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Abstract—A temperature sensor based on erbium-doped
fiber cascaded peanut taper (EDFCPT) structure in fiber ring
laser (FRL) cavity is proposed and studied. The cascaded
peanut structure was fabricated by erbium-doped fiber. The
cladding mode and core mode interference and the strong
thermo-optical effect of erbium-doped fiber were used to
realize the high sensitivity measurement of temperature. The
mode interference and thermal sensitivity effects of EDFCPT
in a broadband super-continuous light source and a fiber
ring laser cavity were studied and compared experimentally.
Besides, Erbium-doped fiber cascaded peanut (EDFCP) struc-
ture was designed to compare performance with EDFCPT. The
experimental results show that EDFCPT has a higher signal
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to noise ratio (SNR) (~50dB) and a narrower 3-dB bandwidth (~0.12nm) than the broadband light source. Among them,
the temperature sensitivity of EDFCPT is 571pm/°C which is two times higher than the EDFCP (~249nm/°C) structure at
range from 5°C-55°C. The proposed temperature sensor has the advantages of high sensitivity, good repeatability, simple
fabrication, compact structure, etc. It has a good application prospect in the field of aerospace and life health monitoring.

Index Terms— Temperature sensor, erbium-doped fiber double peanut taper, fiber ring laser.

I. INTRODUCTION
EMPERATURE sensing is of great significance for many
practical applications including monitoring of human
body temperature and real-time monitoring of ambient tem-
perature for cell culture, etc. Compared with the traditional
sensors, the optical fiber sensor has the characteristics of
small weight, immunity to electromagnetic interference, anti-
corrosion, high precision and so on. The application scope of
optical fiber sensors has penetrated into the fields of health
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monitoring, civil engineering, oil well monitoring [1]-[3], etc.
It can realize the measurement of physical quantities such
as temperature [4], refractive index [5], electric field [6],
magnetic field [7], cells [8] and so on. The research of optical
fiber temperature sensor is in the ascence and has a broad
development prospect.

At present, optical fiber sensor devices used in temperature
testing mainly include fiber Bragg grating (FBG) [9], [10]
photonic crystal fiber (PCF) [11] tilted fiber grating [12],
etc. Among them, the Mach-Zehnder interferometer (MZI)
structure sensor based on the FBG has higher requirements
for the writing technology of FBG. Besides, PCF based sensor
has high production cost, relatively complex structure, low
repeatability. In order to improve the sensitivity of the fiber
temperature sensor, structures including tapering and polishing
single-mode fiber have been proposed. In 2015, Qian ez al. [13]
proposed a method by using standard communication
single-mode fiber to fabricate cascaded peanut junction, and its
temperature sensing sensitivity was 63.7pm/° Wu et al. [14]
proposed a Michelson interferometer based on fiber peanut
junction. The temperature sensitivity of the sensor is 96pm/°C.
In 2013, Zhang et al. [15] proposed a curved single-mode
multi-mode structure fixed on a polymer plate with a temper-
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ature sensitivity of 6.5nm/°C. However, with the increasing
demand for practical applications. It is of practical significance
to realize the optical fiber temperature sensor with high signal-
to-noise ratio, narrow 3-dB bandwidth and high sensitivity.

Thanks to the characteristics of fiber ring laser, fiber ring
laser sensor can overcome the limitations of low resolution and
low detection power, improve the detection SNR, to improve
the sensing accuracy. In 2015, Gonzalez-Reyna et al. [16]
experimentally demonstrated a laser-based temperature sensor
using the MZI and grating. Temperature sensitivity of about
18.8pm/°C can be achieved. In 2017, Yang et al. [17] achieved
a high sensitivity temperature detection using a liquid-filled
photonic crystal fiber laser with a sensitivity of 1.747nm/°C.
In 2020, Shi et al. [18] proposed an ultra-high resolution laser
temperature sensor with an improved resolution from 1073 to
107® using FBG and Sagnac rings. However, all the above
sensors require additional sensor heads as filters, increasing
system costs and reducing stability.

In this paper, an erbium-doped fiber cascaded peanut
taper-based temperature sensor in a FRL cavity is proposed
and experimentally demonstrated. The erbium-doped fiber
with strong thermo-optical effect is used to enhance the
sensitivity of the cascaded peanut structure internal mode inter-
ference to realize high sensitivity measurement of temperature.
Besides, based on the characteristics of the laser, high SNR
and narrow 3dB bandwidth are achieved. Different from the
traditional FRL sensor, the designed structure does not need
additional sensing head and filter. Effectively improve the
system stability and accuracy. Moreover, Erbium-doped fibers
have another two advantages as sensing units. First, there is
no need to design additional filters to improve the stability
of the system. Finally, the fiber is not only the sensing unit,
but also the gain medium, reducing the cost of the whole
system. The experimental results show that the sensitivity of
the sensor based on EDFCP and EDFCPT are 249pm/°C and
571pm/°C, respectively. the FRL temperature sensor based on
EDFCPT structure has the advantages of high sensitivity, low
cost, simple manufacture, compact structure which make it has
potential application value in remote temperature detection and
sea water temperature calibration and other fields.

Il. SENSOR SETUP AND PRINCIPLE

Fig.1 is the schematic diagram of the designed temperature
sensor structure based on EDFCPT. EDFCPT is composed of
two cascade erbium-doped fiber peanut structures, the connect-
ing part of which is tapered. Each peanut junction structure is
interfered by two erbium-doped fiber core mode and cladding
modes. The light field is transmitted through the first rare
earth fiber to the first peanut junction. Firstly, the light field
is transmitted in the core in the form of a core mode (shown
by the arrow of the thick solid line). When the light field
passes through the first microsphere, the cladding mode (dotted
arrow) is excited due to the mismatch of core diameter. and
the light field is further transmitted to the second microsphere.
At the junction of the second microsphere and the rare earth
fiber, some higher-order cladding modes are re-coupled into
the fiber core, and then propagate along the fiber core and
interfere with the core mode simultaneously. The process of
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Fig. 1. Schematic of fiber temperature sensor based on EDFCPT.
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light field transmission in the taper region and second peanut
structure is the same as that in the first peanut structure.
Since different modes have different phases, there will be
phase difference between modes. The cladding mode power
can be improved effectively by tapering the fiber in the region
between two peanut structures.

In Fig.1, the output light intensity after the interference
between the core mode and the cladding mode in the second
peanut structure can be expressed as [16]:
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A

I=0L+hL+2/ILCOS [27:L(nﬁ{f -
where, I, I refers to the light intensity of core mode and
cladding mode respectively. The wavelength of the trans-
mitted light is A. L is the coherence length; The effective
refractive index of core mode is ni{f and that of cladding
mode is n%f »- Since different propagation constants between
different modes, phase difference will occur between different
modes after the transmission phase separation. In EDFCPT,
multi-order cladding modes excited into cladding participate
in interference, and different order cladding modes correspond

to different effective refractive index. The phase difference
between core mode and cladding modes Ag is [14]:

g =2xL (nf = nifll) /2 @)
the wavelength can be obtained by equation (2) as:
Zaip =21 (nlf! —nill) s @m+ 1) 3

When m is an integer, the interference intensity is the
smallest. Since the cladding refractive index of the sensor
matches the external temperature and the core is not in contact
with the outside, the effective refractive index of the cladding
mode is not only related to the incident wavelength of the
transmitted light, but also related to the external temperature,
while the effective refractive index of the core mode is only
related to the incident wavelength of the transmitted light.

When the external temperature changes, An.rr changes,
resulting in wavelength drift. Wavelength drift of interference
spectrum can be expressed as [14]:

1
Neff
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where, ¢ is the number of thermal-optical system of opti-
cal fiber; k is the thermal expansion coefficient of optical
fiber. The change of temperature affects the wavelength of
interference spectrum through thermal-light effect and thermal
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Fig. 2.
structure.

Microscopic image of the Er-doped double peanut-shaped

Fig. 3. Schematic diagram of Er-doped peanut-shaped fiber structure
sensor.

expansion effect. 6 and k can be expressed as:
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As can be seen from Equation (6), compared with ordinary
single-mode fiber, the erbium ion in erbium-doped fiber makes
the proposed EDFCPT have stronger thermo-optical effect and
can effectively improve its temperature sensing sensitivity.

Fig.2 and Fig.3 show the actual microscope photos of
the EDFCPT structure and the tapered cascade peanut junc-
tion structure prepared in the experiment. In the experiment,
EDFCPT is made by the method of arc discharge of optical
fiber fusion splicer, and the discharge time and current of
splicer are determined the key parameters of EDFCPT. The
specific steps are as follows: first, the erbium-doped fiber is
stripped of the coating layer and wiped clean with alcohol.
Then, the fiber end is cut flat with an optical fiber cutter.
Then place the two fiber ends cut flat in the optical fiber
welding machine respectively, and make it in the state to be
fused. Adjust the two fiber ends to the appropriate position,
and the two end faces can be seen on the plane of the
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Fig. 4. The intracavity sensing system based on FRL.

optical fiber welding machine. Set the discharge power and
discharge time, discharge, the two end faces are softened by
heat, because of the surface tension of the material itself,
the fused fiber end face gradually tends to arc shape in the
cooling process. Using the manual motor drive function of
the optical fiber welding machine. Drive the motors on the
left and right sides to make the arc-shaped optical fiber end
surfaces of the dipping liquid body contact. Then the driving
motors on the left and right sides are simultaneously promoted,
and the micro-displacement is applied to the optical fiber
contact. Precision discharge stage. The main stage is discharge
welding. Firstly, the discharge time and the discharge time
are adjusted, the “standard” power rate is generally selected,
the discharge time is selected 800 ms, and then the discharge is
repeated for 10 times and the optical fiber peanut structure size
is observed through the interface of the optical fiber welding
machine. The section of optical fiber is fused into a spherical
lens near its end face because of surface tension. Another
spherical lens is prepared by the same method, the two
spherical lenses are placed in the welding machine. At the
same time, the position, and the distance between the two are
adjusted, and the discharge welding is carried out again. After
that a single spherical structure is obtained. Finally, two single
spheres are fused together to form two cascaded EDFCPT
structure. The structural parameters of EDFCPT are as follows:
D1 = 170um, Dy = 175um, D3 = 60um, L; = 410um,
Ly = 420cm; L = 1.1lmm. The sensor head design in this
system costs less than $5, much less than the gold-coated
Fabry-Perot cavity and liquid-filled photonic crystal fibers.

The schematic diagram of the experimental device is shown
in Figure 4. The laser emitted by the 980nm (PL-974-500-FC/
APC-P-M) diode is pumped through the WDM into the
FRL cavity. The polarization controller is used to control
the polarization state of the laser. EDFCPT is used as gain
medium, filter and sensing head, simultaneously. The total
length of erbium-doped fiber is 1.6m. The isolator is used
to control the unidirectional transmission of light, and 1% of
the light is transmitted through a 99:1 coupler to a 0.02nm
optical spectrum analyzer (Yokogawa AQ6370D) for detecting
the signal output.
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Fig. 5. Transmission spectra of the EDFCPT under supercontinuum light
source (blue line) and the proposed fiber ring laser (orange line).
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Fig. 6. Spectral response at different temperatures for erbium-doped
fiber double peanut structure.

In this case, erbium-doped fiber be used as the sensing
unit has three advantages. First, there is no need to design
additional filters, simplifying the system and reducing the cost.
Secondly, the thermal expansion coefficient of erbium-doped
fiber is larger than that of single-mode fiber, which improves
the sensitivity. Finally, erbium-doped fiber can also be used as
gain medium to improve the stability of the system.

[1l. EXPERIMENTAL RESULTS AND DISCUSSION

Fig.5 shows the correspondence between the super-
continuous source and the FRL. At 30°C, the laser peak of
FRL is in good agreement with the interference peak of super
continuous light source.

To further demonstrate the sensitivity of EDFCPT structure.
The temperature experimental results of erbium-doped fiber
double peanut structure with almost identical parameters with
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Fig. 7. Linear fiting and error bars of the relationship between
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Fig. 8. Spectral response at different temperatures for Erbium-doped
fiber tapered double peanut structure.

EDFCPT are demonstrated at first. The test results are shown
in Fig.6 and Fig.7. In the range of 5°C-55°C, the wavelength
shifts to the long wavelength direction as the temperature
increases. The detection sensitivity was 0.249nm/°C, with
linearity up to 0.999.

As shown in Fig.8 and Fig.9, the measured temperature
ranges from 5 °C to 55 °C. As the temperature increases,
the laser wavelength moves to the long wavelength direction,
and the wavelength redshifts. The temperature sensitivity was
0.571nm/°C, and the corresponding linear fitting coefficient
was 0.999. The migration of single peak output wavelength
is well linear fitting to temperature. In addition, the sensor
has a signal-to-noise ratio of 50dB and a 3-dB bandwidth
of less than 0. 12nm. At 30°C, the wavelength stability and
power fluctuation of the sensor are shown in Figure 10. It is
used to quantitatively analyze the stability of FRL sensor
system. In 2.5 hours, the wavelength deviation is 0.lnm and
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Fig. 10. Test for time stability of wavelength shift and power fluctuation.

TABLE |
SENSITIVITY COMPARISON WITH OTHER
TEMPERATURE SENSING STRUCTURES

Structures Senrsri/tig;y(p Refs.
Er doped MZI 157 [17]
Offset Mach—Zehnder interferometer 49 [18]
STCS fiber structure 11 [19]
FP air cavity between two SMFs 249 [20]
Current work 571

the intensity change is less than 0.5 dBm. This shows the
reliability and stability of the system as a sensor.

Besides, Table I compares the performance of the tem-
perature sensor with other structures. It is verified that the
designed sensor has good temperature sensing performance
except without additional filter.

IV. CONCLUSION

A temperature sensing based on the EDFCPT sensor and
FRL system is proposed. The EDFCPT based MZI is inserted

into the FRL as sensing element, gain medium and filter.
Therefore, in addition to high sensitivity to the surrounding
environment, the sensor system also effectively reduces the
system cost and improves the reliability. The sensor demon-
strated excellent temperature sensing characteristics with a
sensitivity of 571pm/°C. Besides, the signal-to-noise ratio of
the FRL sensing system is 50dB, and the 3dB bandwidth is
less than 0.15nm. In addition, EDFCPT has the advantages
of good mechanical strength, simple manufacture, and low
sensing cost, which makes it attractive for life health detection
and ocean temperature detection.
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