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Performance Optimization of Surface
Electromyography Based Biometric Sensing

System for Both Verification and Identification
Ashirbad Pradhan , Jiayuan He , Member, IEEE, and Ning Jiang , Senior Member, IEEE

Abstract—Recently, surface electromyography (sEMG)
emerged as a novel biometric authentication method. Since
EMG system parameters, such as the feature extraction meth-
ods and the number of channels, have been known to affect
system performances, it is important to investigate these
effects on the performance of the sEMG-based biometric
system to determine optimal system parameters. In this study,
three robust feature extraction methods, Time-domain (TD)
feature, Frequency Division Technique (FDT), and Autoregres-
sive (AR) feature, and their combinations were investigated
while the number of channels varying from one to eight. For
these system parameters, the performance of sixteen static
wrist and hand gestures was systematically investigated in
two authentication modes: verification and identification. The results from 24 participants showed that the TD features
significantly (p < 0.05) and consistently outperformed FDT and AR features for all channel numbers. The results also
showed that the performance of a four-channel setup was not significantly different from those with higher number of
channels. The average equal error rate (EER) for a four-channel sEMG verification system was 4% for TD features, 5.3%
for FDT features, and 10% for AR features. For an identification system, the average Rank-1 error (R1E) for a four-channel
configuration was 3% for TD features, 12.4% for FDT features, and 36.3% for AR features. The electrode position on the
flexor carpi ulnaris (FCU) muscle had a critical contribution to the authentication performance. Thus, the combination of
the TD feature set and a four-channel sEMG system with one of the electrodes positioned on the FCU are recommended
for optimal authentication performance.

Index Terms— Biometrics, gesture recognition, surface electromyogram (sEMG), feature extraction, electrode configu-
ration, user verification, user identification.

I. INTRODUCTION

AUTHENTICATION systems are critical and integral
components of modern societies, can be found in per-

sonal electronic devices, law enforcement, and airport secu-
rity [1]. Modern authentication systems usually operate on
two modes: knowledge (of a unique code) and biometrics,
respectively [2]. The knowledge-based authentication mode
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usually takes in the form of a unique code, known only to
the genuine user. Passwords and PIN (personal identification
number) are the most common choices of this authentication
mode. On the other hand, the biometrics-based authentication
mode utilizes traits and characteristics that are uniquely spe-
cific to an individual, such as fingerprints or iris. These two
modes can be incorporated separately but also be combined to
provide a higher level of security.

In the biometric mode, there are two applications: 1) ver-
ification and 2) identification. Verification is the application
of accepting or rejecting the claim of a user by comparing
his/her biometric traits to that of the user’s enrollment data
stored in the system. Identification is the application of finding
the closest match of a presented biometric trait(s) among
all the enrollment data stored with the system. In general,
identification applications have a higher requirement for the
uniqueness of biometric traits than verification applications.

Ideally, a system with both authentication modes (knowl-
edge and biometrics) would be preferred to maximize secu-
rity, as either mode has inherent drawbacks. One of the
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advantages of the knowledge-based mode is that the code
(password or PIN) can always be regenerated. On the other
hand, common biometric traits, such as fingerprint and facial
information, cannot be changed once they are compromised,
posing a lifetime risk for the genuine user [3]. As such,
a system with a dual authentication mode with simultane-
ously knowledge-based and biometric information is highly
desirable.

Recently, various biosignals such as electroencephalogram
(EEG), electrocardiogram (ECG), and electromyogram (EMG)
from the brain, heart, and the muscle, respectively have been
used as biometric traits [3]–[6]. These biosignals are sug-
gested to be used as an auxiliary biometric trait because they
have two important disadvantages compared to well-developed
well-established biometric traits. First of all, the performance
accuracy is considerably lower [7]. Secondly, they are less
robust against conditions such as illness, physical and men-
tal activities, and the time interval between the training
session and the real-time authentication session [8], [9].
As such, research efforts have been undertaken to improve
the accuracy and robustness of biometric systems based on
biosignals. It is likely that they will find applications in low-
risk authentication scenarios, complementary to other well-
established biometric modalities. Although multiple studies
have investigated EEG and ECG as a biometric trait, there
have been limited studies that use surface electromyogram
(sEMG) from the forearm and hand muscles while performing
hand gestures [6], [10]–[12]. Due to the characteristic property
that different movements result in distinctive EMG patterns,
sEMG has been predominantly used for accurate hand gesture
recognition [13]–[15]. However, while training with multiple
users, individual differences were observed [16], [17] which
motivated the biometric studies based on sEMG. One crucial
advantage of sEMG over other biometric traits is its potential
for the dual-mode authentication system described above. With
sEMG, the knowledge-based information can be implemented
by gesture recognition, in which hand/wrist gesture can be
used as authentication ‘code’. The biometric information is
based on the individual characteristics embedded in sEMG.
As the concept of using sEMG as an authentication method
is relatively new, the existing literature is limited. Initial
studies focused on the classification of individuals using
different pattern recognition algorithms and only reported
the classification accuracy [18]–[20]. This made the results
difficult to establish sEMG as a biometric trait by compar-
ing it to current biometric traits, such as fingerprints, iris,
and face. A different sEMG-based study utilized the two
applications of biometrics, verification and identification, and
reported an equal error rate (EER) of lower than 10% [6].
The study involved 24 participants who performed 16 hand
gestures. The frequency division technique (FDT) was used
for the feature extraction method [21]. Other studies used
a High-density sEMG (HD-EMG) setup where 64 channels
were placed in a grid formation on the dorsal side of the
hand [10], [11]. The feature extraction involved a combination
of time-frequency-spatial domain features as well as HD-EMG
decomposition-based features. A recent study utilized only one
electrode placed on the flexor digitorum superficialis muscle

while the participants performed a phone unlock pattern
with contractions of their fingers [12]. The time-domain fea-
ture extraction method was employed on the sEMG signals.
All these above studies showed a low error rate (<15%) of
average authentication performance, indicating sEMG as a
promising biometric trait. However, considering many para-
meters of sEMG processing system, especially the feature
extraction methods and the number of electrode channels [22],
[23] can change the system performance, it is important to
investigate their effects on the authentication performance and
to determine an optimal processing configuration of using
sEMG based biometric applications.

A. Feature Extraction Methods
The three main categories of sEMG feature extraction are:

time domain [24], frequency domain [25]–[27], and time-
frequency domain [25], [28], [29]. Additionally, there are
non-linear feature extraction methods [30] that adhere to
the non-stationary and complex nature of the sEMG signals.
However, it has been shown that for a short time contraction,
the sEMG signals satisfy the stationary assumptions [31].
Therefore, for a short duration, isometric contractions suitable
for biometric applications [10]–[12], the time domain and
frequency domain features are ideal for feature extraction as
their mean and variances have minimal variations [32]. These
include Hudgin’s time-domain (TD) feature set [24] and two
frequency domain feature sets: Frequency division technique
(FDT) [21], [26] and Autoregressive coefficients (AR) [27],
[33]. Time Domain (TD) features are computed using the
signal amplitude values. The computed features namely mean
absolute value (MAV), slope sign changes (SSC), zero crossing
(ZC), and waveform length (WL) are a quantification of sEMG
waveform amplitude, frequency, and duration. Due to their
relatively lower computational cost, they have been preferred
as a feature set in multitudes of pattern recognition-based
research [13]. The frequency-domain category of features
is based on the principle that the sEMG spectrum varies
with limb movements and has shown robustness in real-time
myoelectric control of prosthetic functions [34], [35]. The
AR feature set includes the coefficients of the nth order
autoregressive model of the sEMG signal [27], [33], [36]
and has shown to be stable over varying muscle force levels
and shifts in electrode location [37]. To the best of our
knowledge, there is no existing research on the comparison
of feature extraction methods for sEMG based authentication.
Therefore, it is crucial to determine the best feature-set that not
only has good gesture recognition accuracy but also considers
individual differences between users.

B. Number of Channels
In addition to the feature extraction method, the number of

channels is also an important factor affecting the performance
of sEMG based gesture recognition. It has been shown that
increasing the number of channels, as well as the use of HD
grids provides a more accurate gesture recognition [38], [39].
However, space limitation, power consumption, and viability
in a practical scenario hinder the use of a large number of
sEMG channels. In this regard, previous studies have analyzed
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the effect of channel reduction on gesture recognition perfor-
mance [40], [41]. It was shown that four to six channels are
sufficient for gesture recognition [41]. It has been shown that
a uniform electrode positioning of five electrodes around the
forearm, regardless of muscle anatomical location provided a
high accuracy of gesture recognition [42]. Therefore, research
on channel reduction is important to assess performance
in sEMG based authentication systems, thus facilitating the
development of easy-to-use wearable sensors. The findings of
the study helped determine the best feature set in terms of
performance accuracy and computational complexity as well
as the optimal number of channels necessary to make accurate
authentications using sEMG.

Therefore the purpose of the study was 1) to compare differ-
ent sEMG feature extraction techniques and their combinations
on the authentication performance, 2) to study the effect of
channel reduction on the authentication performance, 3) to
determine the optimal configuration (feature extraction method
and the number of channels) for accurate authentication per-
formance using sEMG based biometrics.

II. METHODS

A. Participants
Twenty-four healthy participants (13 males and 11 females,

age: 19-30 years) were recruited for the study. The average
forearm length (measured from the styloid process to the
olecranon) was 25.4 ± 1.46 cm. Participants were informed
that they may withdraw from the study at any time dur-
ing the experiment session. The experiment protocol was in
accordance with the Declaration of Helsinki and approved by
the Office of Research Ethics of the University of Waterloo
(ORE#: 22391). Additionally, data from 20 participants (age:
22-30), publicly available through the NinaPro DataBase DB7,
was used for the comparison of results [43].

B. Experimental Protocol
The participants were seated comfortably in a height-

adjustable chair in an upright position with both of their upper
limbs in a resting position and pointing towards the ground.
Sixteen monopolar sEMG electrodes (AM-N00S/E, Ambu,
Denmark) were placed in the form of two rings, each consist-
ing of eight electrodes equally spaced around the forearm and
forming bipolar pairs (Fig. 1). To make the electrode position
more uniform across all participants, one of the electrodes
in each ring was positioned in the centerline of the elbow
crease. The center-to-center distance was 2 cm between the
two rings, and the proximal ring was at a distance of one-
third the forearm length from the elbow crease. A computer
screen placed in front displayed visual instructions to help the
participant perform the defined gestures. The sEMG signals
were acquired using a commercial amplifier (EMG USB2+,
OT Bioelettronica, Italy). The sampling rate was 2048 Hz, and
a bandpass setting of the device was set at 10 Hz and 500 Hz.
Eight bipolar channels were created from data by taking the
differential of each paired electrode from the two rings and
used for subsequent processing.

The following sixteen hand and wrist gestures were included
in the current study (Fig. 2): lateral prehension (LP), thumb

Fig. 1. Positions of the sixteen monopolar electrodes on the forearm
(dorsal view). In each ring, eight electrodes (grey rectangles on the
forearm) are evenly placed, and one electrode is placed in the centerline
of the elbow crease. The distance between the centers of the two rings
was 2 cm, and the proximal ring was placed one third of the forearm
length between the elbow crease and the upper ring.

adduction (TA), thumb and little finger opposition (TLFO),
thumb and index finger opposition (TIFO), thumb and little
finger extension (TLFE), thumb and index finger extension
(TIFE), index and middle finger extension (IMFE), little
finger extension (LFE), index finger extension (IFE), thumb
extension (TE), wrist flexion (WF), wrist extension (WE),
forearm supination (FS), forearm pronation (FP), hand open
(HO), hand close (HC). Each gesture was repeated seven times
and five seconds of recording was performed each repetition.
The dataset has been made publicly available.+ To avoid
sEMG signals from transitory movements, the participants
were asked to start the contraction a little bit earlier than
the beginning of the recording. A five-second rest period
was provided between two consecutive contractions to avoid
muscle fatigue. The order of the gestures was randomized
for each participant. For the public dataset (NinaPro DB7),
participants performed 17 isometric and isotonic, hand and
finger gestures. Six repetitions of each gesture were performed
and 5 seconds of data were recorded using a Delsys Trigno
IM Wireless EMG system [43].

C. Signal Processing and Feature Extraction Methods
The bipolar surface EMG signals were first windowed with

a window length of 200 ms and an overlap of 150 ms,
i.e. 50 ms overlap between two consecutive windows. Each
window was processed subsequently using three commonly
used EMG feature extraction techniques: 1) Hudgin’s Time
Domain (TD) feature extraction [24], 2) Frequency Division
Technique [21], and 3) the autoregression (AR) technique [27].
For the TD feature set, time-domain features (mean absolute
value, zero crossing, slope sign changes, and waveform length)
were extracted from filtered data. The mathematical form of
these features for the signal is provided below

RM S =
√

1

N

∑N

i=1
x2

i (1)

+https://dx.doi.org/10.21227/n9rt-p854



PRADHAN et al.: PERFORMANCE OPTIMIZATION OF SURFACE ELECTROMYOGRAPHY 21721

Fig. 2. Sixteen gesture classes investigated in the study: (A) lateral
prehension (LP), (B) thumb adduction (TA), (C) thumb and little fin-
ger opposition (TLFO), (D) thumb and index finger opposition (TIFO),
(E) thumb and little finger extension (TLFE), (F) thumb and index
finger extension (TIFE), (G) index and middle finger extension (IMFE),
(H) little finger extension (LFE), (I) index finger extension (IFE), (J) thumb
extension (TE), (K) wrist flexion (WF), (L) wrist extension (WE), (M) fore-
arm supination (FS), (N) forearm pronation (FP), (O) hand open (HO),
(P) hand close (HC).

SSC =
∑N−1

i=2
f (xi − xi−1)(xi − xi+1)

f (x) =
{

1, if x ≥ T h

0, otherwise
(2)

W L =
∑N−1

i=1
|xi−1 − xi | (3)

ZC =
∑N

i=1
sgn(xi × xi+1) ∩ (xi − xi+1)x ≥ T h

sgn(x) =
{

1, if x ≥ T h

0, otherwise
(4)

For FDT, the signals from each channel were divided into
specific frequency sub-bands [21] as given by:

F DTi = F

[∑Ni

j=1
|X ( fi, j )|

]
, i = 1, 2 . . . L (5)

where F(·) is a nonlinear transformation, normally logarithm,
to ensure the smoothness of the values.

AR model is a prediction model defined as:

xi =
∑P

p=1
apxi−p + wi (6)

For the AR feature set, the 6th order autoregression coeffi-
cients (ap) were used for it was widely adopted in previous
studies [27]. Therefore, the three different feature vectors (TD,
FDT, and AR) were analyzed separately for authentication per-
formance. Additionally, the combination of the time domain
and frequency domain features was investigated using the
following feature sets: TD + FDT and TD + AR. For a given
feature vector sample p (the input), its similarity score, namely
Si. j , with the i th gesture and the j th user, was defined as
the Mahalanobis distance between the sample and the class
centroid is

Si, j (p) =
√

(p − μi, j )��−1
i, j (p − μi, j ) (7)

where μi, j is the centroid of the gesture i th class and the j th

user and ∑
i, j is the covariance matrix for the specific gesture

and user class Both the parameters are calculated from the
system training data and the sample p is from the system
testing data. The similarity score was used to compare the
true user with the imposter. The leave-one-out (LOO) cross-
validation scheme was used, where six trials were used for
training and one trial for testing. The performance evaluation
was performed separately for the two biometrics applications:
verification and identification.

D. Channel Selection and Reduced Channel Set
In the current study, eight bipolar channels resulting from

the two rings of electrodes placed on the forearm. This
hardware configuration might not be feasible for more prac-
tical applications in which a smaller number of electrodes as
possible should be used. A channel selection algorithm based
on the sequential forward selection (SFS) method [33] was
implemented to examine system performance when only a
subset of the available sEMG channels is used. The procedure
of the SFS is described below. Two channel-sets were defined:
the applied channel set A (initially empty, i.e. A = φ,
m = 0) and the remaining electrode set R (initially full, i.e.
R = 1, 2, . . . , N, n = N). The number m is the size of A, n
is the size of the R, and N is the total number of available
channels (8 in the current study).

In each iteration, a union of A and one of the channels
from R, i.e., rk was used for feature extraction and subsequent
authentication system evaluation. This step is repeated for all
channels in R. Then, the channel that produces the minimum
EER in the case of the verification system and minimum
RkE (k = 1, 5) in the case of the identification system
was chosen, respectively. These errors are discussed in the
following sections. Thus, for the j th iteration:

r j = arg max
ri

{
E E RA∪{ri } : E E RA∪{ri } = fE E R (A ∪ {ri })

f or r = 1, 2 . . . R(n)
}

(8)

r j = arg max
ri

{
Rk E A∪{ri } : Rk E A∪{ri } = fRkE (A ∪ {ri })

k = 1, 5 & f or r = 1, 2 . . . R(n)
}

(9)

The applied set and remaining set are updated as

A = A ∪ {r j }, R = R \ {r j }, m = m + 1, n = n − 1

f or j = 1, 2 . . . N (10)
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The iterations are repeated till R is empty and A contains all
N channels. The authentication system evaluation parameters
(EER and RkE, k = 1,5) in each iteration stage are reported
for analysis. Also, the range namely r , which is the difference
between the maximum and minimum error for every iteration
is reported to analyze the distribution of error. Therefore,
EERr for the verification systems R1Er and R5Er for the
identification system were reported, respectively. The error
ranges are a measure of electrode location significance (for
a particular iteration of channel selection, the higher the error
range, the more significant is the specific channel selected).

E. Performance Evaluation of the Verification System
The performance analysis of the verification system was per-

formed using the detection error tradeoff curve (DEC), where
false rejection rate (FRR) was plotted against false acceptance
rate (FAR) for various Mahalanobis distance thresholds (for
accepting or rejecting the claim). FRR represents the likeli-
hood of a legitimate request from the true user is rejected. FAR
represents the likelihood of illegitimate access requests (from
imposter) is granted. Two standard metrics were calculated
from the DEC: the area under the curve (AUC) and the equal
error rate (EER). AUC refers to the area under the DEC [2]
and EER refers to the point on the DEC curve where FAR
is equal to FRR [2]. The lower the AUC and EER value the
better the authentication performance.

‘A code’ in the current framework is a gesture performed by
a user (either the authorized user or an imposter). Therefore,
to facilitate subsequent presentation and discussion, the two
words ‘code’ and ‘gesture’ are used equivalently. This nomen-
clature is also followed for the analysis of the identification
system. In the current study, the code length was fixed at one
gesture. All the codes were evaluated individually. Assuming a
user uses a specific gesture for authentication, which is called
the authentication gesture, three possible scenarios would
arise in the verification system: 1) Normal Test, in which
the authentication gesture was known only to the authorized
user, and the imposter attempts to guess the authentication
gesture and gain access, i.e. the code was a secrete and not
compromised; 2) Leaked Test, in which the authentication
gesture was known to an imposter who tries to use it to
gain access, i.e. the authentication code was compromised;
and 3) Self Test, in which the authorized user forgets the
authentication gesture and tries to gain access by performing
other known gestures to the system. In all three scenarios,
the genuine data is the data from the authentication gesture of
the authorized user. For the Normal Test scenario, the imposter
data was the data from all the other gestures and all the other
users. For the Leaked Test scenario, the imposter data was the
data from the authentication gesture of all other users. Lastly,
for the Self Test scenario, the imposter data was the data from
the other gestures of the true user.

F. Performance Evaluation of the Identification System
In the literature, the authentication performance of the

identification system was quantified by the rank-k error [6].
The rank-k error represents the likelihood of the authorized
user is not among the top k users returned by the identification

system. In this study, the smaller the similarity score is,
the higher it would be ranked by the identification system.
The rank-k error is a decreasing function with respect to the
value of k as a property of the cumulative match characteristic
curve, which plots rank-k error against k. In this study, rank-1
error (R1E), which is a crucial index when only one code is
used, was reported for this study. Additionally, the rank-5 error
(R5E) was reported for comparison with previous studies [6].
The cumulative match characteristics (CMC) curve was plotted
for the optimal configuration of sEMG system.

G. Statistical Analysis
The purpose of this study was to determine the best feature

extraction method and the optimal number of channels for
both the biometric authentication systems (verification and the
identification) based on sEMG. The non-parametric Kruskal
Wallis test was employed to determine if the two factors,
feature extraction methods (five levels, i.e. FDT, TD, and
AR, TD + FDT, TD + AR) and the number of channels
(eight levels, i.e. from 1 to 8), have significant effects on
the performance metrics, EER, AUC, R1E, and R5E. In case
of significance in either of the two factors, the level of the
other factor was fixed, and the Wilcoxon rank-sum test was
performed on the other factor.

For the optimal configuration, performance metrics were
reported for the best feature extraction method and the optimal
number of channels (for both verification and identification).
The performance of optimal parameters were then compared
with the NinaPro DB7. All statistical tests were performed
using RStudio 1.0.136 (RStudio, Boston, MA).

III. RESULTS
A. Performance Evaluation of Verification System

Fig. 3 shows the distribution of the median EER and the
median AUC across all participants, respectively for the three
feature extraction methods (FDT, TD, and AR), their combi-
nations (TD + FDT and TD + AR), and a different number
of channels (1-8). Median EER for the FDT method and for
eight channels was 0.76% (Q1 = 0.1%, Q3 = 2.93%) for
the Normal Test, 2.8% (Q1 = 0.3%, Q3 = 5.45%) for the
Leaked Test, and 4.86% (Q1 = 2.1%, Q3 = 9.89%) for the
Self Test (where Q1 is the 25th percentile and Q3 is the 75th

percentile). While using a TD feature extraction method for
the eight channels, the median EER reduced to 0.27% (Q1 =
0.002%, Q3 = 2.47%) for the Normal Test and 0.48% (Q1 =
0.001%, Q3 = 3.51%) for the Leaked Test. The Self Test using
the TD feature set resulted in a median error of 6.68% (Q1 =
2.76%, Q3 = 14.04%). The combined feature sets along with
TD feature set are illustrated in Fig. 4. For the Leaked Test
scenario, it was observed that the median EER for TD + FDT
and TD + AR was 0.16% (Q1 = 10−4%, Q3 = 0.25%) and
0.18% (Q1 = 10−4%, Q3 = 0.25%). The AUC followed a very
similar pattern to the EER for scenarios (reported in the next
paragraph). When the number of channels was higher than
four, the verification system’s EER reached a plateau. These
values are similar to other verification systems reported in the
literature [6]. For the three feature extraction methods (FDT,
TD, and AR) the initial channel (n = 1) EERr was higher



PRADHAN et al.: PERFORMANCE OPTIMIZATION OF SURFACE ELECTROMYOGRAPHY 21723

Fig. 3. (A and B) The median AUC and the median EER for the three feature extraction methods (FDT, TD and AR) and number of channels (1-8) for
the Normal Test (left column), Leaked Test (middle column) and Self Test (right column) scenario of the verification system. Each line indicates the
respective median values, and shaded area indicates the corresponding middle 50 percentile (25% to 75%). (C) The range of EER values (EERr)
for the feature extraction methods (FDT, TD and AR) and number of channels (1-8) for the Normal Test, Leaked Test, and Self Test scenario of the
verification system. The range is calculated as a part of the sequential forward selection algorithm at the end of every iteration.

than 0.05 for all the scenarios. The EERr using the TD and
FDT method decreased with an increasing number of channels
and it reached a plateau (EERr < 0.01) when the number of
channels was higher than two. A similar plateau (EERr < 0.01)
was reached for the AR method with the number of channels
higher than three (n > 3). The combined feature sets (TD +
FDT and TD + AR) had similar EERr to the TD feature sets
for all number of channels (n = 1-8).

1) Feature Extraction Methods: In the Normal Test scenario,
the median EER was significantly lower for TD than both
FDT and AR methods (p < 0.05, Fig. 3(A)) regardless of
channel numbers. The AR method had the highest AUC than
the other two methods ( p < 0.05). Similarly, the median
AUC for the TD method was significantly lower than FDT,
which was in turn significantly lower than AR (p < 0.05).
In the Leaked Test, the EER and AUC both had similar
outcomes as the Normal Test: TD outperforms FDT, which
in turn outperformed AR ( p < 0.05, Fig. 3(B)). For Self Test,
the EER and AUC were not significantly different between the
TD and FDT methods (p > 0.05, Fig. 3(C)) regardless of the
channel numbers. However, other than the single-channel case,
the EER and AUC of AR were significantly higher than the

other two methods (p < 0.05). For all three scenarios, the
EERr of the TD method was higher than FDT and AR for
lower channel lengths (1-2) (Fig. 3(C)). The EERr was very
similar for all the methods for channel lengths (3-8). For a
combination of TD with spectral features it was observed that
TD + FDT and TD + AR had similar values in all the three
scenarios and for different channel lengths (p > 0.05). It was
observed that for the Normal Test and Leaked Test, TD + FDT
and TD + AR had a significantly lower (p < 0.05) EER than
the TD feature set. However, the median EER values were
similar for the three methods: for a 4-channel configuration,
the EER for TD method was 0.2% (Q1 = 10−3%, Q3 =
0.54%), the EER for TD + FDT was 0.1% (Q1 = 10−3%,
Q3 = 0.42%) and EER for TD + AR was 0.1% (Q1 =
10−3%, Q3 = 0.42%). For the Self Test scenario, there was
no significant difference (p > 0.05) between the three feature
sets for all number of channels.

2) Number of Channels: As expected, there was a general
decreasing trend in both EER and AUC values with increasing
channel numbers (Fig. 3) in all the scenarios. For the Leaked
Test, the decrease in AUC was significant from one to four
channels ( p < 0.05), for all feature extraction methods.
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Fig. 4. (A and B) The median AUC and the median EER for the combined feature sets (TD, TD + FDT and TD + AR) and number of channels (1-8)
for the Normal Test (left column), Leaked Test (middle column) and Self Test (right column) scenario of the verification system. Each line indicates
the respective median values, and shaded area indicates the corresponding middle 50 percentile (25% to 75%). (C) The range of EER values (EERr)
for the feature sets (TD, TD + FDT and TD + AR) and number of channels (1-8) for the Normal Test, Leaked Test, and Self Test scenario of the
verification system. The range is calculated as a part of the sequential forward selection algorithm at the end of every iteration.

The decrease was not significant when more channels were
included (5-8, p > 0.05). The EER had similar results, with
a significant decrease in the lower number of channels (1-4,
p < 0.05) for FDT and AR methods. However, for the TD
method, the decrease in EER was only significant from one
channel to three channels ( p < 0.05, Fig. 3(A)). Similar
outcomes were observed in the Normal Test scenario for all
three methods. When the channel numbers were smaller, there
was a significant decrease with increasing channel number:
the AUC and EER decreased significantly for smaller channel
numbers (1-4, p < 0.05) for TD and FDT methods and from
one to three (p < 0.05) for the AR method. For the Self Test
scenario, the AUC and EER significantly decreased when the
channel number increased from one to two ( p < 0.05) for
all the three feature extraction methods, and the decrease was
not significant for the channel numbers (2 to 8, p > 0.05).
For all the feature extraction methods the EERr decreased
from channel length 1 to 8, consistently across all analysis
scenarios (Fig. 3(C)). The decrease in range was minimal
(EERr) when the number of channels was between three and
eight.

B. Performance Evaluation of Identification System
R1E and R5E were used to quantify the authentication

performance with different feature extraction methods and
channel numbers. Fig. 5(A) shows the distribution of the R1E
and R5E for the different methods and the number of channels.
Median R1E for the FDT method and eight channels was 2%
(Q1 = 0%, Q3 = 12%) and Median R5E was 0% (Q1 =
0%, Q3 = 0.2%) for the identification system, which was in
agreement with a previous study having a similar experimental
setup. The TD feature set had a comparatively lower median
R1E of 0.2% (Q1 = 0%, Q3 = 4.6%) and a similar R5E
of 0% (Q1 = 0%, Q3 = 0.1%). The AR feature set had
a median R1E of 18.8% (Q1 = 7.4%, Q3 = 57.9%). For
the combined feature sets, the median R1E for TD + FDT
was 0.06% (Q1 = 0%, Q3 = 2.9%) and median R1E for
TD + FDT was 0.2% (Q1 = 0%, Q3 = 4.6%). It was evident
that the R1E reached a plateau (median R1E ≤3%) when the
number of channels used was four and higher. Fig. 5(b) shows
the R1Er and R5Er for the feature extraction methods and
the number of channels. Both the R1Er and R5Er decreased
with an increasing number of channels. For the TD feature
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Fig. 5. (A and B) The median R1E and the median R5E for the processing methods (FDT, TD, AR), their combinations (TD, TD + FDT, TD +
AR) and number of channels (1-8) for the identification system. Each line indicates the respective median values, and shaded area indicates the
corresponding middle 50 percentile (25% to 75%). (C and D) The range of the R1E (R1Er) and R5E (R5Er) for the feature extraction methods (FDT,
TD and AR) and the combined feature sets (TD, TD + FDT,TD + AR) for different number of channels (1-8) for the identification system. The range
is calculated as a part of the sequential forward selection algorithm at the end of every iteration.

extraction method, the R1Er for one channel was 0.17 and
the R1Er for two channels was 0.09. Thereafter, the R15r was
lower than 0.02 and reached a plateau for more than three
channels. The FDT had an R1Er of 0.076 (n = 1), 0.072 (n =
2) and 0.05 (n = 3) and thereafter it plateaued with R1Er <
0.015. The AR had an R1Er of 0.057 (n = 1), 0.045 (n = 2)
and 0.028 (n = 3) and reached a plateau for more than three
channels. The combined feature sets (TD + FDT and TD +
AR) had R1Er similar to the TD feature sets for number of
channels higher than two (n > 2). The R5Ershowed a similar
distribution for the feature extraction methods and the number
of channels.

1) Feature Extraction Methods: The R1E was significantly
lower for the TD method (p< 0.05) than FDT and AR for
all the number of channels (n = 1-8). Also, the FDT was
significantly lower (p < 0.05) than AR for all the channels. For
the R5E analysis, the difference between the feature extraction
methods (TD, FDT, and AR) was seen for the lower number
of channels (1-3). The TD method had a significantly lower
R5E for 1-2 number of channels. However, for the inclusion of
more channels (3-8), there was no difference between the R5E
for TD and FDT, but the AR had a significantly higher R5E
than TD and FDT ( p < 0.05). For a combination of TD with
spectral features it was observed that the R1E for TD + FDT
was significantly lower (p < 0.05) than the TD + AR and TD
for different channel lengths. For a 4-channel configuration,
the EER for TD + FDT was 0.7% (Q1 = 10−4%, Q3 =
7.58%), which was significantly (p< 0.05) lower than the R1E
for TD method (Median = 3%,Q1 = 10−3%, Q3 = 14.3%),
and R1E for TD + AR (Median = 3.8% (Q1 = 10−3%,

Q3 = 11.2 %). The R1Er was higher for the TD method
for the number of channels one and two (1-2) and was the
lowest from channel length (3-8, Fig. 5(C)). The R5Er was the
highest for the TD method for the first channel number and
was the lowest from 2-8. The R1Er was higher for the FDT
method than the AR method for a lower number of channels
(1-3) and thereafter the R1Er dropped below 0.02 for both the
methods.

2) Number of Channels: The R1E for the TD method
decreased significantly for the number of channels one to four
(1-4, p < 0.05). There was no significant decrease in further
addition. For the FDT and AR method, the R1E significantly
decreased for the number of channels one to three (1-3, p <
0.05). The R5E significantly decreased for all three methods
(p < 0.05) for channels 1-2. From 3-8 the error was almost
constant with the TD and FDT having a median R1E of zero.
For all the methods, the R1Er decreased from the number
of channels 1-8, however, the decrease was minimal from
channels 4-8. For all the methods, the R5Er also decreased
from the number of channels 1-8, however, the R5Er plateaued
from channels 3-8.

For both the verification and identification system (the
optimal parameters (TD Feature selection and 4 electrode
channels, as discussed in section IV.(C)) were used to test the
performance of NinaPro DB7 (shown in Table I). The results
show that the EER for Normal Test was 6.4% (Q1 = 3.4%,
Q3 = 11.2%), the EER for Leaked Test was 6.8% (Q1 =
3.2%, Q3 = 11.9%) and the EER for Self Test was 23.5%
(Q1 = 18.2%, Q3 = 29.7%). The R1E for the identification
system was 10.9% (Q1 = 4.5%, Q3 = 21.9%).
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IV. DISCUSSION

This paper systematically investigated the effects of feature
extraction methods and the channel reduction using EMG to
achieve optimal authentication performance in the two appli-
cation systems: user verification and user identification. The
main advantage of using EMG over other biosignals is the high
accuracy of dual-mode authentication with both knowledge-
based and biometrics-based authentication information. The
ability to use sEMG for recognizing accurate gestures allows
the user to choose unique gestures as their own authentication
code. In the verification system, the Normal Test scenario fully
utilizes this dual-mode authentication property of sEMG. The
Normal Test scenario represents the authentication system with
both the layers of protection (knowledge-based and biometrics-
based). In the Leaked Test scenario, only biometric-based
protection is available as the code is compromised. And the
Self Test scenario further illustrated the unique authentication
power of the sEMG-based system, in which the authentication
code is forgotten but the legitimate user can be still verified by
performing other gestures (codes). With a typical combination
of four-channel and FDT feature set, the median EER of
the Leaded Test (5.4%) was higher than that of the Normal
Test (3%), indicating a 2.4% additional protection provided
by the user-defined authentication code (Fig. 3 (A and B)).
The nature of the verification system makes it challenging to
get a low error (specifically R1E). The genuine user must be
always predicted as rank-1 or else it is considered an error.
The median R1E for a four-channel system was 12.4% (FDT
feature set), 3% (TD feature set), and 36.4% (AR feature
set). Clearly, the TD feature set had the best authentication
performance which is discussed in the next section.

A. Feature Extraction Methods
The TD feature extraction method resulted in better authen-

tication performance than FDT and AR for two scenarios
of the verification system (the Leaked test and Normal Test,
shown in Fig. 3) and the identification system (Fig. 5). For
the Self Test, both the TD and FDT had similar performance
across all channel numbers and outperformed the AR method,
which had the poorest performance in all number of channels.
This was in agreement with the previous studies that compared
AR with the TD and FDT methods [44]. For the identification
system, the TD feature set had a significantly lower median
R1E (3%) than that of the FDT (12.4%). Therefore, the TD
feature set has an overall superiority in performance over FDT
for both verification and identification systems. This outcome
suggests that the TD feature set is likely more sensitive to
individual-differences in sEMG, crucial for biometric appli-
cations. Previous studies developing a generalized multiuser
model found that common spatial-spectral analysis (CSSA)
and spectral moments, both similar to FDT, have higher
accuracy than the TD features [17], [45]. These studies suggest
that these features are less user-dependent, which means they
capture fewer individual characteristics than TD features, and
might explain the finding in this study that the TD feature
performing better than FDT and AR feature sets.

While comparing TD with the combined feature sets,
the average EER of TD (4%) was higher than TD + FDT

(2.67%) and TD + AR (2.7%) for the verification system,
and the average R1E for TD (3%) was higher than TD + FDT
(0.7%) and lower than TD + AR(3.8%) for the identification
system. The difference in performance for the TD feature set,
although significant (p < 0.05), was considered acceptable
while comparing to other biometric traits [7]. Due to the
superior performance of the TD feature set and the relatively
lesser computational complexity than the combined features,
it was considered as the optimal feature extraction technique
for biometric applications.

The median EER for the TD feature set and an eight-channel
setup was 0.27% (Normal Test), 0.48% (Leaked Test), lower
than those reported by a different study (Leaked Test EER =
14.96%) which used 64 channels and a combined feature set
of (sample entropy, spectral entropy, median frequency, wave-
form length, and root mean square) [10]. This corroborates our
findings and suggests that TD feature set would have superior
performance than other feature extraction methods even with
a disadvantage of the number of channels.

B. Number of Channels and Channel Reduction
As expected, the median EER reduced while increasing the

number of channels for all scenarios of the verification system
and for the identification system. This is in accordance with the
previous gesture recognition studies that investigated channel
reduction [22], [40], [41]. It is evident from Fig. 3 (A,B) and
Fig. 5 (A,B), a four-channel setup was considered to provide
a balance between overall authentication performance and
complexity (i.e. channel numbers). The error values for the
TD feature set are comparable to those reported in previous
sEMG biometric-related studies [6], [10], [12]. A previous
study used 64 channel HDEMG [10]. Our results indicated
that there might not be a need for high-density EMG as four-
channel setup provided similar authentication performance.
While a one-channel (on the FDS muscle) configuration was
used in [12], the half total error rate (HTER) of less than 90%
was not sufficient for any practical authentication system.

The error range parameters EERr, R1Er, and R5Er were
used in the study to determine if the channel location has a
significant impact. For all the scenarios it was observed that
the first electrode has a higher error range than the remaining
channels as shown in Fig. 3 (C) and Fig. 5 (C and D). In the
sequential forward selection, the lowest error channel was
selected in every iteration. Therefore, for the one channel setup
(first iteration) the higher error range suggests a significant
impact on the first channel location. As observed in all the
scenarios, the electrode placed on the Flexor Carpi Ulnaris
(FCU) consistently contributed the most towards the authenti-
cation performance. This was in agreement with the study that
determined the best forearm muscle to control a soft robotic
glove [46]. From channels 2-8, the impact was shown to be
lower, thus indicating the remaining electrodes could be placed
irrespective of specific muscle locations, a desirable feature in
practical applications.

C. Optimal Configuration
The EER and R1E for the four-channel setup and TD feature

extraction are listed in Table I. From the above findings, it can



PRADHAN et al.: PERFORMANCE OPTIMIZATION OF SURFACE ELECTROMYOGRAPHY 21727

TABLE I
TD FEATURE EXTRACTION AND FOUR-CHANNEL

EMG CONFIGURATION

Fig. 6. CMC curve for the identification system using 4 channels sEMG
and TD Feature extraction.

be seen that the combination of a four-channel sEMG setup,
of which one is attached on FCU, and the TD feature set,
the average EER for the Normal Test (1.2%), Leaked Test
(2%) and Self Test (9.3%) can satisfy the requirement of a
verification system (shown in Table I). The identification sys-
tem R1E was 3% for this setup. These values are comparable
to another study that reported an error of 0.5%, however, they
used 64 channels and a combination of different features [11].
Another study used an eight-channel forearm bracelet and a
combination of frequency domain and time domain features
and obtained a FAR of 0.2% and FRR of 2.9% [47]. A dif-
ferent study using an eight-channel setup and FDT feature set
reported an R1E error of 9% [6]. In the present study, a very
low R1E of 0.2% can be achieved while using an 8-channel
configuration and TD feature extraction. Fig. 6 presents the
cumulative match characteristics (CMC) curve for such an
identification system. It was observed that with an increase in
rank (k) of the system, the recognition error (RkE) reduced,
thus improving the performance. The analysis was repeated for
the NinaPro DB7 database consisting of 20 participants and
performing 17 hand and finger gestures [43]. It was found that
for a similar set of parameters (4 channels and TD feature set)
the performance was slightly lower than the present study for
the Leaked Test (EER = 6.4%) and Normal Test (EER =
6.8%, reported in Table I). The lower performance observed

with the Self Test (EER = 23.5%) and identification system
(R1E = 10.9%) might be due to the partly isotonic nature of
the hand gestures, suggesting further investigation of feature
sets specific for dynamic contractions. Therefore, the optimal
configuration for an sEMG authentication system consists of
four sEMG channels and a TD feature set. If there is a higher
performance requirement, using 8-channel setup will provide
enhanced performance. The findings of the study helped deter-
mine the best feature set in terms of performance accuracy
and computational complexity as well the optimal number
of channels necessary to make accurate authentications using
sEMG.

The performance reported in Table I was comparable to
the other commonly used biometric traits (fingerprint, iris,
and facial recognition) reviewed in a previous study [7].
The sEMG based biometrics has two similar functionalities
as ECG and EEG: hidden nature and liveness detection.
The sEMG possesses unique knowledge-based security which
allows users to customize their access codes as different
gestures. This feature, although not available in ECG can be
achieved using EEG by using different mental states for codes.
As only accuracy >70% has been achieved for classifying
two mental states [48], this is almost impossible for real-
world applications. The Leaked Test verification which is a
measure of the biometric-based security achieved a median
EER of 2%. This was comparable to the reported EER of
ECG and EEG biometrics which was 0.1% to 5% [3], and
1% to 20% [4], [5]. For the identification system, the median
R1E was 3% which was in range with the R1E reported
for ECG and EEG, 0%-20% [3] and 1% to 20% [4], [5],
respectively. This suggests that the four-channel sEMG with
TD feature extraction can achieve comparable if not better
biometric performance than other biosignals.

D. Limitation and Future Work
While discussed earlier in a previous study, a combination

of gestures may significantly improve authentication perfor-
mance. It is important to note that the results presented here
only used one gesture, i.e. a single code. Including more
than more code will certainly further improve the system
performance, which is the topic of a subsequent study. Also,
the present study involved data from 24 participants. A signif-
icantly larger participant pool will be used for future studies.
Another limitation of the present study was the effect of time
was not investigated, as all the sessions were performed on
the same day, partly due to the COVID constraints currently
in place at the University of Waterloo. A multi-session study
will be performed to validate the robustness of an sEMG based
authentication system.

V. CONCLUSION
The TD features had improved authentication performance

than FDT features and AR features for the Leaked test and
Normal test of User Verification System and for all number of
channels (n = 1:8). The TD features had better performance
than the FDT feature set in the User Identification System
and for all number of channels (n = 1:8). For all the feature
sets, four channels had a plateau in performance for a higher
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number of channels for both the verification and identification
system. Therefore, the TD feature set and the four-channel
sEMG configuration is found to be ideal for optimal authenti-
cation performance using sEMG systems. The range of error
was high for the first channel and reduced for the inclusion of
further channels. This indicates that one location on the FCU
is important and the remaining could be placed irrespective of
muscle location. This finding motivates the design of an easy-
to-wear arm-band with four equally spaced electrodes and the
placement is recommended in a way that one of the electrodes
is right on top of the FCU for best authentication performance.
Therefore, an accurate sEMG based authentication system for
biometric applications can be designed using a TD feature
extraction method and four equi-spaced electrodes with one
of them positioned directly on the FCU muscle.
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