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Abstract—We present an algorithm to estimate and
quantify the uncertainty of the accelerometers’ relative geom-
etry in an inertial sensor array. We formulate the calibration
problem as a Bayesian estimation problem and propose an
algorithm that samples the accelerometer positions’ posterior
distribution using Markov chain Monte Carlo. By identifying
linear substructures of the measurement model, the unknown
linear motion parameters are analytically marginalized, and
the remaining non-linear motion parameters are numerically
marginalized. The numerical marginalization occurs in a low
dimensional space where the gyroscopes give information
about the motion. This combination of information from gyro-
scopes and analytical marginalization allows the user to make
no assumptions of the motion before the calibration. It thus enables the user to estimate the accelerometer positions’
relative geometry by simply exposing the array to arbitrary twisting motion. We show that the calibration algorithm gives
good results on both simulated and experimental data, despite sampling a high dimensional space.

Index Terms— Accelerometers, gyroscopes, calibration, inertial sensors, self-calibration, sensor arrays, Bayesian
estimation, Markov chain Monte Carlo, pseudo-marginal metropolis hastings, Rao-Blackwellization.

I. INTRODUCTION

THE rapid development of the Micro-Electro-Mechanical
Systems (MEMS) manufacturing technology has facil-

itated the construction of small and low-cost sensor arrays
of multiple Inertial Measurement Units (IMU) [1], [2]. These
so-called inertial sensor arrays have several advantages over
a single IMU. The sensor redundancy enables measurement
noise reduction through averaging and sensor fault detec-
tion [3]. Moreover, measurements from multiple spatially
separated accelerometers provide information about both trans-
lational acceleration and rotational information. The additional
rotational information can increase both the angular velocity
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measurement accuracy and the angular velocity measurement
range of the gyroscopes [4], which typically is a trade-
off for gyroscopes. This increase in accuracy and range is
useful in high dynamic applications, such as ballistic platform
guidance [5] and human motion analysis [6], [7]. Addition-
ally, the angular acceleration can be estimated from a single
time sample, omitting the need for time differentiation. Since
differentiation amplifies noise and introduces a delay, this is
particularly suitable for real-time motion control [8]. Thanks
to the versatility of the inertial sensor array, the device has
found many different application areas in motion analysis and
tracking, such as gyro-free inertial navigation [9], [10], pedes-
trian tracking [11], biomechanics [6], crash testing [12], [13],
and experimental structural dynamics [14]. Reviews of appli-
cations and methods concerning inertial sensor arrays can be
found in [15], [16].

Reliable motion estimation from the inertial sensor array
requires small measurement errors [17]. The measurement
errors can principally be grouped into stochastic and deter-
ministic errors. The stochastic measurement errors in the
inertial sensor array are typically addressed through sensor
redundancy. The deterministic errors are systematic errors
that corrupt the mapping between the measured physical
quantity and the sensor output. First-order systematic errors
include offset, scale factor, misalignment, and mounting
errors. These errors are individual to each sensor and will
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degrade the accuracy of the estimated motion if they are not
compensated for. Calibration of offset, scale factor errors,
and misalignment errors for accelerometer arrays have been
addressed before [18]–[21], where the accelerometer output
under stationary conditions is compared with the gravity
vector, which has a known magnitude. However, estimation
of accelerometer position errors due to erroneous mounting
requires the array to undergo rotational motion. An external
rig can generate such motion [21]–[23], or the motion can be
arbitrary and estimated using a separate sensor system [19].
However, these techniques require external systems that may
prohibitively increase the inertial sensor array’s cost [2]. The
alternative to using dedicated external equipment is to jointly
estimate the unknown motion and the calibration parameters.
Such joint estimation has been done before using maxi-
mum likelihood methods for accelerometer position errors
[24]–[26], accelerometer offset, scale factor, and misalignment
errors [27] and magnetometers [28]. The drawback of the
maximum likelihood method is, however, the difficulty to
directly quantify the estimation uncertainty given specific mea-
surements. For biomedical applications [29], it is important to
have an uncertainty quantification of the calibration parameters
to assess the calibration quality. Uncertainty quantification
of estimates has previously been addressed using Kalman
filtering [30]. However, the Kalman filter requires a dynamic
model for the motion. For arbitrary motion, it may be difficult
to specify and tune a dynamic model representing the motion.

The problem of estimating and quantifying the uncertainty
of the accelerometer position errors in an inertial sensor
array from nonconsecutive measurements of unknown motion
is previously not addressed in the literature. To address
the problem of uncertainty estimation associated with the
maximum likelihood method and to avoid having to spec-
ify a motion model, we propose a Bayesian estimator that
uses both accelerometer and gyroscope measurements and a
non-informative motion prior, to estimate the accelerometer
position errors. Bayesian estimators address the uncertainty
quantification by providing a posterior distribution of the para-
meters given a set of measurements. The main contribution is a
numerical sampling method targeting the posterior distribution
of the accelerometer positions, in which the unknown motion
is efficiently marginalized without assuming a dynamic model.
Since the measurement model is non-linear, the estimator
marginalizes the motion numerically. However, by explicitly
taking advantage of the signal model’s linear substructures, the
marginalization can partly be done analytically. This increases
the efficiency of the numerical marginalization, which is then
performed in a lower-dimensional subspace that coincides with
the information gained by the gyroscopes.

II. PROBLEM FORMULATION

This section presents the calibration problem of estimat-
ing and quantifying the accelerometer position uncertainty.
In Section II-A, we formulate the calibration problem as a
Bayesian estimation problem, where the solution is the poste-
rior distribution. In Section II-B we present the signal model
of the inertial sensor array, which is used in approximating
the posterior distribution.

A. Posterior Distribution
A joint probability density function p(y1:T ) describes the

statistical properties of a measurement sequence y1:T �
{yt}Tt=1 from the sensors. In each time sample t , all the
sensors on the inertial sensor array instantaneously take a
measurement, and all these measurements are concatenated
into an array measurement yt . Each measurement yt depends
on a set of calibration parameters θ , independent of the
sample index t , and a set of motion parameters ηt , specific
to array sample t . The calibration problem is to estimate the
parameters θ given a set of measurements y1:T while also
considering the unknown motion sequence η1:T � {ηt }Tt=1.
The motion parameters are not of direct interest, but since the
sensor measurements depend on the motion, they have to be
accounted for. We pose the calibration problem as a Bayesian
estimation problem. The solution to this problem is to compute
the posterior distribution of the calibration parameters given a
measurement sequence, that is,

p(θ |y1:T ) = p(y1:T |θ)p(θ)

p(y1:T )
. (1)

The posterior distribution p(θ |y1:T ) encapsulates all avail-
able information about the calibration parameters θ provided
by the measurements y1:T . Further, p(y1:T |θ) is the likelihood
function of the measurements, p(θ) is the prior distribution of
the calibration parameters and

p(y1:T ) =
∫

p(y1:T |θ)p(θ)dθ (2)

is the marginalized likelihood.
Since the inertial sensor measurements also depend on

the motion, the likelihood function p(y1:T |θ) is not directly
available. To account for the motion parameters η1:T when
computing the posterior distribution of the calibration para-
meters, the motion parameters have to be marginalized out
as

p(y1:T |θ) =
∫

p(y1:T , η1:T |θ)dη1:T . (3)

The integral in (3) requires an assumption of the motion
parameters, specified as a prior distribution p(η1:T ). Even
though motion has a time dependence according to Newton’s
law of motion, we do not model this time dependence to
simplify the estimation problem. This assumption implies that
η1:T can be considered independent over time, and the prior
distribution p(η1:T ) can be factored as p(η1:T ) =∏T

t=1 p(ηt ).
Moreover, we assume that for each time sample t the prior dis-
tribution p(ηt ) is non-informative. It turns out that interpreting
a non-informative prior distribution as a Gaussian distribution
with a variance that tends to infinity yield favorable theoretical
simplifications. Given these assumptions on the motion, this
paper presents a method to efficiently sample the posterior dis-
tribution p(θ |y1:T ) while marginalizing the motion parameters
in (3).

B. Signal Model
A signal model for an inertial sensor array consisting of

multiple accelerometer and gyroscope triads can be derived



19364 IEEE SENSORS JOURNAL, VOL. 21, NO. 17, SEPTEMBER 1, 2021

from the kinematics of rigid body motion [31]. A rotating
rigid body yields different point-wise linear accelerations
depending on the point location. Thus, each accelerometer
triad geometrically dispersed and fixed on a rigid body mea-
sures different linear accelerations, which can be decomposed
into the translational, centrifugal, and Euler accelerations.
Moreover, the angular velocity is equal for all points on the
rotating rigid body, and consequently, all the geometrically
dispersed gyroscope triads measure the same angular velocity.
Altogether, assuming that the inertial sensor array is a rigid
body, the measurement output of sensor triad k of type i at
time sample t is [4]

y(a)
k,t = ωt × (ωt × rk)︸ ︷︷ ︸

Centrifugal

+ ω̇t × rk︸ ︷︷ ︸
Euler

+st + e(a)
k,t , (4a)

y(g)
k,t = ωt + e(g)

k,t , (4b)

where the superscript i ∈ {a, g} denotes accelerometer and
gyroscope, respectively. In (4), ωt , ω̇t , and st , denote the
inertial sensor array angular velocity, angular acceleration,
and translational acceleration, respectively. The translational
acceleration of the inertial sensor array st is the acceleration
of the origin of the inertial sensor array’s coordinate system.
All the parameters are defined in this coordinate system.
Moreover, rk denote the accelerometer triad position,1 and e(i)

k,t
denotes the measurement noise. The measurement noise of the
accelerometer triad k is assumed to be uncorrelated with the
measurement noise of gyroscope triad k, that is e(g)

k,t is uncor-

related with e(a)
k,t . Furthermore, for each i ∈ {a, g}, e(i)

k,t is
assumed to be uncorrelated over time, uncorrelated over
triads, and zero-mean Gaussian distributed with covariance
Q(i)

k , that is, e(i)
k,t ∼ N (0, Q(i)

k ). In the signal model (4),
we assume that the sensor triads’ scale factor-, misalignment-,
orientation-, and offset-errors are calibrated, and the mea-
surements are compensated for these errors. Calibration of
these errors for accelerometer triads can be performed during
stationary conditions (see, e.g. [18]). Calibration of these
errors for gyroscope triads, bar the offset error, are more
complicated since a rotational reference motion is required.
We discuss how to mitigate this problem in Section IV-B.

Concatenating the measurements for A accelerometer triads
and G gyroscope triads yields the array signal model [4]

y(a)
t = h(ωt , θ)+ H (θ)ϕt + e(a)

t , (5a)

y(g)
t = 1G ⊗ ωt + e(g)

t , (5b)

where

y(i)
t �

⎡
⎢⎢⎣

y(i)
1,t
...

y(i)
K ,t

⎤
⎥⎥⎦ , h(ωt , θ) �

⎡
⎢⎣

�2(ωt )r1
...

�2(ωt )rA

⎤
⎥⎦ , ϕt �

[
ω̇t

st

]
,

e(i)
t �

⎡
⎢⎢⎣

e(i)
1,t
...

e(i)
K ,t

⎤
⎥⎥⎦ , H (θ) �

⎡
⎢⎣
−�(r1) I3

...
...

−�(rA) I3

⎤
⎥⎦ .

1Although three sensors inside a sensor triad cannot strictly speaking be
located at the same point in space, they are assumed in this work to be
sufficiently close to be considered colocated.

Here θ � {rk}Ak=2 defines the considered calibration para-
meters for the inertial sensor array,2 K ∈ {A, G}, 1N is a
column vector of size N with all entries equal to 1, IM is the
identity matrix of dimension M , and �(a)b = a × b is the
skew-symmetric matrix form of the cross-product. The motion
of the inertial sensor array is described by the parameters
ηt � {ωt , ϕt }, hereafter referred to as the motion parameters
of the inertial sensor array. For each i ∈ {a, b}, the joint
measurement noise e(i)

t is Gaussian distributed with a mean
equal to zero and with the covariance Q(i) �

⊕K
k=1 Q(i)

k .
Inter-triad cross-talk effects could be accounted for by also
including off-diagonal elements in the covariance matrix Q(i).
Denoting yt � {y(a)

t , y(g)
t } as the collection of measurements

from all the sensors in the array at one time instant, the mea-
surement model in (5) defines the joint probability distribution
p(y1:T ), from which the posterior distribution p(θ |y1:T ) is to
be computed.

III. BAYESIAN ESTIMATOR

To solve the calibration problem, we estimate the posterior
distribution of the calibration parameters, that is p(θ |y1:T )
in (1). This section introduces a sampler for the posterior
distribution, which is outlined in Algorithm 1. In Section III-A,
the overall sampler is derived and presented. A key aspect of
this sampler is how to numerically marginalize the motion
parameters, which is discussed in Section III-B. Finally,
Section III-C discusses how to practically implement the
sampler.

A. Sampling the Posterior Distribution
In general, closed-form computation of the posterior dis-

tribution of θ in (1) is not possible. In particular, since the
measurement model in (5) is non-linear in the angular velocity
ωt , the integral over η1:T in (3) is analytically intractable.
This integral is required for the computation of the posterior
distribution of the calibration parameters p(θ |y1:T ), which is
thus also analytically intractable.

Consequently, the computation of the posterior distribution
p(θ |y1:T ) has to be approached with numerical methods. One
way to sample the posterior distribution is to use the Markov
Chain Monte Carlo (MCMC) technique. Here, a Markov
chain is constructed such that the collection of steps in the
chain constitutes samples of the posterior distribution. Such a
Markov chain can be constructed by modifying the transition
probability of some suitably chosen proposal random walk.

An MCMC method that addresses both the calculation of the
marginalized likelihood p(y1:T ) in (2) and the intractable inte-
gral (3) is the Pseudo-marginal Metropolis Hastings (PmMH)
method [32], [33]. The PmMH method is an extension of
the Metropolis Hastings (MH) method [34]. Assuming that
p(θ |y1:T ) can be evaluated point-wise up to a proportionality
constant, a MH step in the Markov chain consists of drawing
a proposed state θ ′ ∼ q(·|θ(m−1)) from a proposal distribution

2The accelerometer position r1 is without loss of generality, defined as
the origin of the coordinate system in which the parameters are defined.
Hence, it does not need to be estimated. The translational acceleration st
thus coincides with the acceleration at r1.
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q dependent on the current state θ(m−1), and accepting the
proposal with probability

ρMH(θ ′, θ (m−1)) = min

(
1,

p(θ ′|y1:T )

p(θ(m−1)|y1:T )

)
. (6)

That is, θ(m) = θ ′ with probability ρMH(θ ′, θ (m−1))
and θ(m) = θ(m−1) with probability 1 − ρMH(θ ′, θ (m−1)).
We assume q to be symmetric, specifically q(a|b) = q(b|a),
and thus the ratio q(θ(m−1)|θ ′)/q(θ ′|θ(m−1)) accounting for
the proposal distribution in (6) is canceled [34]. Using Bayes’
rule the acceptance probability in (6) can be reformulated as

ρMH(θ ′, θ (m−1)) = min

(
1,

p(y1:T |θ ′)p(θ ′)
p(y1:T |θ(m−1))p(θ(m−1))

)
, (7)

where we note that the marginalized likelihood p(y1:T ) in (1)
cancels. Instead of evaluating the full posterior distribution
in (1), the computational problem is now to point-wise eval-
uate the measurements’ likelihood given the calibration para-
meters p(y1:T |θ). When the Markov chain in θ(m) has reached
its stationary distribution, the samples θ(m) can be shown to
be drawn from the posterior distribution p(θ |y1:T ) [34].

However, the measurements’ likelihood given the calibration
parameters p(y1:T |θ) is, as earlier noted, not directly available
in our application. Due to the motion dependence in (5), only
the measurements’ likelihood given the calibration parameters
and the motion parameters is available, that is p(y1:T |η1:T , θ).
Thus, to evaluate p(y1:T |θ) point-wise, the motion parameters
has to be marginalized out as in (3). Since (5) is non-linear in
ωt , the marginalization in (3) is not analytically tractable. This
intractable marginalization is addressed by using the PmMH
method, where p(y1:T |θ) in (7) is replaced with an estimate
p̂(y1:T |θ), that is,

ρPmMH(θ ′, θ (m−1)) = min

(
1,

p̂(y1:T |θ ′)p(θ ′)
p̂(y1:T |θ(m−1))p(θ(m−1))

)
. (8)

A sufficient condition for the resulting Markov chain with
transition probability defined by ρPmMH(θ ′, θ (m−1)) to produce
samples from p(θ |y1:T ) is that the estimator p̂(y1:T |θ) is unbi-
ased up to a proportionality constant, that is, E[ p̂(y1:T |θ)] =
Cp(y1:T |θ) for some constant C that does not depend on
θ [35]. This weaker form of unbiasedness is sufficient, since
the constant C cancels out in the acceptance probability (8).

A naive estimator p̂(y1:T |θ) can be derived by first con-
ditioning on the arbitrary motion parameters η1:T in (3)
according to

p(y1:T |θ) =
∫

p(y1:T |η1:T , θ)p(η1:T )dη1:T . (9)

This integral can be interpreted as the expectation of
the function p(y1:T |η1:T , θ) over the motion parameter η1:T
distributed according to the prior distribution p(η1:T ) =
p(η1:T |θ). Here it is also recognized that the motion parame-
ters do not depend on the calibration parameters. In principle,
the integral in (9) can then be numerically estimated using
Monte Carlo integration [36] as

p̂N (y1:T |θ) = 1

N

N∑
n=1

p(y1:T |η(n)
1:T , θ), (10a)

η
(n)
1:T ∼ p(η1:T ), (10b)

where N is the number of independent samples. The super-
script N is added to the estimator p̂N (y1:T |θ) to highlight
the dependence on the number of samples used. Note that
p̂N (y1:T |θ) is an unbiased estimator of p(y1:T |θ) for any N ,
and that the estimator variance is inversely proportional to N .

However, the naive estimator p̂N (y1:T |θ) is practically
infeasible. Since the motion of the inertial sensors array is
assumed to be arbitrary and unknown during the calibration,
there is no prior knowledge of η1:T , and the prior distribution
p(η1:T ) has to be assumed to be non-informative. That is,
the distribution is effectively flat. A non-informative prior is
infeasible to combine with Monte Carlo sampling in (10) since
the samples η1:T then have to cover an infinite space. This
problem is further aggravated by the high dimension of η1:T ,
which is 9T . We thus need to develop an estimator with more
favorable properties.

B. Marginalization of Motion Parameters
A remedy to the infeasibility of the naive estimator in (10)

can be found by introducing the following key assumptions
regarding the signal model in (5). We note that the gyro-
scope measurements y(g)

1:T and the motion parameters η1:T are
both independent of the calibration parameters θ , that is, the
accelerometer positions. This independence means that the
gyroscope measurements can be conditioned upon in (9) to
yield

p(y(a)
1:T , y(g)

1:T |θ)=
∫

p(y(a)
1:T |y(g)

1:T , η1:T , θ)p(y(g)
1:T , η1:T )dη1:T .

(11)

Further, the accelerometer measurements y(a)
1:T are condi-

tionally independent of the gyroscope measurements given the
angular velocity ω1:T , that is,

p(y(a)
1:T |y(g)

1:T , η1:T , θ) = p(y(a)
1:T |η1:T , θ). (12)

Assuming that the measurements are independent over time,
the measurements’ likelihood given the calibration parameters
θ can be factorized as

p(y1:T |θ) =
T∏

t=1

p(yt |θ). (13)

Subsequently, the joint distribution of the gyroscope mea-
surements and the motion parameters can be factorized as

p(y(g)
t , ηt ) = p(y(g)

t , ωt )p(ϕt), (14)

where we have used the fact that the gyroscope measurements
do no depend on ϕt , introduced in (5a). Although the angular
acceleration ω̇ is the time-derivative of ω, we assume no
prior knowledge of the relationship between time samples and
model these as independent random variables.

Using (14) we can make two simplifications. Firstly,
the joint distribution of the gyroscope measurements and the
angular velocity p(y(g)

t , ωt ) can be written as

p(y(g)
t , ωt ) = p(ωt |y(g)

t )p(y(g)
t ). (15)

The term p(y(g)
t ) is a constant that cancels in the acceptance

probability (8). Further, the posterior distribution of ωt given
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y(g)
t can be computed in closed-form given the linearity of the

gyroscope measurement model in (5b).
Secondly, using the time independence in (13), the motion

independence in (14), and noting that the signal model in (5a)
has a separation in the non-linear parameter ωt and the linear
parameters ϕt , the integral in (11) can be separated into a
product of terms of the form

p(y(a)
t , y(g)

t |θ) =
∫

p(y(a)
t |ωt , θ)p(ωt |y(g)

t )dωt , (16a)

p(y(a)
t |ωt , θ) =

∫
p(y(a)

t |ϕt , ωt , θ)p(ϕt )dϕt . (16b)

If both ϕt and e(a)
t are assumed to be Gaussian distrib-

uted, the marginalization of the linear motion parameters ϕt

in (16b) can be done analytically, since y(a)
t depends linearly

on ϕt . Such analytical marginalization reduces the variance
of the likelihood estimator p̂N (yt |θ) in (10) and is known as
Rao-Blackwellization in the Monte Carlo literature [36], [37].
Therefore, we assume that ϕt is Gaussian distributed, that is

p(ϕt ) = N (ϕt ; ft , β Ft ), (17)

with some mean value ft and covariance Ft , where β > 0 is
a positive scaling factor. The solution to the marginalization
in (16b) is then given by

p(y(a)
t |ωt , θ) = N (y(a)

t ;mt , Mt ), (18a)

mt � h(ωt , θ)+ H (θ) ft , (18b)

Mt � Q(a) + β H (θ)Ft H�(θ). (18c)

To investigate the case of a non-informative prior on the
motion parameters ϕt , we let β tend towards infinity, and study
the distribution

N (y(a)
t ;mt , Mt ) =

exp
(
− 1

2‖y(a)
t − mt‖2M−1

t

)
√|2π Mt | , (19)

where ‖a‖P is the weighted Euclidean norm [38], defined as
‖a‖2P � a�Pa for a positive definite matrix P . By using the
Schur complement [39] the inverse of the covariance matrix
Mt is

M−1
t =
−
H (θ)

(
1

β
F−1

t + H�(θ)
H (θ)

)−1

H�(θ)
,

(20)

where 
 � (Q(a))−1, and the determinant of Mt is

|Mt | =
∣∣∣∣ 1

β
F−1

t + H�(θ)
H (θ)

∣∣∣∣ |β Ft ||Q(a)|. (21)

In the limit of β →∞, the inverse of Mt becomes M−1
t →

S, where

S � 
−
H (θ)(H�(θ)
H (θ))−1H�(θ)
. (22)

Although the determinant of |Mt | diverge with β → ∞,
we can use the fact that constants cancel in the acceptance
probability (8) and replace |Mt | by

|Mt |
|β Ft ||Q(a)| →

∣∣∣H�(θ)
H (θ)
∣∣∣ . (23)

The null space of the information matrix S is the range
space of H (θ), that is, SH (θ) = 0 for all θ . Hence, in the
limit, the quadratic form in the exponent of the distribution
N (yt ;mt , Mt ) becomes

‖y(a)
t − h(ωt , θ)− H (θ) ft‖2M−1

t
→ ‖y(a)

t − h(ωt , θ)‖2S . (24)

Thus, the terms remaining in the accelerometer measure-
ments’ likelihood p(y(a)

t |ωt , θ) are terms that do not cancel in
the acceptance ratio in (8), and that depends on the motion ηt

and the calibration parameters θ , that is,

p(y(a)
t |ωt , θ) ∝

exp
(
− 1

2‖y(a)
t − h(ωt , θ)‖2S

)
|H�(θ)
H (θ)| . (25)

Note that (25) becomes independent of the prior values of
ft and Ft when β → ∞, which is desirable as we have no
particular reason to prefer one particular assumption for the
motion over any other.

The naive and practically infeasible likelihood estima-
tor in (10) can thus be replaced with the following
Rao-Blackwellized estimator

p̂N (y(a)
1:T |θ) =

T∏
t=1

⎛
⎝ 1

N

N∑
n=1

exp
(
− 1

2‖y(a)
t − h(ω

(n)
t , θ)‖2S

)
|H�(θ)
H (θ)|

⎞
⎠ ,

(26a)

ω
(n)
t ∼ p(ωt |y(g)

t ). (26b)

Here, the numerical integration is only performed over
ωt compared to ηt in (10b). The subspace over ωt has a
lower dimension than that of ηt and is orthogonal to the
matrix H (θ). Moreover, samples in this space are drawn
from the distribution p(ωt |y(g)

t ), which has a concentrated
probability mass compared to the non-informative distribu-
tion p(ηt ) in (10b), and thus the Monte Carlo samples are
more efficiently localized. The remaining motion parameters
ϕt , which enter the array signal model in (5a) linearly, are
analytically marginalized using a wide Gaussian distribution
that, in the limit, do not depend on the prior values of ϕt .
This method of separating the computational problem into
linear and non-linear parts is similar to the likelihood func-
tion’s concentration in maximum likelihood estimation [4] and
separable least squares [40]. The complete procedure for sam-
pling of the posterior distribution p(θ |y1:T ) is summarized in
Algorithm 1.

C. Implementation Details and Tuning
The PmMH sampler detailed in Algorithm 1 has certain

implementation and tuning aspects that need to be considered.
For example, when computing the probabilities in the accep-
tance ratio in (8), the logarithm of the probabilities should be
used to avoid numerical underflow. However, when evaluating
p̂N (y1:T |θ) in (26) the summation of N exponential terms may
still cause numerical underflow. The logarithm of a sum of
exponential terms can efficiently and accurately be computed
using the log-sum-exp function [41], see Appendix A. The
summation over T time samples, which are assumed inde-
pendent, can be evaluated in parallel and do not pose any
numerical challenges.
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Algorithm 1 Resulting PmMH Sampler

1: Given θ(0)

2: Compute α(0) ← p̂N (y(a)
1:T |θ(0)) using (26a)

3: for m = 1, . . . , M do
4: Sample θ ′ ∼ q(·|θ(m−1)) using (27)
5: for t = 1, . . . , T and n = 1, . . . , N do
6: Sample ω

(n)
t ∼ p(ω

(n)
t |y(g)

t )
7: end for
8: Compute α′ ← p̂N (y(a)

1:T |θ ′) using (26a)

9: Compute ρ ← min
(

1, α′ p(θ ′)
α(m−1) p(θ(m−1))

)
10: Sample u ∼ U(0, 1)
11: if ρ > u then
12: Set θ(m), α(m) ← θ ′, α′
13: else
14: Set θ(m), α(m) ← θ(m−1), α(m−1)

15: end if
16: end for

Furthermore, a proposal distribution q for θ needs to be
chosen. Under mild technical assumptions, the stationary dis-
tribution of θ(m) produced by Algorithm 1 will be the same
regardless of the choice of proposal distribution [34]. However,
the convergence speed and mixing ability (defined below) may
be affected. In this work, we use

q(θ ′|θ) = N (θ ′; θ, σ 2
q I3(A−1)), (27)

where σq is referred to as the step length of the Gaussian
random walk and is a hyperparameter that has to be tuned.

The samples produced by the Markov chain are by con-
struction correlated. Intuitively, correlated samples contain less
information about the posterior distribution than independent
samples. The correlation affects how the empirical average

1

M

M∑
m=1

f (θ(m)) (28)

converges to E[ f (θ)] for a function f . The degree of correla-
tion is also known as mixing [34], which is a measure of the
efficiency of MCMC algorithms. The MH algorithm’s mixing
efficiency using a Gaussian random walk as the proposal is
affected by the step length σq . If σq is too large, most of the
proposed steps will be rejected since they will be in regions of
low posterior probability, and the correlation among θ(m) will
be high. On the other hand, if σq is too small, most proposed
states will be accepted, resulting in a poor support coverage
of the posterior distribution. Hence, there is a trade-off when
selecting σq . The optimal step length for the MH algorithm
using a Gaussian random walk as the proposal distribution
is obtained when the acceptance probability is approximately
23% [42], which can be empirically estimated by running the
chain with different values of σq .

Furthermore, the amount of correlation in a Markov chain
produced by the PmMH algorithm also depends on the vari-
ance of the likelihood estimator in (26). If the variance is
too high, an accepted state θ(m) may yield a high value for
p̂N (y1:T |θ(m)) by chance. Subsequently, the proposed states

θ ′ are then likely to result in p̂N (y1:T |θ ′) 
 p̂N (y1:T |θ(m)),
implying that the acceptance probability in (8) becomes small,
that is,

min

(
1,

p̂(y1:T |θ ′)p(θ ′)
p̂(y1:T |θ(m))p(θ(m))

)
≈ 0. (29)

Thus, the chain is likely to get stuck in the state θ(m)

for many iterations, increasing the correlation. The variance
of p̂N (y1:T |θ) can be decreased by increasing the number
of Monte Carlo samples N . However, the high correlation
of θ(m) given a small N could be compensated by taking
more and smaller MCMC steps, that is, increase M and
decrease σq . Hence, there is a trade-off in the proposal step
length σq , the number of MCMC steps M , and the number
of Monte Carlo samples N . Finding an optimal choice for
the hyperparameter N is non-trivial since the variance of
p̂N (y1:T |θ) depends on θ . The MCMC literature [43], [44]
provides guidelines for setting N and σq under idealized
assumptions. For example, [43] recommends to tune N so that
Var[log p̂N (y(a)

1:T |θ)] ≈ 3.3 while simultaneously tuning σq so
that the acceptance probability is 7%. Here, we pragmatically
choose to first determine N by calculating the variance of (26)
for different N evaluated at the prior mean value of θ , and then
tune σq . Since (26) can be evaluated in parallel over T time
samples, it is sensible to increase N instead of M . Concretely,
we set N to obtain Var[log p̂N (y(a)

1:T |θ)] ≈ 0.1 and then set σq

so that the acceptance probability is between 7% and 23%.
Finally, the Markov chain needs to start at an initial value

θ(0). The initial value θ(0) may be set to a value where the
posterior distribution p(θ |y1:T ) has a low probability. The law
of large numbers guarantees the convergence of the empirical
average in (28) to the expected value as M →∞, independent
of the starting value θ(0). However, the empirical average
in (28) can only be evaluated using a finite number of samples.
If too many samples are from low probability regions, (28)
will be a poor approximation to the expected value. The
practical solution to this problem is to discard samples of the
chain before the chain has reached high probability regions.
This is known as the burn-in period. The burn-in period is a
complicated matter since it depends on the MCMC algorithm
and the target distribution [45]. Here we take the pragmatic
approach of running two parallel chains, starting from different
initial values θ(0), and then assess by cross-referencing when
the two chains have both reached a region of high probability.

IV. SIMULATIONS AND EXPERIMENTS

The performance of the proposed sampler for the posterior
distribution, summarized in Algorithm 1, was evaluated by
simulations and experiments on a real inertial sensor array. The
simulations demonstrate the performance obtained under ide-
alized assumptions, and real-world experiments demonstrate
the practical applicability of the considered method.

A. Simulations
We evaluated the performance of the Bayesian estimator for

the accelerometer positions using simulated data. The inertial
sensor array considered in the simulations is shown in Fig. 1,
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Fig. 1. Layout and dimensions of the inertial sensor array used in
the experiments and simulations, along with the numbering of the IMU
triads used in tables and figures. The dimensions denote the distance
between the center positions of the IMU chip packages. The white dots on
each IMU package are the orientation markers, indicating the mounting
directions of the IMU packages [46]. The IMU packages on the underside,
even numbers, are rotated 180◦ around the axis y = x relative to the IMU
packages on the topside, odd numbers. Each IMU package measures
4 mm × 4 mm × 1 mm [46].

which is an inertial sensor array with 32 IMUs attached to
a Printed Circuit Board (PCB). MCMC methods generally do
not scale well with high dimensional problems, and testing the
method with 32 IMUs would confirm the practical feasibility
of the proposed method. Since IMU 1’s position, that is r1,
defines the origin of the parameter coordinate system, the
dimension of the calibration parameters is 3 × 31 = 93.
We assume that the measurement errors of the accelerometers
and the gyroscopes to be uncorrelated and to have a standard
deviation of σ (a) = 0.04 m/s2 and σ (g) = 0.06 deg /s,
respectively. These parameters were selected to reflect the
performance of typical MEMS-based IMUs [46]. Further,
we assume idealistically that the sensors have an infinite
dynamic range, specifically, they never saturate. To simulate
field conditions, we generate a random motion sequence η1:T
so that it emulates the dynamics of twisting the array with a
hand. Specifically, ω, ω̇, and s are assumed to be zero-mean
normally distributed with a standard deviation of 1000 ◦/s,
35 000 ◦/s2, and 20 m/s2, respectively [26]. We set the true
values of the accelerometer positions equal to the center of the
IMU packages shown in Fig. 1. The prior distribution of the
accelerometer positions p(θ) is set to be a Gaussian with a
standard deviation of σr = 3 mm. Even though the size of the
IMU packages is 4 mm×4 mm×1 mm, we set this large value

Fig. 2. The variance of ��� p̂N(y(a)
1:T|θ) in (26a) computed with 1000

realizations for different number of Monte Carlo samples N and different
number of time samples T. The solid lines correspond to ∼ 1/N.

Fig. 3. Trace (a) and estimated autocorrelation (b) of two Markov chains
for the x-component of r2 when T = 500. The histogram in (a) and
the estimated autocorrelation in (b) uses only samples after the burn-in
period.

for the standard deviation to see how robust the method is to
large initial uncertainties in the accelerometer positions. The
prior mean is equal to a realization of a Normal distribution
centered on the true positions and with a standard deviation
of 0.1 mm. It should be stressed that the proposed sampler
only requires point-wise evaluation of the prior distribution.
An alternative prior distribution for the accelerometer positions
could be a uniform distribution with bounds equal to the edges
of the IMU package.

We evaluated Algorithm 1 for three different lengths of
measurement sequences y1:T , that is, T ∈ {5, 50, 500}. For
each realization of the measurement sequence y1:T , we tuned
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TABLE I
VALUES FOR THE TUNING PARAMETERS

Fig. 4. Posterior distributions of IMU 2’s position, in the x-axis
(a), y-axis (b), and z-axis (c) directions. The estimated posterior distrib-
ution concentrates around the true value and the variance shrinks with
an increasing number of time samples T.

the number of Monte Carlo samples N for the likelihood
estimator in (26) and the step length σq for the Gaussian
random walk according to Section III-C. Fig. 2 depicts the
variance of (26) evaluated at the prior mean of θ . For a
fixed T , we observe that the variance of log p̂N (y(a)

1:T |θ)
is approximately inversely proportional to N . Importantly,

to achieve the same level of variance for log p̂N (y(a)
1:T |θ) when

T increases requires the number of Monte Carlo samples N to
increase since (26) is a sum over independent samples. Thus,
Algorithm 1 has a limitation in how many time samples can
be used in the calibration. Moreover, the values for the chosen
tuning parameters are reported in Table I.

Having fixed the number of Monte Carlo samples N for
each T , Fig. 3 shows the Markov chain’s trace, burn-in period,
and autocorrelation function for θ(m). Two chains starting from
two different θ(0) are seen to converge to the same empirical
distribution. The posterior distribution for IMU 2’s position is
shown in Fig. 4. For all evaluated time samples, the variance
of the posterior distribution is less than the variance of the
prior distribution. As the number of time samples T increases,
the mean of the posterior distribution moves closer to the
true value, and the variance of the posterior distribution
decreases. We can thus conclude the practical feasibility of
our proposed MCMC algorithm and it’s robustness to large
initial uncertainties in the accelerometer positions.

B. Practical Considerations
Having established the PmMH sampler’s feasibility through

simulations, we will now consider the sampler’s perfor-
mance on experimental data. However, before estimating the
accelerometers relative geometry, we calibrate the accelerome-
ter and gyroscope triads according to a first-order model during
stationary conditions [18]. Specifically, we estimate the sen-
sors’ measurement variance, offset, scale factor, misalignment,
and orientations using a maximum likelihood estimator.
However, the gyroscopes’ scale factor-, misalignment-,
orientation- errors cannot be estimated during stationary con-
ditions, since these parameters require a rotational motion.
The gyroscope scale factor error will increase the angular
velocity estimation error for large angular velocities. For high
dynamic motions, the posterior distribution of the angular
velocity given the gyroscope measurements, p(ωt |y(g)

t ), may
yield a distribution that is not sufficiently centered around the
true angular velocity. This inaccurate localization of the dis-
tribution becomes a problem when numerically marginalizing
the angular velocity in (26), since the drawn samples are from
low probability regions. We mitigate this problem by replacing
the estimated covariance during stationary conditions with
the sample covariance during a single time sample. Specifi-
cally, we set p(ωt |y(g)

t ) = N (ȳ(g)
t , Q̄(g)

t ) where

ȳ(g)
t =

1

G

G∑
k=1

y(g)
k,t , (30a)

Q̄(g)
t =

1

G − 1

G∑
k=1

(y(g)
k,t − ȳ(g)

t )(y(g)
k,t − ȳ(g)

t )�. (30b)
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Fig. 5. Estimated 50% confidence ellipses (lines) and means (dots) of the posterior distribution of the accelerometer positions of the inertial sensor
array for the IMUs on the topside (a) and the underside (b). The cyan lines define the prior distribution. The red, green, and blue lines are for 5, 50,
and 500 time samples, respectively. The IMU in the lower-left corner on the topside defines the reference position and is thus not estimated. The
dashed lines define the borders of the IMU packages and also divide the package up into four quadrants. The black dots denote the orientation
markers of the IMU packages. The IMU numbering corresponds to that of Fig. 1.

Moreover, the assumption that accelerometer sensors follow
a first-order model may not be a sufficiently accurate model
for the accelerometer measurements during high dynamic
motions. This problem may worsen if the parameters of the
first-order model are estimated during stationary conditions.
For large signal amplitudes, error sources such as sensor
non-linearities may well be the dominating error, which the
first-order approximation does not account for. Since the
measurement of each accelerometer triad depends on its
the position, we unfortunately cannot replace the estimated
accelerometer measurement covariance during stationary
conditions with the sample covariance, as could be done
for the gyroscope triads. We choose a practical approach
to this problem by setting the standard deviation for the
accelerometers as the expected error due to its sensor non-
linearities; a quantity typically found in the sensor data-sheets.
For accelerometers in MPU-9150 [46], the expected error
due to non-linearities is around 0.5% of the signal amplitude.
A conservative value for the signal amplitude is the point of
saturation, which for said accelerometers is around 157 m/s2.
Hence, we set the accelerometer standard deviation to
σ (a) = 0.79 m/s2. Scaling the accelerometer measurement
covariance widens the posterior distribution of the estimated
parameters.

C. Experiments
We evaluated the performance of the Bayesian estimator

using real experiments performed on the array in Fig. 1.
We collected measurements from the array while it was
exposed to hand twisting motion. During one time sample
we assume that the inertial sensor array samples all the
IMUs simultaneously and instantaneously. The details about
the hardware and the sampling process can be found in [47].

From this collection of measurements, three subsets of
T ∈ {5, 50, 500} were constructed. The three subsets did
not share any time samples. The time samples were selected
when there was a nonzero rotation of the array, since a
non-rotating motion would not provide any information of the
accelerometer positions. Guidelines of how to select infor-
mative samples can be found in [25], [26]. Fig. 5 depicts
the posterior distribution of the accelerometer triad positions.
For Bayesian estimators, the minimum mean square error
estimate is the conditional mean of the posterior distribution.
We note that the position estimates for underside accelerometer
triads (k = 2, 4, . . . , 32) are consistently located in the
upper-right quadrant inside its IMU package, while topside
accelerometer triads (k = 1, 3, . . . , 31) are mainly located
at the center. Underside IMU packages are rotated 180◦
around the axis y = x relative to topside IMU packages.
This relative positioning implies that the estimator places the
accelerometer triad sensors in the upper-right quadrant of
each package with half the shift from the center of what
is observed in Fig. 5b, when viewed from above and when
the package is oriented such that the orientation marker is
in the upper-left quadrant. Since the origin of the coordinate
system is on the topside (accelerometer triad 1’s position),
position estimates for topside accelerometer triads are not
shifted, and positions estimates for underside accelerometer
triads are doubly shifted. This result is consistent with the
results in [26], where we used a maximum likelihood estimator
to estimate the accelerometer triad positions in Fig. 1. Even
if the three sensors in an accelerometer triad cannot be
perfectly colocated inside the package, the results suggest that
the accelerometer triad positions are consistently estimated.
Similar results were observed over repeated experimental
trails.
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TABLE II
COMPARISON OF THE ESTIMATED STANDARD DEVIATIONS

FOR DIFFERENT NUMBER OF TIME SAMPLES USED

IN THE CALIBRATION

Moreover, we observe that the posterior distribution covari-
ance shrinks for an increasing number of time samples
used in the calibration, as we observed for the simulations
in Section IV-A. We assess the uncertainty quantification
by inspecting the confidence ellipses. Assuming perfectly
mounted IMU packages on the PCB, the accelerometers
position uncertainty would only stem from the internal place-
ment of the accelerometer sensor axes inside the package.
As mentioned, the accelerometer triad position estimates for
topside IMUs are unshifted with respect to the origin of the
coordinate system. Thus, assuming that each IMU package
has the same systematic position error inside the package,
the expected accelerometer triad positions are at the center
of each package for IMUs on the topside. Viewing each
accelerometer triad position estimate as an independent trail,
the confidence ellipses at a level of (1−1/31)·100% of the pos-
terior distribution should then include the center of the IMU
package in 97% of the trails. From the posterior distribution
computed with 500 time samples, the number of 97% confi-
dence ellipses covering the center of the packages is 10/15.
Even though the sample size is small, this might suggest that
the uncertainty estimation is somewhat underestimated. This
underestimation could be attributed to the model mismatch
described in Section IV-B and/or the idealistic assumption of
perfect IMU mounting on the PCB.

A comparison of the estimated standard deviations between
simulations and the experiments is shown in Table II. The
simulations were conducted using similar motion dynamics
as in the experiments and the accelerometer covariance was
also set to the same values as in the experiments. We observe
that the estimated standard deviation of the accelerometer
triad positions from the simulations are first, similar to the
experimental values, and second, approximately 100 times
larger than the simulations in Fig. 4 conducted with a smaller
covariance. These results are in line with [24], which also
saw a similar discrepancy between simulations under idealized
conditions and experiments. The resulting widening of the
posterior distribution in the experiments can thus be attributed
to the enlargement of the accelerometer covariance. The gap
between the results of the idealized model and the experimen-
tal results could be ascribed to the inaccuracy of the first-order
model assumption of the sensors.

V. SUMMARY AND CONCLUSION

We have developed an algorithm to estimate and quan-
tify the uncertainty of the relative geometry of accelerome-
ter triads in inertial sensor arrays. The calibration problem
is posed as a Bayesian estimation problem, and we com-
pute the posterior distribution of the accelerometer positions

using MCMC. The problem’s unknown motion parameters
are numerically marginalized using a Rao-Blackwellized esti-
mator that samples the non-linear motion parameters using
information from the gyroscopes and analytically integrates
out linear motion parameters. Thanks to this effective use of
the model structure, the proposed MCMC method is shown
to efficiently sample the posterior distribution in a relatively
high dimensional space (93 dimensions), both on simulated
and experimental data. The performance of the numerical
marginalization naturally depends on the number of Monte
Carlo samples used. However, increasing the number of time
samples in the calibration necessitates an increase in the
number of Monte Carlo samples, which increases the com-
putational complexity. The computational time for 5, 50, and
500 time samples were 30 minutes, 1 hour, and 8 hours,
respectively, using 40 Intel Xeon 2.2 GHz processors. Thus,
the proposed calibration method may be more suitable for
short measurement sequences and offline calibration. However,
the proposed estimator assumes no time dependence between
measurements, which allows the user to omit time samples
before the calibration. Omitted time samples could include
outliers or time samples when the inertial sensor array is
stationary, which contain little information on the accelerome-
ter positions. Moreover, we conducted experiments where the
inertial sensor array was exposed to hand twisting motion.
In the experiments, we assumed that the individual MEMS
sensors on the array to follow a first-order model. The exper-
imental results indicate that the first-order model may be an
inadequate model for high dynamic applications, where error
sources such as sensor non-linearities may be the dominating
error. In our experiments, this could be mitigated by assuming
a conservative covariance for the accelerometers, and future
research could extend the sensor model to a second-order
model. Despite this conservative assumption, the experimental
results are consistent with the results given by a maximum
likelihood estimator for a similar problem [26] and in line
with similar studies [24], indicating the validity of the array
signal model and the estimator.

APPENDIX A
LOG-SUM-EXP COMPUTATION

The logarithm of a sum of exponential terms, log
∑

exi

may over- and underflow using floating-point arithmetic. Such
sums can be effectively computed using the following trick to
compute the log-sum-exp function [41]. First, for a, b ∈ R we
have

log(ea + eb) =
{

a + log(1+ eb−a), a > b,

b + log(1+ ea−b), b > a,
(31)

which is equivalent to

log(ea + eb) = max(a, b)+ log(1+ e−|a−b|). (32)

Then log
∑

exi can accurately be calculated recursively
using (32).
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