particu-
larly for in-situ based monitoring. Data collected using IoT
sensors are often plagued with missing values occurring as a
result of sensor faults, network failures, drifts and other oper-
ational issues. Missing data can have substantial impact on
in-field sensor calibration methods. The goal of this research
is to achieve effective calibration of sensors in the context of
such missing data. To this end, two objectives are presented
in this paper. 1) Identify and examine effective imputation
strategy for missing data in IoT sensors. 2) Determine sensor
calibration performance using calibration techniques on data
set with imputed values. Specifically, this paper examines
the performance of Variational Autoencoder (VAE), Neural
Network with Random Weights (NNRW), Multiple Imputation
by Chain Equations (MICE), Random Forest-based Imputa-
tion (missForest) and K-Nearest Neighbour (KNN) for imputa-
tion of missing values on IoT sensors. Furthermore, the per-
formance of sensor calibration via different supervised algorithms trained on the imputed dataset were evaluated. The
analysis showed VAE technique to outperform the other methods in imputing the missing values at different proportions
of missingness on two real-world datasets. Experimental results also showed improved calibration performance with
imputed dataset.

Index Terms— Calibration, imputation, Internet of Things (IoT), missing data, neural network, regression, sensors,
variational autoencoder, XGBoost.

I. INTRODUCTION

EXPANDING the measurement networks for Green House
Gases (GHG) is vital for understanding GHG global

emission trends and the effectiveness of emission mitigation
policies, strategies and initiatives, making it possible to ascer-
tain how far emission reduction targets are being met at the
local, regional and global scales [1].

Low Cost Sensors (LCS) have the potentials to enhance the
spatio-temporal resolution of data acquisition for key GHG
variables. LCS, however, are prone to diverse issues including

Manuscript received July 15, 2021; accepted August 12, 2021. Date of
publication August 19, 2021; date of current version October 18, 2021.
This work was supported in part by Schlumberger Foundation through
the Faculty for the Future Program, in part by the Tertiary Education Trust
Fund (TETFUND-Nigeria), and in part by the SmartBOG Project through
the Environmental Protection Agency (EPA) Research Program under
Grant 2014-202042617/03. The associate editor coordinating the review
of this article and approving it for publication was Dr. Marko Vauhkonen.
(Corresponding author: Nwamaka U. Okafor.)

Nwamaka U. Okafor is with the School of Electrical and Electronic
Engineering, University College Dublin, Dublin 4, D04 V1W8 Ireland,
on study leave from Federal Polytechnic, Nekede, Nigeria (e-mail:
nwamaka.okafor@ucdconnect.ie).

Declan T. Delaney is with the School of Electrical and Electronic
Engineering, University College Dublin, Dublin 4, D04 V1W8 Ireland
(e-mail: declan.delaney@ucd.ie).

Digital Object Identifier 10.1109/JSEN.2021.3105442

bias, drifts, precision degradation, and loss of considerable
amount of data due to operational issues [2]. Missing data is
a pervasive issue, affecting most real-world datasets including
medical records [3], [4], geo-informatics [5], traffic flow [6]
and industrial applications [7], [8].

The European Union Data Quality Directive (EU-DQD)
defined the data quality objective (DQO) that a monitoring
method needs to comply with to be used as indicative measure-
ment for regulative purposes [9]. The EU-DQD is a measure
of the acceptable uncertainty for indicative measurements. The
directive also defined the degree of data completeness for
such monitoring method. To meet these requirements and to
present LCS as suitable for adoption for this purpose, data
completeness is essential for the sensors. In addition to this,
complete data points consisting of sensor outputs and labels
are necessary for building reliable calibration models to ensure
the collection of accurate and robust data by LCS.

Several methods have been proposed for handling missing
data in diverse application domains. Common among these
methods are downsampling which is also known as Complete
Case Analysis (CCA) and imputation. The main idea behind
downsampling is discarding the incomplete observations i.e.
dropping missing data records. Although downsampling is
a very simple method for handling missing data, it comes
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at the cost of losing useful information on data which may
be valuable even though the data is incomplete. Applying
downsampling as a means of handling missing values in any
statistical analysis is mostly useful when there is a large
number of samples [10] but performs poorly when the rate of
missing values is high [11]. Imputation can be classified as:
(i) single imputation (SI) and (ii) Multiple Imputation (MI).
SI involves replacing all missing values on a variable with a
single value i.e., zero or the mean of the observation. MI is
an iterative model-based approach [12].

State of the art multiple imputation techniques can
be classified into Discriminative and Generative methods.
Discriminative methods include Multiple Imputation by Chain
Equations (MICE) [13], Random Forest-based Imputation
(Missforest) [14] and matrix completion [15]. Generative
methods consist mostly of techniques based on Deep Learn-
ing (DL) e.g Variational Autoencoders (VAE) [16], [17],
Neural Networks with Random Weights(NNRW) [18], Denois-
ing Autoencoders (DAE) [19] and Generative Adversarial
Networks(GAN) [20], [21].

In this study, we evaluate the performance of different
algorithms including VAE, NNRW, MICE, MissForest and
K-Nearest Neighbour (KNN) for handling missing values in
LCS networks where values could be missing over consecutive
periods or at random points in time. Specifically, two tasks
were conducted: first, Ozone (O3) and NO2/O3 concentration
data collected using Aeroqual and Cairclip sensors respectively
over a six months data collection period were corrupted by
removing data intervals at different missing periods (p) where
p ∈ {1 day,1 week,2 weeks,1 month} and also at random
points on the dataset at varying proportion (r) where r ∈
{5%, 10%, 30%, 50%, 70%}. The missing data were then filled
using the different imputation strategies and their imputation
accuracy calculated. Second, the performance of sensor cali-
bration by different regression models including Multi Linear
Regression (MLR), Decision Tree (DT), Random Forest (RF)
and XGBoost (XGB) trained on the imputed datasets were
evaluated.

The key contributions of this paper include to:
1) identify suitable imputation technique to handle missing

values on LCS networks.
2) develop a strategy based on efficient data imputation to

support on-site sensor calibration.
3) present reliable technique for improving data quality of

LCS in environmental monitoring networks.
In section II, we present the motivation for this work while

section III details the current state of the art with respect
to imputation and sensor calibration. Section IV presents
the dataset used in this study while a detailed description
of the methodology is presented in section V. The sensor
calibration process is described in section VI and in section VII
we present the model evaluation. Section VIII contains the
results of the analysis and section IX has the conclusion and
recommendations for future work.

II. MOTIVATION

Inspired by the numerous successes of modern machine
learning processes, especially in the development of strategies
which have been found useful for handling missing values

in areas such as medical data [22], sentence generation
[23], image concealment [24] and data compression [25].
We explore the ability of diverse techniques for imputing
missing data in LCS in environmental monitoring networks.
Due to the nature of LCS, they are often challenged by the
problems of missing data and this hinders the application of
advanced analysis on the data collected by these sensors. Most
researchers resort to deleting the cases with missing values
when applying the dataset for further analysis. This method
is ineffective as it simply ignores the cases with missing data,
and does not take into consideration the complex distribution
in environmental data, thereby leading to imprecision and
bias. Imputation is capable of learning missing data either
as a single value or as multiple possible values to address
uncertainties. In cases where data distribution is of interest,
imputation can estimate the most probable distribution of the
data rather than estimating the unobserved data [26]. In this
study, we evaluate the potentials of imputation on LCS dataset
and the implications of data imputation for on-site sensor
calibration.

III. STATE OF THE ART

Missing or inconsistent data have been a major issue in
data analysis since the origin of data collection. Methods
for handling missing data ranges from the naive deletion of
instances with missing values to modern machine learning
imputation techniques. The suitability of an imputation method
can be influenced by the missingness mechanism. Three dif-
ferent missing data mechanisms exist and these mechanisms
can affect the accuracy of an imputation method. Techniques
for handling missing values are generally assessed based on
the three missingness mechanisms: Missing Completely at
Random (MCAR) where the missingness occur completely
at random with no dependency on any of the variables i.e.
the distribution of missingness is independent on either the
observed values or the missing values. Missing at Random
(MAR) where the missingness depends only on the observed
values but not on the missing values. Missing Not at Random
(MNAR) where the missingness depends both on the observed
and missing values [27].

Hedge et al. compared the performance of Probabilis-
tic Principal Component Analysis (PPCA) and MICE for
the imputation of missing data in healthcare dataset [28].
Their analysis began with a complete baseline dataset which
included medical and dental variables, simulating missing data
and its imputation assuming that values were MCAR. Their
work shows PPCA outperforming MICE for this purpose.
Stekhoven et al. proposed an iterative imputation strategy
based on random forest (missForest) by averaging over sev-
eral unpruned classification or regression trees [14]. They
performed their analysis on multiple datasets from a diverse
selection of biological fields with artificially introduced miss-
ing values at different rates. Their work shows that missForest
is able to handle missing data on dataset consisting of different
data types including continuous and categorical data. Compar-
atively analysing missForest with other imputation methods
such as KNN, they presented results showing missForest
outperforming the other methods, particularly in data settings
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where complex interactions and non-linear relationships were
suspected.

In [29], Gupta et al., applied Neural Networks (NN) for
imputing missing values in classification problems. They used
backpropagation algorithm to reconstruct missing values on
datasets and shows that the reconstruction of the dataset
using NN was better than reconstruction using statistical
method. Their analysis showed that classification accuracy
increases with the inclusion of reconstructed data values.
Ravi et al., proposed missing data imputation on different tasks
including classification, regression, bankrupcy prediction and
credit scoring datasets using auto associative NN [30]. Their
work showed interesting imputation results by the NN on the
different tasks.

Although traditional neural networks have shown interest-
ing capabilities, achieving state of the art results in many
real-world applications, they are still challenged by a number
of issues such as difficulty in training the network especially as
the size of the network increases, slow convergence and local
minima problems. To solve these problems, Cao et al. pro-
posed Neural Network with Random Weights (NNRW) [31].
NNRW is a non-iterative algorithm in which the hidden
weights and biases are randomly selected from a given range of
values and kept the same throughout the training process while
the weights between the hidden layer and output layer are
obtained analytically, this process helps the NN to train faster
with acceptable accuracy [32]. In [33], Cao et al. employed a
type of NNRW known as Random Vector Functional LinK
Network (RLFV) for semi-supervised learning. Their work
was based on fuzzy theory and shows improved generalization
of the fuzziness based RVFL in classification problems.

In [34], Beaulieu-Jones et al. proposed a deeply learned
Auto Encoders (AE) technique for imputing missing electronic
health record data. They compared the performance of AE to
other imputation strategies and noted that AE, though compu-
tationally intensive, outperformed competing imputation meth-
ods. However, they noted that with GPU resources, AE trains
in similar time to KNN and Singular Value Decomposition
(SVD) methods. In [2], Loy-Benitez et al. proposed Varia-
tional Autoencoders with Convolutional layers (VAE-CNN)
for imputing missing indoor air quality data. They compared
this method to other imputation methods and VAE-CNN
demonstrated improved results over the other methods in the
imputation task. McCoy et al. also used VAE for imputing
missing heavily corrupted (90% of records) and lightly cor-
rupted (20% of record) data in a simulated milling circuit [17].
Their analysis showed that for both the heavily and lightly
corrupted datasets, the Root Mean Squared Error (RMSE) of
the VAE method was lower than other traditional methods
including mean replacement and PCA.

In the environmental monitoring field where LCS are usu-
ally employed to supplement existing traditional monitoring
solutions, data quality assurance is essential for the sensors
and can be achieved through frequent sensor calibration.
However, most studies in the IoT sensor calibration domain
have drawn conclusions based on the assumption of a complete
dataset [35], [36]. Although, some researchers have explored
missing data issues on IoT sensor calibration [37], [38], more

research is still needed in this space. Missing data reduces the
representativeness of samples, thereby reducing the statistical
power of a study which in turn produces bias estimates and can
lead to invalid conclusions [39]. This distortion can adversely
affect sensor calibration processes.

Calibrating sensors on imputed dataset rather than on a
dataset where incomplete records have been discarded can help
to yield more accurate calibration result, improving on-site
sensor performance and ensuring that the sensors are collecting
accurate data.

In this study, we examine the effect of missing and
imputed data on LCS calibration. We investigate VAE-a deep
learning-based generative model, NNRW, MICE, MissForest,
and KNN for imputing missing sensor data and subsequently
used the imputed dataset for sensor calibration.

Previous studies have proposed different methods for sensor
calibration. Spinnelle et al. applied SLR, MLR and ANN for
the calibration of a cluster of low-cost O3, NO2, NO, CO and
CO2 sensors over a two week calibration period. Based on the
measurement uncertainty estimated by orthogonal regressions
of sensors and reference data, their work shows ANN to be
a suitable calibration model for the sensor clusters while both
simple and multiple linear regressions provided high level of
measurement uncertainties [40], [41]. De Vito et al. proposed
and evaluated the calibration of low cost gas multi-sensor
devices in an urban air pollution monitoring mesh using
NN and a two week on-site recorded data for benzene, CO,
NO2 and NOx pollutants. Their work shows the feasibility
of obtaining a neural calibration capable of allowing multi
sensor devices to successfully operate on the field carrying
out pollutant estimation with optimal result even for a limited
number of training periods [42], [43]. Okafor et al. applied
SLR, MLR and ANN for the calibration of low-cost O3 and
NO2 sensor devices. Their work evaluated the performance of
different feature selection techniques in identifying factors that
affect on-site sensor measurements and applied data fusion
to exploit the correlation existing between similar sensors.
Experimental results from their work shows the calibration
methods to minimize estimation errors from the sensors with
respect to conventional station outputs [44], [45].

IV. DATASET DESCRIPTION

The dataset used in this study is presented by Feinberg
et al. in [46], it is a publicly available dataset which is
available at the EPA environmental dataset gateway [47].
The dataset consists of measurements from particles and gas
sensors. The sensors were deployed in triplicates in a static
network configuration in co-location with Federal Equivalent
Method (FEM) Monitors at an urban regulatory site in Denver
Colorado, United States of America, over a six months mon-
itoring period. Similar static sensor network configuration for
air quality monitoring can be found in [48]. Sensor network
deployments can be static or mobile [49], [50], where the
methods rely on the mobility of the sensor nodes to achieve
calibration [51].

For the purpose of this study, we exclude the particle sensors
and concentrate our analysis on the gas sensors. Two datasets
were considered. (i) Ozone (O3) and (ii) combined Nitrogen
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TABLE I
SELECTED SENSORS

Fig. 1. Correlation coefficients of O3 sensors and FEM measurements.

dioxide and Ozone (NO2/O3) datasets. For O3, the dataset con-
sists of measurements from three units of Aeroqual O3 sensors,
Temperature (T) and Relative Humidity (RH) measurements
as well as measurements from O3 FEM monitor. Likewise, for
NO2/O3, the dataset consist of measurements from three units
of CairclipNO2/O3 sensors, T and RH measurements as well
as measurements from NO2/O3 FEM monitor. All sensors and
FEM monitors logged data per minute in part per billion (ppb)
from 8 September 2015 to 22 February 2016.

The sensors are commercially available, low cost and with
relatively high market prevalence. More information about the
sensors is presented in Table I.

The sensors exhibited moderate to strong correlation with
the FEM reference monitors. O3 Pearson correlation of the
sensors and reference measurement is > 0.9 while that of
NO2/O3 sensors to NO2/O3 reference ranges between 0.32 to
0.57. The heatmap in figure 1 shows the correlation between
the variables. The O3 sensors (S1, S2, S3) show high cor-
relation among sensors and also exhibited varying positive
correlation with T and negative correlation with RH. This
relationships can be exploited by the imputation models to
predict missing values on the variables.

The datasets originally consist of real missing values, 5.77%
and 19.54% of values were missing from the O3 and NO2/O3
dataset respectively. It is impossible to assess the performance
of the imputation strategies when the real values are unknown.
We therefore created simulated missing values on the datasets
to assess the ability of the imputation algorithms. Further
description about this is on the methodology section.

V. METHODOLOGY

We employed multiple imputation techniques to impute
missing values on both the O3 and NO2/O3 sensors datasets.

TABLE II
MISSING DATA PATTERN: MISSING VALUES OCCURRING

AT RANDOM POINTS

TABLE III
MISSING DATA PATTERN: MISSING VALUES OCCURRING

OVER CONSECUTIVE PERIODS

The techniques considered in this study include VAE, NNRW,
MICE, MissForest and KNN. To assess the performance of
the imputation algorithms, we adopt a five step approach
extending the method proposed in [52]. The first step involves
an initial evaluation of the correlation between features;
features exhibiting high correlation with the variable(s) to
be imputed were selected and included in the imputation
model. Step two involves artificially creating missing values at
random points on the variable (as illustrated on table II) and
at consecutive periods (as per table III). Step three involves
applying the imputation techniques to impute the missing
values. Step four involves comparing all imputation techniques
using the RMSE performance indicator. RMSE is defined as
the average squared difference between imputed and original
values. In general, the best performing imputation technique
will have the lowest RMSE. Finally, in step five, the imputed
dataset from the best performing algorithm is used for sen-
sor calibration and the performance of the imputed data on
sensor calibration is compared to calibration on Complete
Case (CCA) i.e, eliminating missing data records from the
analysis.

Specifically, missing values were introduced following the
patterns listed below and we examined how the imputation
techniques performed on imputation tasks under the different
missingness scenarios:

1) missing values were simulated on a single variable with
missingness spanning p period of time, where p ∈
{1day,1 wk, 2wks,1 month, . . .4 months}

2) missing values were introduced on multiple variables
(3 sensor units) with missingness spanning p period of
time, where p ∈ {1day,1 wk, 2wks,1 month}
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3) missing values were introduced on multiple variables
(3 sensor units) with missingness occurring at ran-
dom points and at different proportion (r), where r ∈
{5%, 10%, 30%, 50%, 70%}.

To the best of our knowledge, this is the first study that
have considered multiple imputation on IoT sensors deployed
for the quantification of GHGs, with missing values occurring
not just at random points but over consecutive periods.

All data handling and processing in this study were per-
formed using python 3 on a jupyter notebook which is included
as part of the Anaconda distribution [53].

A. Multiple Imputation (MI)
As opposed to single imputation, multiple imputation sup-

ports analysis that makes use of all possible information on
a dataset [54]. MI accounts for the statistical uncertainties
in imputations and also yields more accurate results. They
involve filling in the missing values multiple times, creating
multiple complete datasets. MI techniques were developed
to handle uncertainties in imputation beyond what SI can
carter for. MI techniques are able to recover information
which would otherwise be lost when observations with missing
values are excluded in an analysis, thereby helping to minimize
bias.

The validity of analysis relying on imputed data would
however depend on the correct specification of the imputation
model, a common question when dealing with missing values
is what proportion of missingness is acceptable before infer-
ence with imputation becomes valid. Previous studies have
identified various upper and lower limits, observing also that
the availability of other auxiliary variables which can predict
the missingness and/or are associated with the missing values
may be an important consideration [55]. The inclusion of
auxiliary variables in the imputation model can yield unbiased
estimates even at high proportion of missing values. [55].

Correctly specifying the imputation model is necessary for
obtaining accurate analysis with the imputed data. However,
for practitioners, deciding which imputation method is most
suitable for their particular problem still remains a challenge.
To address this challenge, Meyer et al. proposed and launched
a unified platform; R-miss-tastic [56]. A platform which pro-
vides an overview of standard missing values problems, with
relevant implementations of methodologies (in R and python)
that can be used to assess missing values in an analysis. Their
work aims to create standard analysis workflow and to unify
the community.

In the current study, the performance of different impu-
tation methods for imputing missing values on IoT sensors
deployed for estimating GHGs were assessed. Furthermore,
the effects of imputation on sensor calibration models were
also investigated. In the following subsections, we describe in
more details, the imputation methods used.

B. Variational Autoencoders (VAE)
VAE is an autoencoder (AE) network with generative capa-

bility. AE and VAE however, differ in how they represent

Fig. 2. Structure of a variational autoencoder.

model input data. While AE learns a compressed represen-
tation of the input data, VAE learns a set of distribution
parameters which describes the data, usually the mean and
variance of a gaussian probability function. By sampling from
these parameters, VAE can generate data instances that closely
resembles the original data [57]. The VAE structure consist of
two main components (i) encoder qφ(Z |X) and (ii) decoder
pθ (X |Z) as shown in figure 2.

Both the encoder and decoder are multilayered NN with
parameters φ and θ respectively [2]. VAE follows the assump-
tion that the input data X is generated by some underlying
distribution p(X) which can be represented by the latent
variable Z , where Z itself is generated by a distribution p(Z).
The joint distribution of p(X, Z) can be represented as:

p(X, Z) = pθ (X |Z)p(Z) (1)

This joint distribution can be generated by sampling from
the distribution of Z , also known as the prior, p(Z) and the
distribution of X given Z , also called likelihood pθ (X |Z).
The likelihood function with the parameter θ is learnt from
the data. p(Z) is usually chosen to follow a normal distri-
bution with zero mean and unit variance with no additional
parameters to learn. The posterior is the distribution of the
latent variable Z , given X . The posterior which is typically a
NN is approximated by qφ(Z |X). Maximizing the log of the
marginal likelihood (log evidence) lnpθ (X) will ensure that
the best representation for the data X is obtained.

The log evidence, lnpθ (X) can be expressed in terms of the
Evidence Lower Bound (ELBO).

lnpθ (X) = E L B O + K L[qφ(Z |X)||pθ (X |Z)] (2)

KL is the Kullback-Liebler divergence, it describes the
agreement between two distributions such as the encoder net-
work qφ(Z |X); an approximation to the posterior distribution
and the true posterior distribution pθ (X |Z). KL divergence
is zero when both qφ(Z |X) and pθ (X |Z) are identical and
positive if they are not identical. The maximum value of
lnpθ (X) can be obtained by finding the parameters φ and θ
which minimizes ELBO as per equation 3.

E L B O = Eqφ (Z |X)[ln pθ (X |Z)] − K L[qφ(Z |X)�p(Z)] (3)

The first term in equation 3 is the expectation of the log
likelihood of the decoder network given the encoder network’s
output. The second term is the KL divergence between the
posterior distribution (i.e the encoder network), qφ(Z |X) and
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Fig. 3. Structure of a three layered NNRW.

the prior distribution of the latent variable Z, p(Z). Minimizing
this term brings the posterior qφ(Z |X) closer to the prior p(Z).

In this study, the VAE network was trained and subsequently
used to predict the missing values. We tested different network
architectures to determine the network with optimal perfor-
mance for the imputation task. The networks tested differs
in the number of hidden layers and neurons for the encoder
and decoder networks. Optimal result was achieved using two
hidden layers in both the encoder and decoder networks with
each layer having 25 neurons, the network was trained for
500 epochs using Adam as the optimizer and a learning rate
of 0.001. Missing values were then imputed following the steps
below:

1) First, the missing points in the dataset were replaced
with zero

2) The dataset was then passed to the trained VAE network
3) Samples were drawn from the latent variable distribution

i.e. output of the encoder network to generate Z, given
X.

4) given Z, samples were drawn from the reconstructed
data distribution. i.e. output of the decoder network to
generate X’

5) the missing values were then replaced with the recon-
structed values, leaving the observed values unchanged.

6) The imputation iteration limit was set to 25 as optimal
result was achieved at this point during the training
process, setting a higher limit overfits the model. Step
2 to 5 is repeated until this limit is reached.

C. Neural Network With Random Weights (NNRW)
In the current study, a feedforward NNRW was also applied

to predict the missing values. The network topology used is
a fully connected layered network. The network is divided
into input layer, hidden layers and output layer. The number
of neurons in the input and first hidden layer corresponds to
the number of input variables present on the datasets and
the output layer has neuron(s) corresponding to the target
variable(s). The network diagram is shown in figure 3, and
for clarity, depicts only one hidden layer on the diagram.

We tested different architectures differing only in the num-
ber of hidden layers H and hidden neurons (N) with H in

{2,4,6} and N in {3,5,10,15}. So far, there has not been much
guidance regarding the number of hidden layers and hidden
neurons, the choice of the same number of neurons in the input
and first hidden layer in this study is to ensure that each input
neuron has a corresponding neuron in the first hidden layer.
Each neuron in the input layer is fully connected in the forward
direction to all the neurons in the first hidden layer through a
set of weights W . Similarly each of the neurons in the hidden
layer is fully connected to all the neurons in the next hidden
layer through the same set of weights. The output weights
(weights of neurons between the hidden and output neuron)
are another set of weights β. The weights W and the threshold
of the hidden biases b were selected randomly from a range
of values. The range of these values depends largely on the
activation function used, although some authors recommend
[−1:1] and some as small as[−0.1:0.1]. Empirically, a range
of [−1:1] for W and [0:1] for b is found adequate for the
current use case. These weights were kept fixed throughout the
training process. The weights β between the hidden and output
layer were determined following the method described in [33].
The activation function used was Rectified Linear Unit (ReLu)
for the hidden layers and Linear activation function for the
output and Adam was the optimizer used.

To impute the missing values, we adopted an approach
similar to that described in [58] following the steps below:

1) the variable to be imputed is set as the target and the
other variables on the dataset are the predictors.

2) the dataset is splitted into training and test subsets.
3) the training subset contains non-missing values and is

used to train the network.
4) in the test subset, missing values are introduced follow-

ing the patterns described in section V, and was used to
evaluate the network, comparing the predicted values to
the true values.

5) the best trained network is chosen and applied to records
with missing values.

D. Multiple Imputation by Chain Equation (MICE)
The MICE method imputes data on a variable by vari-

able basis by specifying an imputation model per variable.
We briefly outline below, the MICE procedure used in this
study:

1) mean value imputation (a single imputation process) is
first carried out for every missing value on the dataset
(this mean imputation could be regarded as a place
holder).

2) the place holder created in(1) for one of the variables
(i.e. output from one of the sensors (Sj) is set back to
missing.

3) the observed values from Sj in 2 are applied in a
linear regression with the other variables. Sj being the
dependent variable and the other variables being the
independent variables on the regression model.

4) The missing values in Sj are then replaced by predictions
from the regression model.

5) Step 2-4 is repeated for each variable with missing
values.
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A complete cycle for each variable constitutes one iteration.
At the end of one cycle, all of the missing data were replaced
with predicted values from the regression, with the predictions
reflecting the relationships observed on the dataset.

The entire process of iterating through all the variables were
repeated until convergence, at the end, the final imputations
were retained, this final set of imputed values and the observed
values resulted in one complete dataset.

It is essential to know the number of imputation rounds
necessary for a good statistical inference. The authors in [59]
suggested that small value of imputation rounds (n) on the
order of 3 to 5 yields an excellent result. Schafer et al. stated
that not more than 10 imputations rounds are usually required
[60], however, Graham et al. after using a Monte Carlo
simulation to test multiple imputation models across several
scenarios in which the fraction of missing information for the
parameter being estimated and n were varied, recommended
that many more imputation rounds than previously considered
sufficient should be performed [61].

In the current study, 5, 10, 30 and 50 imputation rounds
were tested and optimal performance was obtained with the
30 imputation rounds, hence we applied 30 imputation rounds
to the MICE technique.

E. Missforest
missForest is an iterative imputation method that is based

on Random Forest (RF). In previous literature, missForest
was identified to exhibit attractive computational efficiency
and capable of handling missing value imputation on high
dimensional datasets [14]. In this study, we assessed the
performance of missForest for data imputation. An iterative
imputer scheme was used by first training an RF on the
observed values, followed by predicting the missing values and
then proceeding iteratively. The RF algorithm has an in-built
function capable of handling missing data by weighing the
frequency of the observed values on a variable with the RF
proximities after being trained on the initially mean imputed
dataset. We adopted an approach which involved training an
RF on the observed data, similar to the method proposed
in [14].

For any variable Sj containing missing values at points
imissing, where imissing ∈ {1 . . . n} the dataset was separated
into 4 parts:

1) The observed values of Sj denoted by yobserved
2) The missing values of Sj denoted by ymissing
3) The other variables contained on the dataset (other

than Sj with observations at point iobserved = {1, . . . n}
denoted by Xobserved

4) The other variables contained on the dataset (other than
Sj) with observations imissing denoted by Xmissing

The iterative imputer algorithm began by making an initial
guess for the missing values in S using mean imputation. The
variables Sj, j = 1, . . . p are then sorted in accordance with
the number of missing values beginning with the variable with
the lowest amount of missing values. For each variable Sj,
the missing values are imputed by first fitting an RF with
response yobserved and predictors Xobserved. ymissing is then

predicted by applying the trained RF model to Xmissing.
To avoid overfitting the model, we set an early stopping
rounds criterion and repeated the imputation iteration until this
criterion was reached.

F. K-Nearest Neighbor
Inspired by the work in [62], we also employed KNN

to handle missing values on the IoT sensors datasets and
compared the performance to the other imputation algorithms
previously described. With KNN, for each variable on the
dataset, the missing values were imputed by finding the k
non-missing values on the sample which are closest to the
missing data point. The average of these k closest values are
then taken and used to fill in the missing point. We determined
the closest neighbours to the missing point by using an
euclidean distance metric given by equation 4 to calculate the
distance between the missing point (x) and the non missing
neighbour (y).

√√√√ k∑
i=1

(xi − yi)2 (4)

Euclidean distance remains the most obvious way for rep-
resenting the distance between two points. It measures the
length of a segment connecting the two points together. We set
k = 3 and used the average of these 3 nearest neighbours to
the missing point to fill the missing point. Due to the fact that
KNN depends on the distance between samples, the scale of
the predictor variables can significantly influence the distance
among samples, for this reason, we centred and scaled all
predictor variables before applying KNN to avoid this potential
bias and to enable each predictor to contribute equally to the
distance calculation.

VI. SENSOR CALIBRATION

After the data imputation process, we investigated the effect
of using imputed dataset for sensor calibration purposes and
evaluated the performance of calibration on imputed and CCA
data.

To meet the maximum level of accuracy and to ensure
that data quality of LCS is sufficient, frequent calibration
and data validation are essential. Calibrating sensors however,
requires the availability of complete data points for sensors
and reference measurements, hence the need for efficient data
imputation strategy.

While calibrating the sensors, we aim to correct the gain and
offset errors by mapping raw sensor measurements to pollutant
concentration provided by reference monitor [49]. Previous
studies have identified data fusion technique to provide more
consistent, reliable and accurate results when applied to sensor
calibration [44]. We employ this technique in the current study
as it allows for the use of multiple sensors outputs in the
calibration model.

Furthermore, meteorological factors such as Temperature
(T) and Relative Humidity (RH) can affect LCS outputs.
Figure 4 shows the scatter plot of the O3 and NO2/O3 sen-
sors and their corresponding reference data color-coded with
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Fig. 4. Scatter plots of sensor and reference data, color-coded with meteorological factors: (a-b) temperature, (c-d) relative humidity.

meteorological factors, indicating the effects of both T and RH
on the sensors measurements. At low T, the O3 and NO2/O3
values measured by the sensors were lower than that of the ref-
erence monitors but as T increases, the sensors values tend to
increase in proportion to the reference measurements, showing
a positive interference of T with sensor measurements. Also,
both O3 and NO2/O3 sensor values were higher at low RH, but
lower at high RH. Previous studies have also reported similar
trends, showing the sensitivity of LCS to be influenced by
changing environmental conditions. Pang et al. observed low
sensitivity in electrochemical sensors with an increase in RH
[63] while Rai et al. observed that LCS experienced a loss in
sensitivity with changing ambient temperature [50].

It is important to account for the effects of meteorological
factors on sensors output, thus, we incorporated changing
environmental conditions (T and RH) into the calibration
model to ensure improvement in the overall measurement
accuracy of the LCS.

Before calibration, the variables were analysed for multi-
collinearity using Variance Inflation Factor (VIF) tool from
the statsmodels package in python. Multicollinearity among
independent variables will result in less reliable statistical
inference, hence variables exhibiting high linear relationships
with other variables as well as those exhibiting low level
of significance were eliminated through a backward elim-
ination process and were not included in the calibration
model. We used different machine learning algorithms includ-
ing Multi Linear Regression (MLR), Decision Tree (DT),

Random Forest (RF) and XGBoost to build the calibration
models. The models were tested on both O3 and NO2/O3
datasets with 30% of missing values imputed using VAE impu-
tation method. The VAE method was chosen for this particular
task based on its significant imputation performance over the
rest of the other algorithms. We describe in more details,
the implementation of the calibration models in subsequent
sections.

A. Multiple Linear Regression (MLR)
A MLR calibration model was used to fit the explanatory

variables to the FEM monitor data using the formular in
equation 5.

yref = β0 + β1S1 + β2S2 + β3S3 + β4T + β5 RH (5)

where yref is the target concentration from FEM monitor,
S1, S2, S3 are measurements from the three sensor units,
T is temperature measurements and RH is relative humidity
measurements

As per Cordero et al., MLR is a suitable model for electro-
chemical sensors because their response to gas concentrations
is linear and the cross-sensitivities are additive [64]. MLR
has previously been applied in the calibration of low cost air
quality sensors [64], [65].

B. Decision Tree (DT)
Decision Tree (DT) provides non-parametric method for

partitioning dataset. It can be used to solve both regression and
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classification problems. The technique can aid the description,
generalization and categorization of a given set of data by
breaking the dataset into smaller subsets while incrementally
developing an associated decision tree with decision nodes
and leaf nodes. We used Grid search to get the best set
of hyperparameters for the model. As per [66], grid search
considers several hypaperameter combinations and chooses the
one that returns a lower error score. It is most useful when
there are only a few hyperparameters to optimize but would
usually be outperformed by other weighted-random search
algorithms when the model grows in complexity. We tested
different values for the min sample split s = [5,10,15,20] and
s = 10 was found to be the best for the model with max
depth of 3. A 10-fold cross validation was used to estimate
the performance of the model.

C. Random Forest (RF)
RF works by constructing an ensemble of DTs through a

bootstrap aggregation technique. This process involves training
each DT on different data samples where sampling is done by
replacement. The mean value from the ensemble is then used
to predict the value of the new input data. By considering
a random subset of the explanatory variables, the root node
of the DT is split into sub nodes. The tree is split based on
which of the explanatory variable in each random subset is
the strongest predictor of the target [67]. The process of node
splitting is repeated until a terminal node is reached.

In [68], Wang et al. applied RF method to calibrate a
low-cost particle monitor (HK-B3) using measurements from
MicroPEM monitor (RTI) as reference. Their work showed
that RF was able to establish an accurate calibration func-
tion between the sensor and the reference device. In [67],
Zimmerman et al. also applied RF algorithm in developing
calibration model to calibrate LCS deployed for air quality
monitoring.

In this study, we passed the explanatory variables and
reference data to an RF regression model, a grid search
cross validation was used to determine the optimal values of
the hyperparameters of the model from a specified range of
values. Here, we choosed two hyperparameters i.e max_depth
and n_estimators to be optimized. We tested max_depths
of 3,5,7 and n_estimators [50, 100, 150, 200]. A max_dept
of 3 was found to be the best while n_estimator of 100 was
found to be the best for the model. max_depth is the maximum
depth of the tree and n_estimators is the number of trees in
the forest [69]. we used a 10-fold cross validation method to
determine the model performance.

D. XGBoost (XGB)
XGBoost is a decision tree-based ensemble algorithm which

uses a gradient boosting framework [70]. It’s a scalable and
powerful algorithm especially where speed and accuracy are
concerned. In fact, it has been a winning choice algorithm
for participants in Kaggle-a data science and machine learn-
ing competition platform. Previous studies have identified
XGBoost as an excellent algorithm for sensor calibration.
In [71], the authors assessed the performance of XGB and

TABLE IV
HYPERPARAMETERS FOR THE XGB MODEL

other machine learning algorithms including MLR, and Feed-
forward NN for the calibration of low-cost PM2.5 sensor
and found that after calibrating with XGB, the variance of
the PM2.5 values were not statistically significantly different
from the values measured by a highly accurate reference
instrument with which the sensors were co-located, indicating
a better agreement of the sensor values with the reference
instrument after calibration. In the current study, we compared
the performance of XGB with the earlier discussed algorithms
for the calibration of LCS sensors.

While building an XGB model, it is important to con-
sider different parameters and their values. XGB requires
parameter tuning to improve and fully leverage its benefit.
A random search method [72] was used in this study to tune
the hyperparameters in the XGB model. We choosed three
hyperparameters to tune. In table IV, we present the best
hyperparameters chosen by the random search algorithm for
the XGB model as well as the early stopping rounds used to
avoid over-fitting the model.

VII. MODEL EVALUATION

The performance of the calibration models were evaluated
by comparing the calibrated sensors responses to measure-
ments from the FEM monitors using the error metrics: Root
Mean Squared Error (RMSE) as given by equation 6, Mean
Absolute Error (MAE) as per equation 7 and Coefficient of
Determination (R2). The lower the RMSE and MAE, the better
the model and an R2 value closer to 1 indicates good model
performance.

RM SE =
√√√√1/n

n∑
i=1

(Yi − yi)2 (6)

M AE = 1/n
n∑

i=1

(|Yi − yi|) (7)

(where n is the number of samples, Y is calibrated response
and y is target response).

The models were built using imputed dataset and Complete
Case Analysis (i.e eliminating missing observations from the
datasets). The datasets were split into training and test subsets
in proportions of 80% and 20% respectively with the test
subset being the most recent part of the dataset. The training
subset was used for the model training process and the test
data was used to evaluate the model performance.

VIII. RESULTS

In the following subsections, we present the results of the
analysis undertaken in this study including the performances
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TABLE V
COMPARISON OF IMPUTATION METHODS WITH MISSING VALUES OCCURRING OVER CONSECUTIVE PERIODS ON A SINGLE O3 SENSOR

Fig. 5. Comparison of imputation methods with missing values occurring
on multiple variables over consecutive periods on the O3 sensors
dataset.

of the different imputation techniques as well as effect of
imputation on sensor calibration.

A. Imputation
The imputation accuracy of the different imputation tech-

niques were compared. The imputation accuracy is defined by
the Root Mean Squared Error (RMSE) between the original
values and imputed values.

At first, values were artificially removed from one sensor
variable (S1) in a consecutive manner over specified period
of time i.e., 1 day, 1 week, 1 month etc. At each period,
the different imputation techniques (VAE, NNWR, MICE,
missForest and KNN) were used to impute missing data
and the imputation accuracy calculated. Table V shows the
imputation accuracy (RMSE) of the different methods. For
this case, all the imputation methods performed reasonably
well with minimal errors (< 0.1) even for a long period of
missingness (up to 4 months), this could be explained by the
availability of other auxiliary variables (i.e S2, S3, FEM, T and
RH measurements) which were included in the imputation
model and were able to predict the missingness on S1.

Result of the performance of the imputation methods when
missing values were artificially introduced on multiple vari-
ables (i.e three sensor variables) over consecutive period of
time is shown on figure 5.

Furthermore, results of the analysis of randomly introduced
missing values are presented in figure 6. We ensured that
all variables had at least one missing data point and that
missing values were distributed across all the variables. For

Fig. 6. Comparison of imputation methods at different proportion of
missingness on O3 dataset.

all the imputation tasks carried out in this study, VAE shows
improved performance over the rest of the imputation methods
for handling missing values.

B. Calibration
After the imputation processes, the sensors were calibrated

using different supervised machine learning algorithms includ-
ing MLR, DT, RF and XGB. To understand any effect imputed
data may have on sensor calibration, the calibration was
conducted using:

1) VAE-imputed dataset (with 30% missing values
imputed)

2) Complete Case Analysis (CCA)- this involves deleting
missing value records from the dataset

Calibrating the sensors using imputed dataset showed
more promising performance when compared to CCA.
In Tables VI and VII we present the calibration results from
the different algorithms using imputed and CCA data for both
O3 and NO2/O3 sensors. For each of the calibration methods,
the results showed calibration on imputed data to be more
accurate than with CCA.

In the case of the O3 dataset, all the calibration meth-
ods performed significantly well in correcting sensors errors
with R2 score > 0.9, XGB having the lowest error and
the highest R2 score however, outperformed the rest of the
algorithms in the calibration task. The RMSE and MAE
existing between uncalibrated/raw O3 sensor and O3 reference
outputs is 0.0091 and 0.0082 respectively. After calibrating
the sensor with XGB model trained on VAE-imputed dataset,
the errors were significantly reduced (see Table VI). Also with
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TABLE VI
COMPARISON OF IMPUTATION AND COMPLETE CASE ANALYSIS ON O3 SENSOR CALIBRATION

TABLE VII
COMPARISON OF IMPUTATION AND COMPLETE CASE ANALYSIS ON NO2/ O3 SENSOR CALIBRATION

calibration done on the CCA data, reduction in error between
the sensor output and reference data was also observed, indi-
cating the importance of sensor calibration in handling sensor
output errors. Calibration on imputed dataset however showed
better performance than calibration done using the CCA data,
with XGB performing better than the other algorithms in the
calibration task.

Furthermore, the R2 score between the uncalibrated sensor
data and the reference data was 0.50, however, after calibrating
the sensors with VAE-imputed dataset, the R2 score saw a
significant improvement even with less sophisticated MLR
model (R2 = 0.9485) and the more sophisticated XGB model
offering even better agreement between the calibrated sensor
and reference data (R2 = 0.9980).

Similar trend was observed for the NO2/O3 data, with
calibration on imputed data performing better than calibration
done on CCA, even with less sophisticated algorithm such as
MLR (see Table VII)

IX. CONCLUSION

This study explored imputation techniques for predicting
missing values on the datasets of LCS deployed for the
quantification of GHGs. Five different imputation techniques
were investigated including VAE, NNRW, MICE, missForest
and KNN. The analysis shows that at any measurement point,
the concentrations of auxiliary variables such as T, RH,
and other sensor variables with non-missing values exhibit
important correlation that could be exploited by the imputation
methods to predict missing values on a target variable. As it
would be impossible to assess the performance of imputation
strategies when the real values are unknown, we introduced
missing values to the datasets following two distinct patterns
to assess the ability of the imputation strategies. VAE method
shows improved performance over the rest of the competing
algorithms for imputation tasks conducted on two real-world
datasets including O3 dataset which consists of three aeroqual
O3 sensors, T, RH and FEM measurements and NO2/O3
dataset consisting of three cairclipNO2/O3 sensors, T, RH and
NO2/O3 FEM measurements collected over a six months mea-
surement campaign. Furthermore, the dataset imputed using
the VAE method (30% of values imputed) was employed

in sensor calibration to ascertain any impact imputed data
may have on sensor calibration. The performance of different
calibration models including MLR, DT, RF and XGB trained
on the imputed datasets were evaluated. The analysis showed
that applying imputation to handle missing values on LCS
before calibration improved the performance of the sensors,
reducing the RMSE existing between raw sensor outputs and
FEM monitor outputs by more than 85%.

Due to time and resource constraint, this research has
focused on dataset from a limited number of electrochemical
gas sensors (3 units each of O3 and NO2/O3 sensors), future
research direction can focus on other type of gas sensors such
as Non-Dispersive Infrared (NDIR) sensors. While this study
has been able to show the effectiveness of data imputation
on missing LCS values and the importance of imputation on
sensor calibration, further research is required to ascertain the
maximum period of time upon which multiple sensors can
have missing values for imputation to be valid and applicable
for use in sensor calibration tasks.
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