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Abstract—Contactless or non-invasive technology has a
significant impact on healthcare applications such as the
prediction of COVID-19 symptoms. Non-invasive methods are
essential especially during the COVID-19 pandemic as they
minimise the burden on healthcare personnel. One notable
symptom of COVID-19 infection is a rapid respiratory rate,
which requires constant real-time monitoring of respiratory
patterns. In this paper, Software Defined Radio (SDR) based
Radio-Frequency sensing technique and supervised machine
learning algorithm is employed to provide a platform for
detecting and monitoring various respiratory: eupnea, biot,
bradypnea, sighing, tachypnea, and kussmaul. The variations
in Channel State Information produced by human respiratory
were utilised to identify distinct respiratory patterns using fine-grained Orthogonal Frequency-Division Multiplexing
signals. The proposed platform based on the SDR and the Deep Multilayer Perceptron classifier exhibits the ability
to effectively detect and classify the afore-mentioned distinct respiratory with an accuracy of up to 99%. Moreover,
the effectiveness of the proposed scheme in terms of diagnosis accuracy, precision, recall, F1-score, and confusion
matrix is demonstrated by comparison with a state-of-the-art machine learning classifier: Random Forest.

Index Terms— COVID-19, abnormal respiratory, non-invasive, USRP, CSI, software defined radio, neural network.

I. INTRODUCTION

COVID-19 or COrona VIrus Disease’19 has infected
millions of people globally, and with the recent
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emergence of new variants in distinct parts of the world,
the vaccine’s effectiveness is at utmost concern. COVID-19
has been linked to more than 3 million deaths, accord-
ing to the recent figure by World Health Organization
(WHO) - https://covid19.who.int. Fever, flu, ageusia, cough,
and lungs failure due to respiratory disorders are the most
common symptoms of the virus, which spreads primarily by
human-to-human contact. Governments all over the world are
seeking to stop the epidemic from spreading by imposing
frequent lockdowns, which is wreaking havoc on the economy
and private businesses [1].

The novel variants of COVID-19 are directly targeting
human lungs, consequently resulting severe damage towards
the respiration. The average human respiratory rate for an
adult at rest is between 12 and 20 breaths per minute, and
it is irregular if it is less than 12 breaths per minute or
more than 20 breaths per minute [2]. Respiratory rate that
are abnormal may be sluggish, shallow, rapid, intense, or a
hybrid of these. Figure 1 depicts the six diverse human respi-
ratory or breathing patterns: eupnea, biot, bradypnea, sighing,
tachypnea, and kussmaul. Eupnea is a regular respiratory with
a normal rhythm and frequency caused by a healthy lifestyle,
while biot is an intense respiratory with slow intervals of
no breaths engendering by spinal meningitis or concussion

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

https://orcid.org/0000-0001-7666-838X
https://orcid.org/0000-0001-6289-8248
https://orcid.org/0000-0003-4743-9136
https://orcid.org/0000-0002-7097-9969


20834 IEEE SENSORS JOURNAL, VOL. 21, NO. 18, SEPTEMBER 15, 2021

Fig. 1. Sample plots of distinct human respiratory.

TABLE I
DEFINITION AND DISTINCT CAUSES OF HUMAN RESPIRATORY

(head injury). Bradypnea is a sluggish and shallow respiratory
resulting from concussion, sleeping pills, stroke, or metabolic
disorder. Sighing is respiratory stressed by recurrent intense
breaths due to dyspnea, dizziness, or nervousness. Tachypnea
is the opposite of bradypnea described as rapid and shallow
respiratory as a result of anxiety, fever, stun, or exercise.
Lastly, kussmaul is an intense and rapid respiratory pattern
by virtue of diabetic ketoacidosis, metabolic acidosis, or renal
failure. Table I lists the descriptions and causes of the various
human respiratory patterns.

As described earlier, one of the key symptoms of the novel
coronavirus is irregular or abnormal respiratory caused by the
virus attack on lungs. It is of utmost significance to detect and
identify the abnormal respiratory at the earliest stages in order
to safeguard human lives. This paper focuses on the detec-
tion and diagnosis of abnormal human respiratory owing on
COVID-19 through reliable non-contact wireless techniques
merged with intelligent artificial intelligence algorithms. The
advancement of universal, contactless, and wireless sensor
technology to track everyday activities is gaining popularity
everyday. Recently, various methods for monitoring human

health and vital signs such as heart rate, have been estab-
lished. Smart watches, portable sensors, Doppler RADAR,
ultra-wideband RADAR, and frequency modulated carriers are
some of the examples of it.

The rest of this paper is structured as follows: Section II
provides a recent literature review towards non-invasive tech-
nology. In Section III, the details regarding proposed platform
is provided. Section IV presents the experimental results and
analysis. Finally, Section V provides concluding remarks.

II. LITERATURE REVIEW

In this section, we have discussed distinct literature about
non-invasive or non-contact sensing technologies and how they
were utilised to detect and monitor various human activities
and health conditions including symptoms of COVID-19 such
as abnormal respiratory and heart rate.

A. Activity Monitoring Using Non-Invasive Technology
Authors in [3] utilised an ambient RADAR sensor to

recognise various human activities in interior spaces and
this system was able to classify a wide range of human
activities. In [4], authors acquired RADAR spectrogram data
to distinguish and categorise different types of falls in
elderly humans. In [5], for fifteen distinct operations in the
kitchen environment, a low powered RADAR sensor was
employed. Authors in [6] developed a non-invasive passive
detection system on a dynamic speed platform to recognise
diverse human activities using commercial Wi-Fi. In [7]–
[10], authors built a “Through the Wall” presence detection
device for people that uses Wi-Fi signals to extract channel
frequency response. A Wi-Fi-based gesture recognition system
was designed that analyses fluctuations in Channel State
Information (CSI) of Wi-Fi signals to monitor and identify
distinct hand movements [11].

In [12], authors presented a methodology for identifying
various eating activities utilising Wi-Fi signals, while the
authors [13] developed a system for user identification for
mobile devices utilising Wi-Fi technology. Using RF-based
sensing, authors in [14] constructed a sleep guardian platform
by integrating signal processing, machine learning, and edge
computing. In [15], a Wi-Fi run system is built in the activity
area for step estimation utilising CSI dynamics, whereas a
Software Defined Radio (SDR) based non-contact system was
created in [16] to recognise various human actions like stand-
ing, running, crawling, and so forth. Moreover, the authors in
[17] generated a scheme based on SDR technology to hear
various types of human speech, whilst [18] employed SDR
technique to implement a whole house gesture recognition
system.

B. Health Monitoring Using Non-Invasive Technology
Authors in [19] employed the passive doppler RADAR

device to detect and classify distinct human respiration. Simi-
larly in [20], human respiratory detection scheme was designed
using a passive Doppler RADAR platform. In [21], Wi-Fi
signals are used to monitor vital signs and recognise distinct
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Fig. 2. Illustration of proposed SDR-based non-invasive scheme for abnormal respiratory diagnosis [34].

body positions while sleeping. Authors in [22] and [23]
employed the C-Band sensing techniques for various health
monitoring concerns such as respiratory detection, tremor,
and chronic obstructive pulmonary disease warning, whereas
in [24] Res-Beat scheme was developed to track the rate of
respiration.

In [25]–[27], authors developed a system based on S-band
sensing techniques for a variety of health monitoring concerns,
including seizure episode identification, cerebellar dysfunc-
tion patients’ mobility evaluation, and pill rolling evaluation.
Authors in [28] exploited the SDR-based technology to cate-
gorise various human exercising activities. Recently, in several
literature, various machine/deep learning algorithms have been
effectively applied to predict and diagnose COVID-19 symp-
toms using “Radio-graphic Imaging” [29]–[33].

III. PROPOSED SCHEME

A. System Model
The scheme designed for this research work is made up

of desktops that are utilised to run the SDR software in
Laboratory Virtual Instrument Workbench (LabVIEW). The
Universal Software Radio Peripheral (USRP) model “2922”
is employed for SDR technology’s general Radio-Frequency
(RF) capabilities and omni-directional antennas for CSI cap-
ture. By observing small-scale motions in the wireless channel
and obtaining fine-grained CSI, our system is able to recognise
and categorise distinct respiratory patterns. The transmitter’s
RF signal travels via many multipaths to reach the receiver
in an interior environment. This signal comprises data on
environmental variables. The environment here is defined
as the physical space that contains human aspects such as
human postures, respiratory patterns, as well as environmental
characteristics [35].

When a human is present in physical space, the reflection
or diffraction of signals from its body creates a supplemen-
tary channel. As a result, the influence of human movement
(either small or big) is recorded on the signal propagation

and reported in the form of CSI on the received signals.
Subsequently, the data from CSI can be utilised to identify
distinct respiratory patterns. The USRP transmitter continually
emits wireless signals with a certain frequency and the USRP
receiver, on the other hand, receives these transmitted signals.
Meanwhile, respiratory activity causes a minute deviation in
the chest and abdomen, resulting in a shift in the signal
propagation route recorded by the received signals in the CSI
form. As illustrated in Figure 2, this non-invasive SDR-based
scheme consists of three key functional blocks: the transmitter,
radio or wireless channel, and receiver.

1) Transmitter: The transmitter is made up of two parts:
the desktop and the USRP device. Pseudo random data bits
are generated in the transmitter and transferred to quadrature
amplitude modulation symbols or signs. These signs are then
separated into two streams. In each parallel framework, ref-
erence data signs are concatenated. These reference signs are
useful for the channel estimate on the receiver side. Every
framework has zeros at the borders and one zero at DC.
The Inverse Fast Fourier Transform (IFFT) function is used
to convert frequency-domain signals into time-domain signals
after zero padding. Each framework at the starting has a Cyclic
Prefix (CP), which is created by replicating the last one-fourth
point. This addition of CP will aid in the elimination of
frequency and time offset at the receiver side. The synthesised
data from the host desktop is transferred to the USRP device
at a rate of “20 MS/s” over gigabit ethernet. The USRP uses a
Digital Up Conversion (DUC) to convert the incoming signal
to “400 MS/s”, and then uses a digital-to-analog converter to
transform the signals into analogue. The resulting analogue
signal is blended up to the specified carrier frequency after
passing through a low pass filter with a “20 MHz” bandwidth.
This signal is then sent to an amplifier transmit, where the
strength can be assorted from 0 to 30 dB. The signal is then
broadcasted using an omni-directional antenna.

2) Radio Channel: In this part of the scheme, an indoor
radio channel is employed to gather information on distinct
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TABLE II
HUMAN SUBJECTS INFORMATION WHO PARTICIPATED IN EXPERIMENT

respiratory patterns due to minute human motions while
breathing. The multi-path signals created by human body
motions in between the two omni-direction antennas comprise
the CSI signal.

3) Receiver: The signal is initially obtained by the USRP
equipment through the omni-directional antenna on the receiv-
ing side. After passing this signal via a Low Noise Ampli-
fier (LNA) to minimise the noise factor, it is then routed
via a Drive Amplifier (DA) to alter the gain. The resulting
signal is blended into a base-band complex signal utilising
the Direct Conversion Receiver (DCR). The signal is then
sampled at “100 MS/s” by a two channel analog-to-digital
converter after passing through a Low Pass Filter (LPF)
with a “20 MHz” bandwidth. This digitised complex signal
is subsequently sent to a Digital Down Converter (DDC),
which mixes, filters, and decimates it to a user-specified rate.
Finally, at up to “20 MS/s”, this down-converted signal is
delivered to the host desktop via gigabit ethernet connection.
The receiver host desktop not only eliminates CP from each
framework, but also utilises the “Van de Beek” algorithm to
eliminate frequency and time offset. The Fast Fourier Trans-
form (FFT) is used to transform the time domain Orthogonal
Frequency-Division Multiplexing (OFDM) instances into fre-
quency domain OFDM instances once the CP is removed from
each framework. The frequency domain signal’s amplitude
response is then extracted to determine distinct patterns of
respiration.

B. Diagnosis Approach
The primary steps involved in the abnormal respiratory

diagnosis approach are shown in Figure 3 and are explained
as follows.

1) Data Acquisition: The data on respiration were collected
in a laboratory setting, which illustration is presented in
Figure 3. The experimental setup consists of two USRP
(NI-2922), with a spacing of one metre between the USRP
device and the human participant. Each participant was
instructed to sit in a relaxed position with the least body move-
ments. Both USRP devices are parallel to the participant’s
abdomen and situated at the same height. Table II lists the
details of each of the five individuals who were instructed to
practise different respiratory patterns.

Participant were instructed to do each respiratory pattern
appropriately as per medical instructions before respiratory
information was acquired. Each human subject in this study
was instructed to perform six different respiratory: eupnea,
biot, bradypnea, sighing, tachypnea, and kussmaul. A total
of 150 experiments are conducted for six distinct respiratory

Fig. 3. Framework of the applied model for abnormal respiratory
diagnosis.

patterns and lastly, six datasets are obtained from five human
participants. Participants performed each respiratory activity
for thirty seconds. To assure and obtain a greater degree of
precision, comprehensive experiments are carried out.

2) Data Wrangling: After data acquisition, the data were
processed in order to eliminate unwanted noise and extract
important respiratory features. The obtained OFDM signal
is exploited for fine-grained CSI extraction at the receiver
end. The amplitude and phase frequency responses from the
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obtained OFDM signal can be acquired. However, only the
amplitude frequency response is employed for further process-
ing in this study. The respiratory activity is identified by
following the acquisition of the amplitude frequency response
for each respiratory activity. If the amplitude response closely
resembles the real respiratory rate, it is approved; otherwise,
it is rejected, and the individual is requested to repeat the
respiratory pattern more effectively. The number of subcarri-
ers, as well as the number of OFDM samples, are displayed
in this amplitude response. The number of OFDM samples
received is determined by a variety of parameters, including
the amount of time it takes to complete each respiratory
activity.

a) Subcarrier selection: For each respiratory activity,
the receiver acquires a set of 256 subcarriers. It is noted that
the amplitude of every subcarrier reveals distinct sensitivity
to respiratory patterns. To improve respiratory activity recog-
nition, any subcarriers that are less sensitive to respiratory
activity have to be removed. The variance of subcarriers
is determined, and on this basis, all subcarriers with lower
sensitivity to respiratory activity are eliminated, as shown in
the data wrangling block of Figure 3.

b) Outliers removal: Wavelet filtering is applied after sub-
carrier selection. As illustrated in the second block of the
data wrangling process in Figure 3, the wavelet filter not only
eliminates outliers from the raw data but also preserves crisp
transitions. Soft heuristic threshold is used for wavelet filtering
with scaled noise parameters with detail coefficients at level 4
using wavelet Symlets-5 (sym5).

c) Refined data: A moving average filter with window
size 8 is employed to refine the data further and eliminate high
frequency noise not caused by respiratory activity, as depicted
in Figure 3. Various respiratory patterns can easily be iden-
tified after conducting the afore-mentioned data wrangling
processes.

3) Deep Multilayer Perceptron Classifier: After distinct layers
of data processing and respiratory features extraction, at last
the data were trained by Deep Multilayer Perceptron (DMLP)
classifier. The DMLP is a supervised deep learning technique
where a feedforward artificial neural network produces a
number of outputs from a set of inputs. Several layers of
input neurons are linked as a directed graph between both
the input and output layers of the DMLP. Backpropagation
technique is utilised by DMLP classifier in order to train
the network. Substantially, a neural network linking several
layers of a directed graph is a multilayer perceptron, meaning
that the signal flows one way across the neurons. Each
neuron has a nonlinear activation function besides the input
neurons. The DMLP is commonly used to address problems
that need supervised learning approach such as speech recog-
nition, machine translation, image recognition, and anomaly
detection [36]–[41].

IV. SIMULATION RESULTS AND ANALYSIS

A. Respiratory Data
This section provides a detailed description about each

respiratory pattern utilising SDR-based RF sensing. Five
separate participants conducted each respiratory activity and

each individual knew the features of all breath patterns
through sufficient instructions and training before doing these
diverse respiratory tasks. For a few times, each participant
has been instructed to practise these patterns of respiratory
and the outcomes for six distinct respiratory patterns are
then achieved. In order to evaluate these respiratory patterns,
the CSI amplitude response is utilised. Figure 4 displays the
findings for six distinct respiratory activities and the amplitude
of respiratory patterns in all subcarriers. Due to every activity
across 3500 OFDM samples, changes in amplitude reaction are
achieved. The outcome of each type of respiratory is discussed
as follows.

1) Eupnea: Eupnea is a normal pace of respiratory and
adults normally have 12-20 breaths per minute in the case
of eupnea. The participants were asked to breathe properly
and at a regular pace in order to obtain eupnea respiratory
pattern. Figure 4(a) shows that there are 10 breaths each half-
minute, which corresponds to the respiratory patterns depicted
in Figure 1(a).

2) Biot: Biot is a deep respiratory practice that alternates
with intervals of no respiration. The participants were asked
to practise and perform this respiratory pattern and Figure 4(b)
shows that deep respiratory were followed by breathless inter-
vals, which corresponds to the respiratory patterns depicted in
Figure 1(b).

3) Bradypnea: The bradypnea is a type of respiratory that is
sluggish and shallow. The participants were asked to breathe
more slowly than usual in order to acquire this respiratory.
Figure 4(c) shows that six breaths were taken every thirty
seconds, which corresponds to the respiratory patterns depicted
in Figure 1(c).

4) Sighing: Sighing is a type of respiratory pattern that
includes numerous intense breaths. To acquire a sighing respi-
ratory, the normal respiratory was disrupted by many intense
breaths, as indicated in Figure 4(d), which corresponds to the
respiratory patterns depicted in Figure 1(d).

5) Tachypnea: Tachypnea is characterised by rapid and
shallow respiration process. The participants were instructed to
breathe quicker than typical in order to obtain this respiratory
pattern. Figure 4(e) shows that thirteen breaths were taken
every thirty seconds, which corresponds to the respiratory
patterns depicted in Figure 1(e).

6) Kussmaul: The kussmaul is a respiratory that is both
quick and deep. The rapid and intense breaths can be noted
in Figure 4(f), which corresponds to the respiratory patterns
depicted in Figure 1(f).

B. Results
We have recruited healthy participants with various age

range and ask them to mimic the particular six breathing pat-
tern, which were efficiently detected by the proposed model.
Each respiratory dataset consisted of 3650 × 3500 obser-
vations or data points. Considering the six above-mentioned
respiratory classes, the final dataset were composed of 6 ×
3650 × 3500 data points. In each respiratory class, 50% of
the data samples were used to train the machine learning
classifier, whereas 25% of the data samples were used for
validation purposes and remaining 25% for testing. In this
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Fig. 4. Extracted patterns of distinct human respiratory: (a) Eupnea (b) Biot (c) Bradypnea (d) Sighing (e) Tachypnea (f) Kussmaul [42].

TABLE III
PARAMETERS OBTAINED BY THE CROSS-VALIDATION TECHNIQUE FOR

TRAINING THE DMLP CLASSIFIER

work, a multi-class classification technique was adopted to
classify (or diagnose) each respiratory and the data samples
were labelled accordingly.

To execute the simulations, the DMLP algorithm used in this
study was programmed in Python. The “Grid Search Cross-
Validation” methodology was adopted for the validation part
of the dataset in order to optimize the hyperparameters for
DMLP. This methodology uses the principles of fit and score
to discover the appropriate parameters for training machine
learning models. These parameters are provided in Table III.
Moreover, using a single performance assessment metric for
machine learning models is often not regarded as best prac-
tise. Hence, to evaluate the performance of the algorithms,
five different metrics were used: confusion matrix, precision,
recall, f1-score/f-measure, and diagnosis accuracy [43] (see
Equation 1, 2, 3, 4).

Diagnosis
Accuracy

= Number of respiratory diagnosed

T otal number o f respiratory
(1)

F1 − score = 2 ×
(

Recall × Precision

Recall + Precision

)
(2)

Precision = True Posi tives

Predicted Posi tives
(3)

Recall = True Posi tives

Actual Posi tives
(4)

In this work, we exploited two distinct machine learning
classifiers: Deep Multilayer Perceptron (DMLP) and Random

TABLE IV
OVERALL ACCURACY ACHIEVED BY THE DMLP AND THE RF

CLASSIFIER FOR SIX VARIOUS RESPIRATORY CLASSES

Forest (RF). The reason to choose two various classifiers is
to evaluate the performance on different respiratory. Although
DMLP achieved a slightly higher accuracy than RF, never-
theless both classifiers almost performed the same. Table IV
shows the overall accuracy accomplished by the DMLP and
the RF.

Moreover, Figure 5 exhibits the confusion matrix for diverse
respiratory classifications. As can be seen in Figure 5(a),
DMLP has only 12 misclassifications of eupnea with biot
respiratory class, whereas the biot class has merely 19 misclas-
sified points with eupnea and 5 with bradypnea. This is due
to the fact that these classes have highly similar structure than
other classes. Rest of the classes such as bradypnea, sighing,
tachypnea, and kussmaul have either 1 or 2 misclassified
points, therefore resulting in accuracy up to 99%. Furthermore,
Figure 5(b) demonstrates the performance of RF classifier.
As can be noted, RF has slightly higher misclassified points
than DMLP, nevertheless, RF resulted in accuracy up to 98%.

In Figure 6, the performance of DMLP and RF in terms of
precision, recall, and f1-score is revealed on six different res-
piratory classes: eupnea, biot, bradypnea, sighing, tachypnea,
and kussmaul. As shown in Figure 6(a), DMLP attained 98%
precision for eupnea, 99% for biot and bradypnea, 100% for
sighing, tachypnea, and kussmaul. In terms of recall, DMLP
attained 99% for eupnea, 97% for biot, and 100% for bradyp-
nea, sighing, tachypnea, and kussmaul. In the case of f1-score,
DMLP attained 98% for eupnea and biot, whereas 100% for
bradypnea, sighing, tachypnea, and kussmaul. Furthermore,
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Fig. 5. Confusion matrix of six distinct respiratory classification: (a) Deep
Multilayer Perceptron and (b) Random Forest.

in Figure 6(b), performance of RF classifier can be noted.
In the context of precision, RF obtained 95% performance for
eupnea, 97% for biot, 98% for bradypnea, 100% for sighing
and kussmaul, and 99% for tachypnea. In terms of recall,
RF obtained 97% for eupnea and biot, 98% for bradypnea,
99% for sighing and kussmaul, and 100% for tachypnea.
In the case of f1-score, RF obtained 96% performance for
eupnea, 97% for biot, 98% for bradypnea, 99% for sighing
and kussmaul, whereas 100% for tachypnea.

C. Future Work
There are certain limitations associated with this study,

which we aim to overcome in the future research work.
We would consider more realistic environment and conduct
experiments in noisy environment and in different body
postures. Furthermore, the proposed scheme can be utilised
for a single subject at a time in a static and controlled
environment. Apart from that, the experiments were not
conducted on real COVID-19 infected patients due to several
concerns. As a result, the future recommendations would be
to add respiratory patterns of several subjects in a non-static
environment, employing more advanced algorithms and
utilising the SDR-based platform’s versatility. Moreover,
real-time data acquisition of COVID-19 infected patients shall
be carried out in order to construct a more realistic model.
Other than that, more respiratory patterns such as ataxic

Fig. 6. Precision, recall, and f1-score comparison for individual respira-
tory class on: (a) Deep Multilayer Perceptron Classifier and (b) Random
Forest Classifier.

and cheynestokes shall be explored to enhance the system’s
reliability.

V. CONCLUSION

While in the midst of the COVID-pandemic, non-invasive
strategies help minimise the burden on healthcare profes-
sionals, as well as require the least amount of involve-
ment from affected individuals. Studies on recently diagnosed
patients show that a COVID-19 infection affects respiratory or
breathing patterns differently in comparison to flu or a cold.
In some cases, COVID-19 infection is marked by an acceler-
ated respiratory rate and that calls for constant monitoring of
respiratory patterns. In this paper, a non-invasive or contactless
SDR-based platform merged with intelligent machine learning
algorithms is proposed. The system is designed for the detec-
tion and monitoring of primarily six distinct human respiratory
patterns including normal and abnormal such as eupnea, biot,
bradypnea, sighing, tachypnea, and kussmaul. The respiratory
data employed for this study were acquired from five different
subjects. Using fine-grained OFDM signals, the fluctuations
in CSI caused by human respiration were used to detect
distinct respiratory patterns. Then, using the Deep Multilayer
Perceptron classifier, these respiratory patterns were effectively
classified attaining accuracy of up to 99%. As a result, it can
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be stated that SDR-based Radio-Frequency sensing is a viable
approach in an indoor setting for detecting and classifying
several respiratory patterns linked to various illnesses, whether
COVID-19 infection or any other disease.
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