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Estimating Lower Body Kinematics Using a Lie
Group Constrained Extended Kalman Filter

and Reduced IMU Count
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Abstract—Goal: Gait monitoring is useful for diagnosing
movement disorders or assessing surgical outcomes. This
paper presents an algorithm for estimating pelvis, thigh,
shank, and foot kinematics during walking using only two
or three wearable inertial sensors. Methods: The algorithm
makes novel use of a Lie-group-based extended Kalman filter.
The algorithm iterates through the prediction (kinematic equa-
tion), measurement (pelvis position pseudo-measurements,
zero-velocity update, and flat-floor assumption), and con-
straint update (hinged knee and ankle joints, constant leg
lengths). Results: The inertial motion capture algorithm was
extensively evaluated on two datasets showing its perfor-
mance against two standard benchmark approaches in optical
motion capture (i.e., plug-in gait (commonly used in gait analysis) and a kinematic fit (commonly used in animation,
robotics, and musculoskeletonsimulation)), giving insight into the similarity and differences between the said approaches
used in different application areas. The overall mean body segment position (relative to mid-pelvis origin) and orientation
error magnitude of our algorithm (n = 14 participants) for free walking was 5.93 ± 1.33 cm and 13.43 ± 1.89◦ when using
three IMUs placed on the feet and pelvis, and 6.35 ± 1.20 cm and 12.71 ± 1.60◦ when using only two IMUs placed on
the feet. Conclusion: The algorithm was able to track the joint angles in the sagittal plane for straight walking well, but
requires improvement for unscripted movements (e.g., turning around, side steps), especially for dynamic movements
or when considering clinical applications. Significance: This work has brought us closer to comprehensive remote gait
monitoring using IMUs on the shoes. The low computational cost also suggests that it can be used in real-time with gait
assistive devices.

Index Terms— Biomedical monitoring, gait analysis, IMUs, Kalman filters, lie group theory, motion analysis, pose
estimation, wearable sensors.

I. INTRODUCTION

THE tracking of human body movement has not only
fascinated researchers for years, but has also recently

found application in robotics, virtual reality, animation, and
healthcare (e.g., gait analysis). Human pose (e.g., body joint
kinematics) is typically captured within a confined space using
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an optical motion capture (OMC) system capable of estimating
position up to millimeter accuracy (assuming it is well cali-
brated). Many commercial OMC systems use passive or active
surface markers attached to the skin above bony landmarks
to estimate the kinematics of the skeleton. In gait analysis,
the skeletal kinematics are usually estimated using one of two
approaches: direct kinematics and inverse kinematics. Direct
kinematic analysis involves estimating pose (i.e., position
and orientation of body segments) directly from the markers
(e.g., Vicon’s Plug-in Gait) [1]. It is typically used in gait
analysis. However, correct and systematic marker placement
are extremely important to obtain accurate and consistent
pose reconstruction [2] (i.e., trained personnel are needed
for marker placement). Inverse kinematics estimates the best
skeletal pose by optimising the pose of a linked-segment
model of the skeleton to best match the captured OMC
marker data. It is typically used in robotics, animation, and in
musculoskeletal modelling software (e.g., OpenSim) [3]. This
approach may also take advantage of simple joint constraints
(e.g., hinged knee joint) which can ultimately reduce inter-trial
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variability and, possibly, soft tissue artifacts, but at the cost of
an inability to capture certain pathological conditions where
these constraints are not respected [4]. There is no definitive/
universal kinematic model of the body in the literature [5].
The estimated pose from both approaches can be very sim-
ilar, especially when the markers are placed perfectly and
the subject biomechanics are not pathological. Nevertheless,
the fact remains that each approach has limitations, and
the most appropriate model may ultimately depend on the
application.

The miniaturization and low cost of inertial measurements
units (IMUs) has enabled the development of inertial motion
capture (IMC) systems. IMC systems can operate indepen-
dently from any fixed external sensor (e.g., cameras). Com-
pared to OMC systems, they are immune to occlusion and
lighting issues making them suitable for prolonged use outside
of the laboratory. However, the lack of an external position
reference can lead to positional drift (i.e., root position of body
in the global frame becomes lost). Commercial IMCs typically
attach one sensor per body segment (OSPS) [6], which may
be considered too cumbersome and expensive for routine daily
use due to the number of sensor units required. The orientation
of each body segment is tracked by the attached IMU using an
orientation estimation algorithm (e.g., [7], [8]), which is then
combined via a linked kinematic chain to estimate body pose,
similar to OMC inverse kinematic models, usually rooted at
the pelvis.

Recent advances in IMC algorithms have made possible
motion capture using a reduced-sensor-count (RSC) config-
uration, where IMUs are placed on a subset of body seg-
ments. Such configurations can improve user comfort while
also reducing setup time and system cost. However, utilizing
fewer sensors inherently reduces the amount of kinematic
information available; this information must be inferred by
enforcing mechanical joint constraints [9], making dynamic
balance assumptions, or using additional sensors (e.g., cameras
or distance measurement [10], [11]). Amongst additional sen-
sor approaches, video-inertial systems are the most common,
where IMU measurements help resolve orientation ambiguity
for OMC systems [12]–[14]. Developing a self-contained and
comfortable IMC system for routine daily use may facilitate
interactive rehabilitation (e.g., provide real-time feedback to
improve walking stability [15] or reduce joint loading [16]),
and possibly track/study the progression of movement disorder
to enable predictive diagnostics. IMC algorithms can be clas-
sified into two main approaches: data-driven and model-based.

Data-driven approaches statistically infer the kinematics of
uninstrumented segments by comparing sensor measurement
patterns (or derivatives of it) to an existing motion data-
base (DB) (e.g., nearest-neighbor search using either one or
multiple time steps of past movements [17], [18]), or train
some model using the data (e.g., shallow and deep neural
network (NN) [18], [19], bi-directional recurrent NN which
take into account temporal information [20]). The assumption
is that the kinematics of body segments without sensors are
well correlated with the kinematics of body segments with
sensors. Indeed, such is the case for the movements of healthy
subjects, which could be why data-driven approaches have

been shown effective in reconstructing realistic motions for
animation-related applications [17]–[20]. However, the pose
reconstruction for these approaches naturally have a bias
toward motions represented in the training DB, inherently
limiting their use to novel movements not contained in the
training DB (e.g., pathological gait monitoring).

Model-based approaches infer the kinematics of uninstru-
mented segments by leveraging kinematic and biomechani-
cal models, similar to OMC inverse kinematic approaches
which model the human body as linked rigid body seg-
ments. Early works started in 2D tracking (e.g., linear regres-
sion model [21], inverse kinematic of legs in the sagittal
plane [22]), which can have difficulty tracking body movement
during some activities of daily living (ADLs), such as side or
diagonal steps. Recent literature has shown that sparse motion
capture is also possible in 3D (e.g., window-based optimiza-
tion on full body segments linked by 24 ball and socket joints
[23]). In our recent work, we tracked five body segments
(i.e., the pelvis, thigh, and shanks) using IMUs at the pelvis
and ankles using a constrained Kalman filter (CKF) where
orientation was represented using quaternions [9]. Building on
prior work on state estimation using a Lie group representation
( [24]–[26] for propagating uncertainty, [27] for IMC systems
under OSPS configuration), we further extended their work by
representing and tracking pose using Lie groups, specifically
the special Euclidean group, SE(3) [28]. Tracking orienta-
tion using Lie groups is arguably more elegant, as it does
not require additional constraints, such as those required by
rotation matrix or quaternion representations (e.g., constraints
RT R = I or || q || = 1) [25], while providing significant
improvements over an Euler angle representation in near-
gimbal-lock poses [27].

A. Novelty
This paper describes a novel 3D lower body pose estimator

that uses a constrained Lie group Kalman filter using RSC
configuration of IMUs. It builds on prior work [28] but
instead tracks all seven major lower body segments, instead
of five, using only two or three IMUs. In our prior work [28],
the orientation of the thigh is inferred from the tracked
pelvis and shank poses. In this work, the orientations of the
uninstrumented segments (i.e., thighs and shanks) are inferred
from the poses of the pelvis and feet, tracked by the CKF.
As this algorithm achieves a low computation cost compared
to data-driven and optimization-based algorithms, it can be
used in real-time applications. This design was motivated
by the need to develop a gait assessment tool using as few
a number of sensors as possible, ergonomically-placed for
comfort, to facilitate long-term monitoring of lower body
movement. We believe having the IMUs on/in the shoes for
activities with shoes on (e.g., walking or jogging outdoors)
is more convenient and comfortable than attaching them to
the ankles or shanks (e.g., [23], [28]), and might allow
for more accurate step detection performance due to larger
impact accelerations at the foot, or through use of additional
instrumentation (e.g., strain gauges or switches embedded in
the sole). Lastly, the algorithm was extensively tested on two
types of OMC benchmark, direct kinematics (i.e., Plug-in Gait)
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Fig. 1. Physical model of the lower body used by the algorithm. The
circles denote joint positions, the solid lines denote instrumented body
segments (i.e., pelvis and feet), whilst the dashed lines denote segments
without IMUs attached (i.e., thighs and shanks).

Fig. 2. Algorithm overview which consists of pre-processing, LGKF,
and post-processing. Pre-processing calculates the body segment ori-
entation, inertial body acceleration, and step detection from raw accel-
eration, Săk, angular velocity, Sω̆k, and magnetic north heading, Sη̆k,
measured by the IMU in the IMU frame. The LGKF-based state estimation
consists of a prediction (kinematic equation), measurement (orientation,
pelvis pseudo measurement, z-position assumptions, and intermittent
zero-velocity update (ZUPT)), and constraint update (maximum leg
length, hinged knee and ankle joints). Post-processing calculates the
thigh and shank orientations.

commonly used in gait analysis, and an inverse kinematics
model, commonly used in musculoskeleton modelling and
robotics.

II. ALGORITHM DESCRIPTION
The proposed algorithm, L7S (for Lie seven segment),

estimates the orientation of the pelvis, thighs, shanks, and feet
(i.e., 7 segments) with respect to world frame, W , using either
two or three IMUs. It extends the model and assumptions
from our prior work [9], [28] (L5S-3I , CKF-3I , that aim to
estimate the kinematics of five body segments, and places
IMUs on the pelvis and shanks). Two variants of the algorithm
are described: L7S-3I which uses three IMUs attached at the
sacrum and feet (Fig. 1); and L7S-2I which uses two IMUs
attached at the feet (sacrum IMU pseudo-measurements are
estimated by aggregating measurments from the foot IMUs).
Fig. 2 shows an overview of the proposed algorithm.

L7S predicts the position of each foot through double
integration of its linear 3D acceleration, as measured by the
attached IMUs (after a pre-processing step that resolves these
accelerations in the world frame and removes gravitational

acceleration). Orientation is obtained from a third-party orien-
tation estimation algorithm (e.g., Xsens’ algorithm was used
in this paper). To mitigate positional drift due to sensor
bias and noise that accumulates in the double integration
of acceleration, the pose reconstruction of the instrumented
body segments was estimated using the following assumptions:
(1) the foot 3D velocity and height above the floor are zero
whenever a footstep is detected; (2) the pelvis x , y position
is approximately the average of the both feet x , y positions
(i.e., a simple balance constraint); and (3) the pelvis z position
is approximately the length of the unbent leg(s) above the
floor. For L7S-2I (i.e., only two IMUs on the feet and no
pelvis IMU), pelvis orientation pseudomeasurement is taken
to have zero pitch and roll, and yaw angle equal to the average
yaw angle of the two feet. Lastly, biomechanical constraints
enforce maximum leg length; and hinged knee and ankle
joints (one degree of freedom (DOF)). The pre-processing
components of the algorithm are similar as L5S-3I [28], while
the post-processing components are modified to calculate both
thigh and shank (instead of just the thigh) orientations from
the KF states.

A. Lie Group and Lie Algebra
The matrix Lie group G is a group of n × n matrices

that is also a smooth manifold. It can be used to represent
rotation or pose (e.g., SO(3), SE(3)). Group composition and
inversion (i.e., matrix multiplication and inversion) are smooth
operations. The Lie algebra g represents a tangent space of a
group at the identity element [29]. The elegance of Lie theory
lies in it being able to represent pose using a vector space
(e.g., Lie group G is represented by g) without additional
constraints (e.g., without requiring RT R = I when using a
rotation matrix representation of orientation, or || q || = 1
when using a quaternion representation of orientation) [30].

The matrix exponential exp G : g→G and matrix logarithm
log G : G→g establish a local diffeomorphism between the
Lie group G and its Lie algebra g. The Lie algebra g is
a n × n matrix that can be represented compactly with an
n-dimensional vector space using the linear isomorphisms (i.e.,
one-to-one mappings) [ ]∨G : g→Rn and [ ]∧G : Rn→g, which
map between the compact and matrix representation of the Lie
algebra g. Fig. 3 shows an illustration of the said mappings.
Furthermore, the adjoint operators of a Lie group, AdG(X),
and its Lie algebra, adG(v), where X ∈ G and [v]∧G ∈ g, will
be used in later sections. Multiplying an n-dimensional vector
representation of a Lie algebra with AdG(X) ∈ Rn×n (i.e., the
product AdG(X)v) transforms the vector from one coordinate
frame to another, similar to how rotation matrices transform
points from one frame to another. A short summary of the
operators for Lie groups SO(3), SE(3), and R

n can be found
in [28], [31]. For a more detailed introduction to Lie groups,
refer to [30], [32], [33].

B. System, Measurement, and Constraint Models
The system, measurement, and constraint models are pre-

sented below

Xk = f (Xk−1, uk , nk)

= Xk−1 exp([�(Xk−1, uk)+nk]∧G) (1)
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Fig. 3. Mapping between Lie group G, Lie algebra g, and n-dimensional
vector space. When G = SE(3), Lie group X = T is a ×4 transformation
matrix representing pose (i.e., 3D rotation and translation). Similarly, � =
ξ where Lie algebra [ξ ]∧SE(3) ∈ se(3) and the vector ξ ∈ Rn with n = 6.

Zk = h(Xk) exp([mk]∧G), Dk = c(Xk) (2)

where k is the time step. Xk ∈ G is the system state,
an element of state Lie group G. �

�
Xk−1, uk

� : G→Rp is
a non-linear function which describes how the model acts on
the state and input, uk , where p is the number of dimensions
of the compact vector representation for Lie algebra g. nk is
a zero-mean process noise vector with covariance matrix Q
(i.e., nk ∼ NRp (0p×1,Q)). Zk ∈ Gm is the system measure-
ment, an element of measurement Lie group Gm . h (Xk) :
G→Gm is the measurement function. mk is a zero-mean
measurement noise vector with covariance matrix Rk (i.e.,
mk ∼ NRq (0q×1,Rk) where q is the number of dimensions
of available measurements). Dk ∈ Gc is the constraint state,
an element of constraint Lie group Gc. c (Xk) : G→Gc is
the equality constraint function that state Xk must satisfy (i.e.,
c (Xk) = Dk). Similar to [26], [31], the state distribution of
Xk is assumed to be a concentrated Gaussian distribution on
Lie groups (i.e., Xk = μk exp

�
[�]∧G

�
, where μk is the mean

of Xk and Lie algebra error � ∼ NRp (0p×1, Pk)) [24].
The Lie group state variables Xk model the position, ori-

entation, and velocity of the three instrumented body seg-
ments (i.e., pelvis and foot) as Xk = diag(Tp

k , Tl f
k , Tl f

k ,

exp([[(vmp
k )T (vl f

k )T (vl f
k )T ]T ]∧

R9)) ∈ G = SE(3)3 × R
9

where ATb =
�

ARb Apb

01×3 1

�
∈ SE(3) contains orientation Rb

and position pb of body segment b relative to frame A,

and Avb is the velocity of body segment b relative to
frame A. If frame A is not specified, assume reference to
the world frame, W . The Lie algebra error is denoted as
� = [(� p

T)T (�
l f
T )T (�

r f
T )T (�

mp
v )T (�

l f
v )T (�

r f
v )T ]T where the

first three variables (�
r f
v )T ]T where the first three variables

correspond to the Lie group in [·]∨G , exp([·]∧G), [log(·)]∨G ,
AdG(Xk), and �G(·) are constructed similarly as Xk . Refer to
[28, Sec. 2] for definition of SE(3) and Rn operators.

C. Lie Group Constrained EKF (LG-CEKF)
The a priori, a posteriori, and constrained state mean

estimates for time step k are denoted by μ̂
−
k , μ̂

+
k , and μ̃+

k ,
respectively. Note that the true state Xk can be expressed as
μk exp([�]∧G), also denoted as μ�

k (note of superscript �), where
μk is one of the estimated state means just mentioned with
error, �. The estimated KF state error a priori and a posteriori
covariance matrices are denoted as P−

k and P+
k , respectively.

Note, the error covariance is not updated at the constraint

update step. The KF is based on the Lie group EKF, as defined
in [26].

1) Prediction Step: estimates the a priori state μ̂
−
k at the

next time step and may not necessarily respect the kinematic
constraints of the body, so joints may become dislocated
after this prediction step. The mean propagation of the three
instrumented body segments is governed by Eq. (3) where
�(Xk−1, uk) is the motion model for the tracked body seg-
ments, and input uk contains acceleration with respect world
frame W and angular velocity with respect body frame, as
obtained by the IMU attached to segment b (denoted as ăb

k
and bω̆k for b ∈ {p, l f, r f }). For the sake of brevity, only
the motion model of the position, orientation, and velocity for
body segment b is shown (Eq. (4)). The complete �(μ̃+

k−1, uk)
contains the motion model for body segments {p, l f, r f }. Note
that one may integrate the measured angular velocity, bω̆k ,
to predict orientation. However, we set the angular velocity
input to zero (i.e., bω̆k = 0) to simplify computations,
knowing that the orientation will be updated in the measure-
ment step using measurements from a third-party orientation
estimation algorithm which integrates angular velocity.

μ̂
−
k = μ̃+

k−1 exp([�̃+
k ]∧G), where �̃

+
k =�(μ̃+

k−1, uk)

(3)

�b(μ̃+
k−1, uk) =

⎡
⎢⎣ (R̃

b+
k−1)

T (�t ṽb+
k−1 + �t2

2 ăb
k)

�tbω̆k

�t ăb
k

⎤
⎥⎦ (4)

The state error covariance matrix propagation is governed
by Eq. (5), where Fk represents the matrix Lie group equiv-
alent to the Jacobian of f (Xk−1, uk, nk), Q is the covariance
matrix of the process noise, and Ck = ∂

∂� �(μ̃�+
k−1, uk)|�=0

represents the linearization of the motion model with an infin-
itesimal perturbation �. The process noise covariance matrix,
Q, is calculated from the input-to-state matrix G (i.e., a 27×9
matrix with values �t2

2 I3×3 for corresponding position states,
and values �tI3×3 for corresponding velocity states) and
the noise variances of the measured acceleration and angular
velocity, σ 2

a and σ 2
ω, respectively. Refer to the supplementary

material [34] for the explicit definition of �(μ̃+
k−1, uk), G,

and Ck .

P−
k = FkP+

k−1FT
k + �G(�̃

+
k )Q�G(�̃

+
k )T (5)

Fk = AdG(exp([−�̃+
k ]∧G)) + �G(�̃

+
k )Ck (6)

Q = G diag(σ 2
a , σ 2

ω) GT , Ck = ∂
∂� �(μ̃�+

k−1, uk)|�=0

(7)

�G(v) = �∞
i=0

(−1)i

(i+1)!adG(v)i , v ∈ Rn (8)

2) Measurement Update: estimates the state at the
next time step through: (a) orientation update (ori),
(b) mid-pelvis pseudo-measurements (mp), (c) z-position
assumptions (mpz/lfz/rfz), (d) pelvis yaw pseudo-measurement
(yaw), and (e) foot zero-velocity update (lfv/rfv). Each type of
measurement will be described later. The a posteriori state
μ̂

+
k and the covariance P+

k are calculated following the Lie
EKF equations below. Hk can be seen as the matrix Lie
group equivalent to the Jacobian of h(Xk) and is defined
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as the concatenation of Hori , Hmp,k , Hmpz,k , Hl f z,k , and
Hr f z,k . Hyaw,k is also concatenated to Hk for L7S-2I (i.e.,
no pelvis measurement is available). Hl f v and/or Hr f v are
concatenated to Hk when the left and/or right foot contact
is detected. Zk , h (Xk), and Rk are constructed similarly to
Hk but combined using diag instead of concatenation (e.g.,
Rk = diag(σ 2

ori , σ 2
mp)).

μ̂
+
k = μ̂

−
k exp([νk]∧G), νk = Kk[log(h(μ̂−

k )−1Zk)]∨Gm
(9)

Kk = P−
k HT

k (HkP−
k HT

k + Rk)
−1 (10)

Hk = ∂
∂�

�
log



h(μ̂−

k )−1h(μ̂�−
k )

��∨
Gm

|�=0 (11)

P+
k = �G (νk) (I − KkHk) P−

k �G (νk)
T (12)

a) Orientation update: uses the new orientation measure-
ments of body segments from IMUs, denoted as R̆

p
k , R̆

l f
k , and

R̆
r f
k . The measurement function is shown in Eqs. (13)-(14)

with measurement noise variance σ 2
ori (9 × 1 vector). Ii×i

and 0i× j denote i × i identity and i × j zero matrices. Hori

(Eq. (15)), as well as any other Ha for some measurement
function a, are calculated by applying Eq. (11) to their corre-
sponding measurement function, followed by tedious algebraic
manipulation (e.g., using the property [a]∧ b = [b]� a as
defined in [32, Eq. (72)]) and first order linearization (i.e.,
exp([�]∧) ≈ I+ [�]∧). Note that for L7S-2I , pelvis orientation
is not updated (i.e., first row of Hori is omitted).

hori (Xk) = diag(Rp
k , Rl f

k , Rr f
k ) (13)

Zori = diag(R̆
p
k , R̆

l f
k , R̆

r f
k ) (14)

Hori =
⎡
⎢⎣

segment poses� �� �
03×3 I3×3

03×3 I3×3
03×3 I3×3

|

|

|

|

|

vel.� �� �
09×9

⎤
⎥⎦

(15)

b) Mid-pelvis pseudo-measurement: enforces a mid-pelvis
pseudo-measurement where the pelvis x and y position is the
approximate average of the x and y position of the two feet.
The measurement function is shown in Eqs. (16)-(17), with
measurement noise variance σ 2

mp (2 × 1 vector). ix , iy , iz ,
and i0 denote 4 × 1 selector vectors whose 1st to 4th row,
respectively, are 1, while the rest are 0 (e.g., Tls

k iz returns
the long axis of the left shanks). Hmp (Eq. (18)) is derived
similarly as [28, Eq. (36)].

E2

= �
I2×2 02×2

�
,

�
log

�
Zmp

��∨ = 02×1 (16)
[log(hmp(Xk))]∨
= E2(Tp − 1

2 Tl f
k − 1

2 Tr f
k ) i0 (17)

Hmp,k

=
�

E2 T̂p−
k [i0]�

|

|
− E2 T̂l f −

k [i0]�
2

|

|
− E2 T̂r f −

k [i0]�
2

|

|
02×9

�
(18)

c) z-position assumptions: bring the pelvis z position to
initial pelvis height, z p , and the foot z position strictly close
to the floor level, z f , when a foot step is detected, but is
gradually relaxed as time passes (e.g., relaxed after 1 second
after the foot step). The measurement function for the left foot

is shown in Eq. (19), with measurement noise variance σ 2
l f z,k

(varies with time and decays to 0.02 of initial value, σl f z0,
after λ seconds as shown in Eq. (20)). ks is the time step of
the last foot step detected. Hl f z (Eq. (21)) is derived similarly
as [28, Eq. (38)]. The right foot and mid-pelvis z-position
assumption can be calculated similarly, except that for the
mid-pelvis z-position, the measurement noise variance, σ 2

mp ,
is constant, and

�
log

�
Zmpz

��∨ = z p .

[log(hl f z(Xk))]∨ = iT
z Tl f

k i0,
�
log

�
Zl f z

��∨ = z f (19)

σl f z,k = σl f z0 exp (−4(k−ks )�t/λ) (20)

Hl f z,k =
�

01×6
|

|
iT
z T̂

l f
k [i0]�

|

|
01×6

|

|
01×9

�
(21)

d) Pelvis yaw pseudo-measurement: encourages the pelvis
yaw orientation to be the average of the yaw orientations of
both feet. Pelvis pitch and roll pseudo-measurements are set
to zero. This pseudo-measurement is only used in L7S-2I (i.e.,
when the pelvis IMU measurement is not available). The
measurement function (Eqs. (23)-(24)) denotes that pelvis
orientation equals the rotation along unit vector α (i.e., z axis)
by θyaw(Rl f

k , Rr f
k ) radians, with measurement noise variance

σ 2
yaw (3×1 vector). θyaw(Rl f

k , Rr f
k ) (Eq. (22)) was calculated

from the inverse tangent of the resultant vector of the z axes of
both feet (i.e., (Rl f

k + Rr f
k ) i3z). Note that the resultant vector

also divides the angle between the feet z axes (i.e., long axes)
equally (i.e., bisector). i3x , i3y , and i3z denote 3 × 1 selector
vectors whose 1st to 3rd row, respectively, are 1, while the
rest are 0. Refer to the supplementary material [34] for the
derivation of Hyaw,k.

θyaw(Rl f
k , Rr f

k ) = tan−1

 iT3y(Rl f

k +Rr f
k ) i3z

iT3x (Rl f
k +Rr f

k ) i3z

�
∈ R (22)

hyaw(Xk) = exp([
≈ mean yaw of two feet� �� �
θyaw(Rl f

k , Rr f
k )α ]∧)T Rp

k (23)

α = �
0 0 1

�T
, Zyaw = I3×3 (24)

Hyaw,k = ∂
∂ � [log(hyaw(μ̂−

k )−1hyaw(μ̂�−
k ))]∨|�=0

(25)

e) Foot zero-velocity update (ZUPT): encourages foot veloc-
ity to approach zero when a foot step is detected. The
measurement function for the ZUPT at the left foot is shown
in Eq. (26) with measurement noise variance σ 2

l f v (3 × 1
vector). The right foot ZUPT can be calculated similarly.

[log(hl f v (Xk))]∨ = vl f ,
�
log

�
Zl f v

��∨ = 03×1 (26)

Hl f v = �
03×18 03×3 I3×3 03×3

�
(27)

3) Satisfying Biomechanical Constraints: After the prediction
and measurement updates, above, the body joints may have
become dislocated. This update corrects the kinematic state
estimates to satisfy the biomechanical constraints of the human
body by projecting the current a posteriori state μ̂

+
k estimate

onto the constraint surface, guided by our uncertainty in each
state variable, encoded by P+

k . The constraint step enforces
the following biomechanical limitations: (a) hinged knee
and ankle joints (lj/rj), and (b) maximum leg length (ll/rl).
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The constrained state, μ̃+
k , can be calculated using the equa-

tions below, similar to the measurement update of [26] but with
zero noise, and Ck = �CT

L ,k CT
R,k

�T
. CL ,k is the concatenation

of Cl j,k and Cll,k ; the latter matrix implements an inequality
constraint and is only concatenated when the distance between
the ankle and hip is greater than the leg length, dlt +dls , after
the preceding measurement update step. CR,k can be derived
similarly. Dk and c(Xk) are constructed similarly to Zk .

μ̃+
k = μ̂

+
k expG

�
[νk]∧G

�
(28)

νk = Kk([logGc
(c(μ̂+

k )−1Dk)]∨Gc
) (29)

Kk = P+
k CT

k (CkP+
k CT

k )−1 (30)

Ck = ∂
∂� [logGc

�
c


μ̂

+
k

�−1
c


μ̂

�+
k

� �]∨Gc
|�=0 (31)

a) Hinged knee and ankle joints constraints: forces the knees
and ankles to act as hinge joints, as defined in Eqs. (34)-(35),
where τ l(μ̃+

k ) (Eq. (33)) denotes the left ankle-to-hip vector
whose dot product with the foot y axis, rl f

y = E Tl f
k iy , equals

zero. Cl j,k (Eq. (36)) is derived similarly as [28, Eq. (66)] and
is defined explicitly in the supplementary material [34]. Note
that the sensor attached to the feet is assumed to be located
between the toe and the heel. Lastly, the right side (i.e., Cr j,k)
can be derived similarly.

pplh = �
0 d p/2 0 1

�T
, l f pla =�

0 0 dl f/2 1
�T(32)

τ l(Xk) =
E� �� ��

I3×3 03×1
� � hip joint pos.� �� �

Tp
k

pplh −
ankle joint pos.� �� �
Tl f

k
l f pla �

(33)

[log(cl j (Xk))]∨ = (E Tl f
k iy)

T τ l(Xk) (34)�
log

�
Dl j

��∨ = 0 (35)

Cl j,k = ∂
∂ � [log(cl j (μ̂

+
k )−1cl j (μ̂

�+
k ))]∨|�=0 (36)

b) Leg length constraint: enforces that the distance between
the ankles and hips (|| τ l(Xk)|| and || τ r (Xk)||) cannot be more
than the leg length, dlt +dls , as defined in Eqs. (37)-(38). Cll,k

(Eq. (39)) is derived similarly as [28, Eq. (44)] and is defined
explicitly in the supplementary material [34]. The right side
(i.e., Crl,k ) can be derived similarly.

[log(cll(Xk))]∨ =


τ l(Xk)

�T
τ l(Xk) (37)�

log (Dll )
�∨ = (dlt + dls)2 (38)

Cll,k = ∂
∂ � [log(cll(μ̂

+
k )−1cll(μ̂

�+
k ))]∨|�=0 (39)

D. Post-Processing
The thigh and shank orientations were estimated under

the assumption that both knees and ankles are hinge joints
(i.e., rl f

y = rls
y = rlt

y ). Refer to Fig. 1 for visualization. The
angle between the left shank segment and hip-to-ankle vector
τ l(μ̃+

k ), θ l
k , can be solved using the cosine law, as shown in

Eq. (40). The left shank normal axis, r̃ls+
z,k , is then estimated

by rotating τ l(μ̃+
k ) through r̃l f

y,k+ by θ l
k degrees, as shown

in Eq. (41). Finally, the left shank and thigh orientation are
calculated using Eqs. (42)-(44). The right side is derived

TABLE I
DATASET AND BENCHMARK CONFIGURATIONS

TABLE II
TYPES OF MOVEMENTS DONE IN THE VALIDATION EXPERIMENT

similarly. Note that [r1]∧r2 is equal to the cross product of r1
and r2.

(dlt )2 = (dls)2 + || τ l(μ̃+
k )||2 − 2 dls || τ l(μ̃+

k )|| cos (θ l
k)

θ l
k = cos−1

�
(dls)2+|| τ l (μ̃+

k )||2−(dlt )2

2 dls || τ l (μ̃+
k )||

�
(40)

r̃ls+
z,k = Rl

k
τ l (μ̃+

k )

|| τ l (μ̃+
k )|| where Rl

k = exp([θ l
k r̃l f +

y,k ]∧) (41)

r̃lt+
z,k = p̃lh+

k −p̃lk+
k

||p̃lh+
k −p̃lk+

k || where p̃lk+
k = T̃

l f +
k

l f pla+dls r̃ls+
z,k

(42)

R̃
ls+
k =

�
[r̃l f +

y,k ]∧r̃ls+
z,k

|

|
r̃l f +

y,k

|

|
r̃ls+

z,k

�
(43)

R̃
lt+
k =

�
[r̃l f +

y,k ]∧r̃lt+
z,k

|

|
r̃l f +

y,k

|

|
r̃lt+

z,k

�
(44)

III. EXPERIMENT

The algorithm L7S was evaluated on two data sets, NeuRA
(NR) [9] and Total Capture Dataset (TCD) [13], as described
in Table I. NR had nine healthy subjects (7 men and 2 women,
weight 63.0 ± 6.8 kg, height 1.70 ± 0.06 m, age 24.6 ± 3.9
years old), with no known gait abnormalities. TCD had five
healthy subjects (4 men and 1 woman, no information on
weight, height, and age). Raw data were captured using a
commercial IMC (i.e., Xsens Awinda) compared against a
benchmark OMC (i.e., Vicon). Two benchmark models were
generated from the NeuRA data set: i) the conventional gait
model generated from Vicon’s Plug-in Gait (PiG); ii) and
a kinematically-fitted model (KFit) from the Vicon Nexus
pipeline. A notable difference between the PiG and KFit model
is that the KFit model inherently assumes a 1 DoF hinged
knee joint and constant segment length when reconstructing
kinematics. The benchmark model from the TCD data set was
obtained from Vicon Blade and is similar to the KFit model.
The algorithm was evaluated on movements listed in Table II.
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TABLE III
VARIANCE PARAMETERS FOR GENERATING THE PROCESS AND

MEASUREMENT ERROR COVARIANCE MATRICES, Q AND R

A. Configuration
Two variants of L7S were tested. The first variant, L7S-3I,

takes in input from three IMUs at the pelvis and feet. The sec-
ond variant, L7S-2I, takes in input from only the two IMUs
at the feet, where the pelvis input acceleration, p ăk , was set
as the mean of left and right foot acceleration, and the pelvis
input angular velocity, pω̆k , was set to zero.

Unless stated, calibration and system parameters similar
to [9], [28] were assumed. The algorithm and calculations
were implemented using Matlab 2020a. The initial position,
orientation, and velocity (μ̃+

0 ) were obtained from the Vicon
benchmark system. P+

0 was set to 0.5I27×27. The variance
parameters used to generate the process and measurement error
covariance matrix Q and R are shown in Table III.

B. Metrics
The evaluation was done using the following metrics. Refer

to [9, Sec. III] for more details.
1) Mean Position and Orientation Root-Mean-Square Error

(RMSE): (epos and eori ) both common metrics in video-based
human motion capture systems (e.g., [23]). In this paper,
the set of joint positions DP is {lh, rh, lk, rk, la, ra, le, re};
while the set of uninstrumented body segments DO is DO3I =
{lt, r t, ls, rs } for L7S-3I , and DO3I ∪ {p} for L7S-2I . pi

k
and Ri

k denote the position and orientation of body segment i
obtained from the benchmark system. Note that as the global
position of the estimate is still prone to drift due to the absence
of an external global position reference, the root position of
our system was set equal to that of the benchmark system (i.e.,
the mid-pelvis is placed at the origin in the world frame for
all RMSE calculations).

epos,k = 1
Npos

�
i∈DP || pi

k − p̃i+
k || (45)

eori,k = 1
Nori

�
i∈DO ||[log(Ri

kR̃
i+
k )]∨|| (46)

2) Hip and Knee Joint Angles RMSE and Correlation Coef-
ficient (CC): The joint angle RMSEs with bias removed
(i.e., the mean difference between the angles over each
entire trial was subtracted) and correlation coefficient (CC)
of the hip in the sagittal (Y), frontal (X), and transverse
(Z) planes, and of the knee in the sagittal (Y) plane. Note
that these joint angles are commonly used parameters in gait
analysis.

3) Spatiotemporal Gait Parameters: Specifically, the total
travelled distance (TTD), average stride length, and gait speed
of the foot are calculated.

Fig. 4. The mean position and orientation RMSE, epos (top) and eori
(bottom), for L7S-3I, L7S-2I, and OSPS on the NeuRA (NR) PiG and
KFit, and TCD database. The prefix b denotes biased, while nb denotes
no bias.

IV. RESULTS

A. Mean Position and Orientation RMSE
Fig. 4 shows the mean position and orientation RMSE of

our algorithm for free walking and dynamic movements. The
comparison involved the output from three algorithms of inter-
est tested on three database configurations (defined in Sec. III):
i-ii) our algorithm using three and two Xsens MTx IMU
measurements, respectively, (denoted as L7S-3I and L7S-2I);
iii) the black box output (i.e., segment orientation and pelvis
position) from the Xsens MVN Studio software (denoted as
OSPS). The OSPS result illustrates the performance of a
widely-accepted commercial wearable HMCS with an OSPS
configuration. Note that OSPS results are not available for the
TCD dataset, as neither the result nor the raw files that Xsens
MVN requires were present in this dataset.

Both biased and unbiased (i.e., for unbiased, the mean
difference between the angles over each entire trial was
subtracted) eori are presented to account for possible anatom-
ical calibration offset errors between the OMC and OSPS
systems [35], [36].

B. Hip and Knee Joint Angle RMSE and CC
Fig. 5 shows the ankle, knee, and hip joint angle RMSE (no

bias) and CC for L7S-3I , L7S-2I and OSPS. Y, X, and Z refers
to the plane defined by the normal vectors y, x , and z axes,
respectively, and are also known as the sagittal, frontal, and
transverse plane in the context of gait analysis. Fig. 6 shows
a sample Walk trial from the NR PiG database.

C. Spatiotemporal Gait Parameters
Table IV shows the TTD, stride length, and gait speed

accuracy computed from the global foot position estimate of
L7S-3I , L7S-2I against the OMC system. Only the results of
the NR PiG and TCD dataset are presented, as the result of NR
KFit are almost identical to NR PiG. Refer to code repository
for links to video reconstruction of sample trials [34].

V. DISCUSSION

A. Mean Position and Orientation RMSE
The mean position and orientation RMSE gives a perfor-

mance overview of the different algorithms. Both L7S-3I and



20976 IEEE SENSORS JOURNAL, VOL. 21, NO. 18, SEPTEMBER 15, 2021

Fig. 5. The joint angle RMSE no bias (top) and CC (bottom) of the
leg joint angles for L7S-3I and L7S-2I at each motion type. Y, X, and Z
denotes the sagittal, frontal, and transverse plane, respectively.

Fig. 6. Ankle, knee, and hip joint angle output of L7S-3I, L7S-2I, and
OSPS in comparison with the benchmark system (OMC) for a Walk trial.
The subject walked straight from t = 0 to 3 s, turned 180◦ around from
t = 3 to 5.5 s, and walked straight to original point from 5.5 s until the
end of the trial.

L7S-2I are comparable to OSPS (∼ �1 cm, ∼ �1.5◦) for free
walking. Note that the epos of L5S-3I was calculated from six
joints/points (hips to ankles), while the other algorithms were
calculated from eight joint/points (hips to toes). L7S-3I’s epos

is 0.5 cm better than L7S-2I , which is expected as L7S-3I
utilises more IMU sensor units. Interestingly, L7S-3I’s eori is
1◦ worse than L7S-2I . This is probably due to the additional

TABLE IV
TOTAL TRAVELLED DISTANCE (TTD) DEVIATION, STRIDE LENGTH, AND

GAIT SPEED FOR L7S AND OPTICAL MOTION

CAPTURE (OMC) SYSTEM

uninstrumented segment (i.e., pelvis) for the two-IMU setup
being tracked more accurately than the thigh and shank orien-
tations. Lastly, the results for dynamic movements were worse,
notably for the TCD dataset (�7 cm, �11◦, compared to free
walking results), which was expected as the TCD dataset con-
tains movements that break our pelvis pseudo-measurement
assumptions (e.g., during the crawling movement, the pelvis
z position is close to the floor instead of being at standing
height; while the pelvis x and y position is no longer between
the feet x and y positions).

Comparing the PiG and KFit model of the NR database,
epos was consistent (< �0.5 cm) for L7S-3I , L7S-2I , and
OSPS. However, the eori of the KFit model was ∼ 4◦ better
than the PiG model, which is understandable given that the
KFit model implements assumptions similar to our constraints
(e.g., constant body segment lengths and hinged knee joints).

L7S was also comparable to existing algorithms in the
literature. Both epos and eori for NR PiG were similar to
Sy et al.’s work [9] (e.g., 5.3 - 5.7 cm and 14.2◦ - 15.5◦
compared to Sy’s 5.2 cm and 16.1◦ for free walking). Our eori

for NR KFit was also similar to Marcard et al.’s sparse inertial
poser (SIP) (e.g., 10.6◦-10.9◦ compared to SIP’s ∼ 11◦ for free
walking, ∼ 13.3◦ compared to SIP’s 15◦ for dynamic move-
ments) [23]. However, there was a bigger gap for epos (e.g.,
∼ 5.5 cm against SIP’s ∼ 3 cm for free walking, ∼ 9.5 cm
against SIP’s ∼ 5 cm for dynamic movements). For the TCD
dataset, our epos result for free walking (6.94-7.42 cm) was
close to Gilbert et al.’s neural network approach (5.2-6.4 cm)
[14]. Although we expected our algorithm to have a worse
performance compared to SIP and Gilbert et al.’s, as L7S has
significantly less computation cost [14], [23]. The performance
gap may also have widened due to the inherent difficulty of
tracking more uninstrumented linked segments between the
instrumented segments (i.e., the furthest IMUs from the pelvis
for the L7S were at the feet, while the said literature had the
IMUs at the shanks). For reference on computational cost,
L7S processed a 1,000-frame sequence in ∼ 2 seconds on a



SY et al.: ESTIMATING LOWER BODY KINEMATICS USING LG-CEKF AND REDUCED IMU COUNT 20977

Intel Core i5-6500 3.2 GHz CPU, while SIP took 7.5 minutes
on a quad-core Intel Core i7 3.5 GHz CPU. Though some
deep learning based approaches claim real time processing,
they still require computing resources with graphic processing
units (GPUs), limiting its feasibility in mobile applications.

B. Joint Angle RMSE and CC
The joint angle RMSE and CC provides a more in-depth

(per joint) analysis of our algorithm’s performance. Similar
to L5S-3I , both L7S algorithms had good CC in the sagittal
plane (> 0.6 CC), with less promising results in the frontal
and transverse plane [28]. For both free walking and dynamic
movements, the joint angle RMSE of both L7S-3I and L7S-2I
were comparable (∼ �1◦). During free walking, the ankle and
knee Y joint angles CC of both algorithms were comparable
(�0.05 CC), while the L7S-2I hip joint angles CC, calculated
from pelvis and thigh orientation, were slightly worse than
L7S-3I (�0.1 CC), which is probably due to both pelvis and
thigh having no sensors attached. During dynamic movements,
L7S-3I’s performance deteriorated (e.g., < 0.3 CC on NR PiG
and KFit at the sagittal plane) compared to free walking move-
ments. L7S-2I had an even worse performance (< 0.5 CCs)
especially for jumping jacks (∼ �0.5 CC deterioration).

Comparing between the PiG and KFit model of the NR
database for free walking, the ankle, knee, and hip Y angles
were similar (�0.1 CC). The most notable difference was
with the hip Z joint angle, which improved significantly by
5 - 8◦ RMSE and 0.3 - 0.5 CC (KFit model was better). The
said dramatic improvement was probably due to the similarity
of the constant body segment length and hinged knee joint
assumptions used by our algorithm. Since the TCD dataset
used a similar model as NR KFit, it is no surprise that the
results from TCD are more similar to NR KFit than NR PiG
during free walking (e.g., more similar hip Z joint angles).

Table V shows the joint angle RMSE and CC for our
algorithm and related literature [9], [22]. For a more similar
comparison, we computed the joint angles of L7S under a
similar setup to existing literature (i.e., each step from the
straight walking part of NR dataset’s walk movement was
considered as a trial). L7S-3I and L7S-2I were comparable
to Hu et al. [22] with the biggest difference in hip Y (∼ �0.1
CC) which maybe due to [22] attaching two IMUs to the
pelvis (we only used one), or due to the additional ambiguity
that comes with tracking human body pose in 3D instead of
tracking in 2D.

C. Spatiotemporal Gait Parameters
Table IV shows that in addition to tracking joint kinematics,

L7S-3I and L7S-2I can also track spatiotemporal parameters
for free walking well (1.9-4.8% TTD deviation), although
not at the same level as state-of-the-art dead reckoning algo-
rithms [38], [39] (0.2 - 1.5% TTD deviation). Expectedly,
L7S-2I performed slightly worse than L7S-3I (∼ �1% TTD
error) which is most likely due to dead reckoning error/drift
in the pelvis. As information is propagated between the body
segments through the measurement and constraint update of
L7S, the error in the pelvis can propagate to the feet.

TABLE V
PER-STEP JOINT ANGLE RMSE AND CC FOR STRAIGHT WALKS

D. Towards Monitoring Activities of Daily Living (ADL)
We have shown that L7S was able to track the full lower

body motion using only two or three IMUs, notably achieving
good joint angle CCs in the sagittal plane (0.6-0.9 CCs for
free walking). However, the accuracy will need to improve
(joint angle RMSE < 5◦) to achieve clinical utility (usually
involves walking movements), as well as to successfully
track more ADL including dynamic movements. To achieve
better performance, one may leverage long-term recordings
by averaging out cycle-to-cycle variation in estimation errors
over many gait cycles, or use additional sensing modalities,
preferably packaged such that the number of sensor units
will not increase. For example, distance ranging measurements
or pressure insoles can be used to infer position of the
pelvis [11], [40]. Attaching cameras to the body is another
interesting approach (e.g., Xu et al. tracked body pose using
cap-mounted fisheye cameras pointing downwards [41]; using
cameras with IMUs for better position estimation [42]). The
extent to which these possible solutions can bridge the gap
to clinical application and the tracking of ADLs and dynamic
movements remains to be seen.

Additional considerations regarding the measurement
and constraint assumptions used by our L7S algorithms
must be given before use in everyday life. The pelvis
pseudo-measurements and ankle flat-floor assumptions prevent
accurate tracking of non-walking movements (e.g., sleeping,
crawling, high kicks). L7S will not be able to measure gait
parameters where pathologies are present that break the hinged
knee and ankle joint assumptions. Indeed, Kainz et al. rec-
ommends the use of models with fewer degrees-of-freedom
(DoF) (e.g., L7S) when studying healthy individuals due to
better reliability, but to use models with more DoF (e.g.,
3-2-2 DoF of hip, knee, and ankle) when studying individuals
with pathology [4].

Interestingly, despite having similar framework as CKF-3I ,
L7S was able to accurately track 5-minute walk movement
even without the covariance limiter of CKF-3I , as the covari-
ance of L7S was not as badly conditioned as for the CKF-3I .
Nevertheless, it is expected that L7S will require a covariance
limiter, specifically applied to the position error estimates,
when tracking movements of longer duration. Covariance
limiter may implemented similar to CKF-3I (i.e., at all
time steps), or through a more efficient variation where the
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covariance limiter step is only executed when a foot step is
detected, centered around the foot.

Accurate step detection and sensor-to-body calibration algo-
rithms will be needed to move towards a full remote gait
monitoring system. Similar to CKF-3I , L7S relies heavily on
accurate step detection and sensor-to-body calibration. Since
the foot/shoe is already instrumented with an IMU, adding
in-shoe pressure sensor to improve step detection accuracy
will most likely not affect the user’s comfort. Assuming the
foot’s frame coincides with the shoe, and the IMU is rigidly
attached to the shoe, the sensor-to-shoe rotation offset can be
ensured by design. However, a practical initial or even online
calibration procedure will be needed for the pelvis sensor-
to-body calibration (for L7S), and to align with the reference
frames of the other IMUs. This calibration can be done through
manual alignment from palpation of anatomical landmarks, use
of an external calibration device [43], or the subject may be
asked to walk in a straight line and then back to the starting
point for yaw offset alignment.

Lastly, although L7S-2I , which only uses two IMUs,
is unable to accurately track non-walking movements (e.g.,
crawling) due to the lack of sensor at the pelvis, it enjoys
better numerical stability and easier sensor-to-body calibration
because the algorithm is only optimizing the best lower body
pose estimate from two-IMU input, instead of three IMUs.

VI. CONCLUSION

This paper described a Lie group constrained extended
Kalman filter based algorithm that tracks the full lower body
(seven body segments) using only two or three IMUs. The
algorithm was extensively evaluated on two public datasets
showing its performance compared to two standard bench-
mark approaches (i.e., plug-in gait commonly used in gait
analysis and kinematic fit commonly used in animation,
robotics, and musculo-skeletal simulation), giving insight into
the similarity and differences between the said approaches
used in different application areas. The overall mean body
segment position (relative to mid-pelvis origin) and orientation
error of our algorithm for free walking was 5.93 ± 1.33 cm
and 13.43 ± 1.89◦ when using three IMUs, and 6.35 ±
1.20 cm and 12.71 ± 1.60◦ when using two IMUs. The
algorithm was able to track the joint angles in the sagittal
plane for straight walking well, but requires improvement for
unscripted movements (e.g., turning around, side steps), espe-
cially for dynamic movements or when considering clinical
applications. Nevertheless, this work has brought us closer
to remote gait monitoring even when only using IMUs on
the shoes. The low computation cost also signifies that it
can be used with gait assistive devices. Lastly, the source
code will be made available at https://github.com/gait-tech/
gt.papers/tree/master/+lgkf7seghttps://git.io/J3t1w.
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