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Abstract—Contagious diseases are the principal cause of
mortality, particularly respiratory viruses, a real menace for
public health and economic development worldwide. There-
fore, timely diagnosis and treatments are the only life-saving
strategy to overcome any epidemic and particularly the ongo-
ing prevailing pandemic COVID-19 caused by SARS-CoV-2.
A rapid identification, point of care, portable, highly sen-
sitive, stable, and inexpensive device is needed which is
exceptionally satisfied by sensor technology. Consequently,
the researchers have directed their attention to employing
sensors targeting multiple analyses of pathogenic detections
across the world. Nanostructured materials (nanoparticles,
nanowires, nanobundles, etc.), owing to their unique charac-
teristics such as large surface-to-volume ratio and nanoscale
interactions, are widely employed to fabricate facile sensors
to meet all the immediate emerging challenges and threats.
This review is anticipated to foster researchers in developing
advanced nanomaterials-based sensors for the increasing
number of COVID-19 cases across the globe. The mechanism

of respiratory viral detection by nanomaterials-based sensors has been reported. Moreover, the advantages, disadvan-
tages, and their comparison with conventional sensors are summarized. Furthermore, we have highlighted the challenges
and future potential of these sensors for achieving efficient and rapid detection.

Index Terms— Nanomaterials, respiratory viral detection, SARS-CoV-2, types of sensors.

|. INTRODUCTION

IRUSES are a severe threat to living things on earth,
so timely detection for clinical point-of-care purposes [1]
is significant in saving someone’s life, as a slight delay can be
very detrimental. The respiratory mucosa is the most suscep-
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tible site for respiratory viruses, well recognized as influenza
virus and coronavirus or severe acute respiratory syndrome
(SARS) and some others [2]-[4], typically causing respiratory
viral infections that are transmitted through direct contact or
air (Fig. 1) [5]. The most prominent symptoms of infected
individuals are fever, loss of smell, dry cough, fatigue, and
sputum production leading to acute respiratory morbidities.
Viral infections can be transmitted via contaminated food,
water, and bodily fluids, endangering both the lives of humans’
and animals’ worldwide [6], [7]. From the upper respiratory
tract, the respiratory pathogens progress down the lower respi-
ratory tract, causing severe pneumonia and ultimately leading
to the deaths of around 3 million individuals every year [8].
However, it seems like any ordinary mild cold, but in the
past 20 years, we have witnessed severe outbreaks from these
acute respiratory viruses to the points of epidemics [9]-[13].
At the start of December 2019, the outbreak of the novel,
highly lethal COVID-19 was first recognized in Wuhan, Hubei
province in China [14]. Due to the rapid expansion of SARS-
CoV-2 worldwide, the World Health Organization (WHO)
declared the outbreak as a pandemic on 11! March 2020
[15]-[17]. Infections with SARS-CoV-2 are now widespread,
and as of 23™ March 2021, 123,216,178 infected cases,
with 2,714,517 deaths, have been confirmed by WHO. As of
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Fig. 1. Some common respiratory diseases caused by respiratory viruses.

20t March 2021, a total of 397,950,709 vaccine doses have
been administered. The most vulnerable to this disease are
individuals with weak immunity and comorbidities or those
already suffering from other underlying illnesses such as
heart disease, diabetes, etc. Safety measures such as face
masks, sanitizers, and other immunity enhancers are strongly
recommended [18].

Viral infections can be detected by various lab-based
conventional techniques encircling virus cultures and sero-
logical tests followed by Polymerase Chain Reaction
(PCR) [19], Reverse Transcription-Polymerase Chain Reac-
tion (RT-PCR) [20], western blotting and antibody detec-
tion, Fluorescent Antibody Tests (FAT), antigen or antibody
detection and hemagglutination assay and gene sequenc-
ing [21], [22], isothermal amplification techniques [23] and
immunochromatography (IC) [24]. These classical detecting
techniques, especially PCR, have helped physicians identify
the causative agents. However, sample preparation, high cost,
time-consuming, labor-intensive, and less accurate detections
have limited their reliability [25]. Test kits for virus detection
(Covid-19) are based on RNAs following PCR. These pro-
cedures rely on the interaction between the complementary
detection ligands or strands in the equipment and their sur-
faces [26]. As mentioned earlier, these test kits are unreliable
and require lengthy processing times to provide inaccurate
results [16]. Therefore, it is essential to develop a more precise,
fast, simple, portable, and sophisticated testing platforms to
diagnose threatening respiratory viruses [7], [27]-[29].

Nanomaterial-based techniques have emerged as promising
candidates proving significant improvement in detection
devices called nano-sensors [26], [30], and currently, various
sensor technologies are explored to detect viruses [30]-[33].
The sensors operated by the combination of interacting recog-
nition elements with the sensing system, thus identifying the
target with great accuracy and sensitivity [34]. The exceptional

conductivity and photoelectrochemical properties, portability,
and simplicity of nanomaterials are exploited for the enhanced
efficiency and sensitivity of nano-sensors to diagnose respira-
tory viruses [35]-[37]. The prominent challenge researchers
face developing ultra-sensitive, rapid, and stable nano-sensors
is by enhancing the nanomaterials’ surface area, thus providing
significant surface interactions to analytes and sensors [38] and
exploiting it as indicators in sensors [39]. The nano-sensors
can detect bacteria and viruses at low concentrations, thus
making them the best choice for diagnostic purposes [40].

The purpose of this review is to address the differ-
ent types of nanomaterial-based sensors explored recently,
encompassing the latest information summarized in separate
tables for respiratory virus diagnosis published in the past
five years. Furthermore, this review paper extensively dis-
cusses the physical structure and principle of virus detec-
tion, antibody-antigen interactions, sensation, and mechanism
of nanomaterial-based sensors, followed by their advantages
and limitations for respiratory viral detections. A compari-
son of nanomaterial-based sensors with conventional classical
techniques is also mentioned. Finally, future challenges and
perspectives of nanomaterial-based viral sensors and a brief
conclusion are presented to summarize the full review. It is
always helpful to overview already accessible literature to
explore and develop new and more advanced techniques for the
diagnostics and treatments of new viruses. Consequently, it is
anticipated that this review regarding respiratory viruses will
illuminate the researchers with the latest knowledge that will
help develop unique, sensitive, and highly stable nano-sensors
for fast diagnosis of COVID-19 patients.

Il. TYPES OF SENSORS FOR RESPIRATORY
VIRAL DETECTION
To prevent and control any future pandemics due to
respiratory viruses, we must have quick and reliable
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Schematic diagram of nanomaterial-based sensor for respiratory virus detection consisting of (a) biomarkers, which are usually virus

particles, (b) receptors, which are either composed of nucleic acids, proteins, antibodies, antigens, or aptamers, (c) nanomaterial that is attached to
the electrode of the sensor, (d) the transducer that detects the signals produced by the interaction between the analyte and the bioreceptor, (e) the
electronic system that translates the signal produced in the transducer into a readable electrical signal.

detection methods. This can be achieved using inexpensive,
sensitive sensors that give rapid and accurate results. Such
sensors will help us better control the diagnosis and treatment
of the existing and future respiratory virus infections. Any
sensor platform is influenced by three major factors: (1) the
target analyte which has to be identified, (2) the process of
identification used, and (3) the amplification of those signals
produced during the identification process so that they can
quickly be recorded. Hence, ideal sensors for detection of
respiratory viruses must have the ability to give reproducible
results, is autonomous in use, give immediate results, have
superior sensitivity and selectivity, can detect multiple analytes
simultaneously, possess many sensing modes, is inexpensive,
have a long life, is user-friendly, and can be disposed of easily
without any harm to the environment. Four such respiratory
viral detection sensors have been utilized in recent years.
These include nanomaterial-based sensors, electrochemical
sensors, optical sensors, and piezoelectric sensors.

A. Nanomaterials-Based Sensors

Rapid viral diagnostics is essential to overcome the cur-
rent pandemic and prevent future ones. Functionalization of
nanomaterials using nucleic acids or proteins like antibodies is
the standard method used for viral detection. These detections

are carried out using colorimetric assays, thermal photo
platforms, and antigen-binding assays, among others. The
commonly available testing kits for viral infections oper-
ate on enzyme-linked immunosorbent assays or PCRs [41].
These testing kits have been shown to have false-negative
results, low sensitivity, and usually take long durations to
give results [16]. Nanomaterials, on the contrary, are known
to lower these drawbacks. Having a high surface-to-volume
ratio allows nanoparticles to have better surface interactions
between the sensor and the biomolecule to be analyzed.
This makes nanomaterial-based sensors a better candidate for
rapid and dependable detection of viral particles [26]. Many
nanomaterials with transducing functions have been studied in
recent decades, and several matrices for different sensors have
been developed [42]. Nanomaterials like graphene, quantum
dots, gold and silver nanoparticles have been explored to
create sensors to detect viral particles. There have been several
nanosensors developed and reported in the literature over the
last decade — each of them employing a unique nanomaterial to
increase its sensitivity and selectivity to give a rapid response
rate during viral detection (Fig. 2).

Apart from these, noble metal nanomaterials have also
been explored to detect viral particles using sensors.
These nanomaterials have also been shown to increase the
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TABLE |

ELECTRODE MATERIALS FOR THE RESPIRATORY VIRAL DETECTION

Sensor . ) Recognition . .
Electrode materials Virus Linear range LOD Time References
method element
EIS shellac-derived Influenza virus  Anti-Influenza A PBS: 26.04 PFU/mL [56]
TrGO /ITO/glass HINI Ab N Saliva: 33.11 PFU/mL -
Au- paper electrode HINI Anti-influenza A
EIS - <5 PFU mL"! ~6 min [57]
Antigen HA Ab
EIS Cysteine modified Au-screen HA gene specific 0.1 ng— . )
HIN1 0.004 ng in 6 uL 30 min [58]
Ccv electrode ssDNA probe 400 ng/6pL
Influenza Virus
nanocrystalline boron-doped . Polyclonal 5%x107"* g/mL 6 min
EIS M1 protein — [59]
diamond aM1 Ab
HINI, H3N2
Influenza A M1
EIS Nano-scale BDD sensor . anti-M1Ab, 1 to 100 fgmL™! 1 fg/mL 5 min [60]
protein
inactivated
EIS Au electrode intact DNA aptamers — 0.3ng/uL — [61]
HINlvirus
EIS Aﬁffiﬁ/ﬁ?i?eyb“d Influenza A Feutin A 10* U/mL- 10°U/mL - [62]
P HON2 10" U/mL
AIV Specific Anti- 0.0025 -0.16 0.0022
cv Fe;04 MNPs H5N1 H5N1 Ab HAU HAU in 6puL - [63]
cv AuNPs H5N1 DNA probe 1pM - 100 nM 1pM - [64]
Dual electrode of .
cv tungsten rods modified with AV a;nt;?nre\i NP 2 to 12 nM 1.13 nM — [65]
3DNRE porous silica film P
s Influenza s 4
DPV Hydrophobic SiNPs on HINI ImonblhAzed 10 to 17(]) PFU 113 PFU mL"! 30 min [66]
paper . antibodies mL
antigen, Ab
modified ITO/glass HINI 10' PFU mL"! 3.7 PFU
DPV clectrodes m]l’l]‘-HA ssDNA aptamer 10* PFU mL-! mL-! - [67]
protein
Ccv . - .
FTO/AuNPs sensor SARS-CoV- immobilized 10 fM at nCovid-
2 with nCovid-19Ab M= 1uM 19Ag 10-30s [68]
DPV
influenza anti-Matrix
CA AuNPs virus A/ HON2 protein 2 (MZ) Ab 8 — 128 HAU 8 HAU 160 s [69]
and Feutin A
Human monoclonal - 10°PFU
CA RGO nanosheets Influenza A onoc’ona % 0.5 PFUmL ™", - [70]
antibodies mL
HINI1
SARS-CoV-
Membrane-Engineered 2 Sl . 10fg—1 .
BERA Vero Cells (Vero/Anti-S1) Protein spike S1 Ab pg/mL I fg/mL 3 min (711
Antigen
influenza virus
Fluoroimmun 45—25,000
gCNQDs/ MP-Mo0O;QDs A (H3N2) Ab-(H3N2) 45 PFU/mL - [72]
oassay PFU/mL
RNA
10 fg/mL—
influenza A
Ing/mL 5.5 fg/mL
Fluoroimmun S-gCNQDs/ virus (HIN1) .
monoclonal Ab ~ 15 min [73]
oassay Ag>S nanocrystals
105 x 10* 100 PFU/mL
(H3N2)
PFU/mL
cultured medium: 1.6x10!
spike protein in SARS-CoV-2 spike pfu/mL
FET Graphene Sheet — - [53]

SARS-CoV-2 Ab clinical samples: 2.42x10?

copies/mL

specificity and sensitivity of the sensing systems. Hence,
the fabrication of sensors with nanomaterials has signifi-
cantly improved the sensing capabilities of these devices [43].
Nanoscale devices exhibit efficient functionality with unique

effects compared to standard devices and play a central role
in eliminating errors in viral detection methods. Nano-sensors
can be used on a large scale for disease diagnosis and
biomolecule detection due to bio-elements and transducer
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Immobilized DNA
FET rGO transistor H5N1 10 pM — 100 nM 5pM 1h [74]
probe
Immobilized DNA
FET Cu/Au/SiO, AIV H5N1 10 pM — 10 nM 5.9 pM - [75]
aptamer
Gr synthesized on single . .
Gr-FET coronavirus CSAb/ ACE2 <0.1 pM 0.2 pM 2 min [76]
crystal Cu™
influenza A
Amperometry 3,4- EDOT PSS thin film . HA protein - 0.025 HAU - [77]
virus
spike L
) anti-His
Amperometry Co-TNTs glycoprotein 14 — 1400 nM ~0.7 nM ~30s [78]
monoclonal Ab
SARS-CoV-2
MERS-CoV: MERS-CoV
0.001 - 100 1.0 pg/mL
MERS-CoV
Anti-recombinant ng.mL"! 20 min
SWV AuNPs on CE . ) [50]
spike protein Ab HCoV:
HCoV
0.01- 10,000 HCoV
ng.mL"! 0.4 pg/mL
immobilization of
OoSwv Au-electrodes H5N1 ss- amino-DNA 3.0x103 — - [79]
3 copies/pL
probe 3.0x105
DPV Corona virus
. immobilized
AuNPs viral RNA/c- - - - [80]
capture probe
EIS DNA
Optical HA protein in (HINTI) virus
Silica Inverse Si0,-10 nanostructures influenza A capture Ab 103-105 PFU - - [86]
Opal (HIN1) (HA-1)
LSPR;
thiol-modified
colorimetric AuNPs MERS-CoV - 1 pmol/uLL - [87]
probes
assay
2.3x102 to
. o HA protein in . <10
IM-SPR Bimetallic silver—gold . monoclonal Ab 2.3x105 402 copies/mL ) [88]
H7NO9 virus ) min
copies/mL
influenza A
SPR Au H5NI1 virus protein - 193.3 ng mL"! - [33]
(H5N1)
0.4 pg/mL
LSPR/ FL- influenza virus .
AuNP - - ~5 min [89]
LSPR H3N2
10 PFU/mL
DNA 3 way-
LSPR hAuSN immobilized on ITO AIV H5N1 - 1 pM - [90]
Junction (3W1J)
fluorescence avian influenza
DNA triplex assembly berberine 0.2-100 nM 0.14 nM - [91]
assay A (H7N9)
colorimetric SARS-CoV- antisense
AuNPs ) . 0.2-3 ng/uL 0.18 ng/pL 10 min [92]
assay 2 oligonucleotides
lateral flow COVID-19
AuNP colloids SARS-Cov-2 - - 15 min [93]

immune assay

recombinant antigen

interactions. Various nanomaterials, such as nanorods, nan-
otubes, nanowires, thin films, and nanoparticles, are being
used in biomedical applications because of their mechanical
and electrical characteristics [44]. Many recent researches
on various nanomaterial-based sensors have been discussed

in Table I.

B. Electrochemical Sensors

Electrochemical sensors record the changes in uniformity
of the charge on the surface of transducers. These changes
are recorded depending on the impedimetric [45], [46], poten-
tiometric, or amperometric [47], [48] principles of transduc-

ers [49]. According to most published literature present, these
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CRISPR-based fluorescent
CRISPR- SARS-CoV-2 Cas12a/gRNA - ) ) [94]
sensor 2 copies per sample ~50 min
based assay complex
PPT effect/ complementary
gold nanoislands (AuNIs) SARS-CoV-2 - 0.22 pM - [95]
LSPR DNA receptors
) ) ) ) pyrrolidinyl peptide
colorimetric silver nanoparticles o
MERS-CoV nucleic acid - 1.53nM - [83]
assay (AgNPs)
(acpcPNA)
Target
AuNPs based on the U-bent anti-N protein
Nucleocapsid 15 min
P-FAB optical fiber sensor . monoclonal - 10-18 M [96]
protein o
system . antibodies
N-protein
EWA AuNPs or polyaniline-coated  specific surface antibodies for -
optical proteins SARS-  unique S1 subunit - 37 pM [97]
LSPR fibers CoV-2 of the S protein
3" SL-PAA polymer
Piezoelectric Lead zirconate titanate 10.05-10.07
) o H5N3 / H5N3 surface 10.05 vp/mL - [100]
- SPM piezoelectric disk ) vp/mL
glycoprotein
Piezoelectric Aerosolized Polyclonal anti-
) SAM of mercaptoundecanoic ) )
immunosenso ) influenza A influenza A (H3N2)  0.02 - 3 HAU 29.6 ng/mL - [103]
acid (MUA)
r (H3N2) Virions antibodies
SARS-
Piezoelectric Horse polyclonal antibody )
) associated )
Immunosenso against SARS-CoV attached to . SARS antigen 0.6 - 4 pg/mL - - [104]
coronavirus
r PZ crystal surface
(SARS-CoV)
Quartz crystal
microbalance
African swine .
(QCM) based Gold surface of the crystal Protein p12 4.6 - 300 pg/mL - - [105]

fever virus
piezoelectric

sensor

EIS — Electrochemical Impedance spectroscopy, SiNPs — Silica Nanoparticles, CV — Cyclic Voltammetry, CA — Chronoamperomtery, DPV —
Differential Pulse Voltammetry, FET — Field-Effect Transistor, Gr-FET — Graphene Field-Effect Transistor, BERA — Bioelectric Recognition
Assay, OSWV — Osteryoung Square Wave Voltammetry, SWV — Squarewave Voltammetry, PBS — Phosphate-buffered Saline, S-gCNQDs —
Sulfur-doped Graphitic Carbon Nitride Quantum Dots, MNPs — Magnetic Nanoparticles, BDD — Boron Doped Diamond, Ab — Antibody, CSAb

— Spike S1 Subunit Protein Antibody, Co-TNTs — Cobalt-functionalized TiO2 Nanotubes, aM1 Ab — Anti-M1 Antibodies, NP — NucleoProtein,
rGO — Reduced Graphene Oxide, CE — carbon electrode, AIV — Avian Influenza Virus, EDOT — Ethylenedioxythiophene, HA —
Hemagglutinin, ss — single stranded , 3DNRE — 3D Nanostructured, ITO — Indium Tin Oxide, nCovid-19Ab — nCovid-19 monoclonal
antibody, FTO — Fluorine-doped Tin Oxide electrode, AuNPs — Gold Nanoparticle, TrGO — Thermally-decomposed rGO, MP-MoO3QDs —
Plasmonic Molybdenum Trioxide Quantum Dots, gCNQDs — graphitic Carbon Nitride Quantum Dots, AuUSPE — Gold Screen Printed Electrode
LSPR — Localized Surface Plasmon Resonance, IM-SPR — Intensity-Modulated Surface Plasmon Resonance, FL-LSPR — Induced
Immunofluorescence, PBS — Phosphate-buffered Saline, SiO2-10 — SiO2-based Inverse Opal, hAuSN — hollow Au Spike-like Nanoparticle, ITO
— Indium-Tin-Oxide, AuNIs — Gold Nanoislands, PPT — Plasmonic Photothermal, P-FAB — Plasmoni Fiber Optic Sensor, EWA — Evanescent

Wave Absorbance

sensors are most commonly used for the detection of influenza
viruses. Another study to develop a nano-immunosensor to
detect MERS-CoV was done by Laygah and coworkers [50].
The biomarker targeted using this sensor was the spike protein
S1, most commonly targeted by antibodies [51]. The sensor
was based on the relation between the free virus present in the
given sample and the spike protein S1. The sensor used carbon
electrodes that were functionalized using AuNPs that increased
the electrochemical function of the sensor and provided a
wider area for the biomarker detection using the sensor. More-
over, the sensor was shown to have a better transfer rate. This
immunosensor provided an excellent linear range of detection

of 0.001 and 100 ng/mL for the MERS virus and displayed an
enhanced sensitivity of 0.4 pg/mL. Based on AuNP particles,
this sensor showed a very high sensitivity compared to the
conventional ELISA method of virus detection [52]. This
sensor stood out by its ability to detect two different viruses
simultaneously — the MERS-CoV and HCoV on the same
electrode surface and was electrochemically active for long
durations.

In another study, Seo and colleagues developed a graphene-
based sensor that could detect SARS-CoV-2 viral particles
from nasopharyngeal swabs of coronavirus patients. In this
FET-based sensor, a graphene sheet was used that was attached
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Fig. 3. (a) The structure of Respiratory Syncytial Virus (RSV). Reproduced from ref [110] Copyright © 2013 Swapnil Subhash Bawage et al. (b) After
the onset of RSV attack, the lungs and the respiratory tracts gets severely infected. (c) The life cycle of RSV within the lung system. Reproduced
from ref [110] Copyright © 2013 Swapnil Subhash Bawage et al. (d) Materials science, like the sensor technology has contributed towards easy
identification of the virus particles. (€) When an interaction occurs between the analyte (virus particle) and the respective bioreceptor, the transducer
undergoes changes and signals the presence of virus infection (f) When the presence of infection is confirmed by the sensor, vaccine and treatment

development and delivery are made available to the infected individual.

to a SiO,/Si substrate. This was further functionalized with
the SARS-CoV-2 spike antibody. The viral particles could be
detected using this sensor even at very low concentrations
of 1 fg/mL [53]. The detection limit was found to be
100 fg/mL. Furthermore, this sensor was found to be highly
selective to SARS-CoV-2 alone and showed no response to
MERS-CoV spike proteins.

Electrochemical sensors that use nucleic acids as their
target analyte, allow for easy binding of the DNA or RNA
on the sensor’s surface. When the specific binding occurs
between the two, the electrode’s surface experiences a change
— which is then recorded using electrochemical methods.
These electrochemical signals produced are a consequence
of the transfer of electrons between the probe and electrode.
Aptamers, hairpin DNA, locked and peptide nucleic acids are
the most widely used probes in electrochemical sensors [54].
Of these, aptamers have gained more attention, owing to their
high selectivity for the target analytes. They target proteins,
DNA or RNA, and other chemical molecules, alike. Hence,
electrochemical sensors have shown to be very stable, highly
specific, and can be easily miniaturized [55]. Table I illustrates
the various options of electrochemical sensors for detection of
virus particles.

C. Optical Sensors

Optical sensors are also essential tools in detecting multiple
analytes simultaneously. Such sensors analyze the changes in
optical properties of transducers during the exchange between
the target molecule and the recognition element [81], [82]. The
application of optical sensors to detect virus particles was seen
in the work put forward by Teengam and colleagues [83]. The
authors developed a unique optical sensor that could detect
MERS particles. The experiment results could be seen by
the naked eye and did not use any complex experimental
gadgets. It was a paper-based colorimetric sensor that noted the
response of aggregation or de-aggregation of silver nanoparti-
cles with viral DNA molecules. This reaction occurred in the
presence of pyrrolidinyl peptide nucleic acid. Another good
instance of optic sensor for respiratory virus detection was the
work carried out by Ostroff and colleagues. They are the only
group that put forward a sensor to detect human rhinovirus
using optical sensors [84]. They used an optically coated
silicon surface functionalized by virus antibodies. The sensor
was shown to give the results under 30 minutes and showed
a good sensitivity range. Hence, these sensors enhance sensi-
tivity and increased efficiency. Optical-based techniques like
Surface Plasmon Resonance (SPR) [46], Surface-Enhanced
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Fig. 4. The essential components of immunosensors with enzyme labels. An immunosensor is made up of the following elements: (a) nanomaterial
functionalized electrode (b) the primary antibody, which at one end is attached to the electrode surface and the other binds to the target antigen,
(c) the target antigen is linked to the secondary antibody, (d) the secondary antibody at the other end is labeled with an appropriate enzyme, (e) the

enzyme undergoes changes that are recorded on the transducer.

Raman Scattering (SERS) [85] are also used to detect virus
particles. Table I demonstrates the various optical detec-
tion techniques for respiratory viruses (Influenza Virus,
SARS-CoV-2).

D. Piezoelectric Sensors

Piezoelectric sensors function in the presence of an applied
alternating electric field. The transducers in such sensors
resonate under such conditions. They measure the difference in
the resonating frequency, which occurs because of crystal mass
and the attached target analyte. When the target analyte binds
to the sensor’s surface, a change in the mass occurs, which
is recorded. These sensors are widely used to detect various
target molecules within biological systems [55], [98], [99]. The
use of this sensor for the detection of the H5N3 virus is seen
in the work done by Erofeev et al. [100]. The duo developed
a piezoelectric sensor using a lead zirconate titanate piezo-
electric disk and successfully performed a label-free detection
of the influenza virus. In another study, it was observed that
a piezoelectric sensor coated with aptamer could detect the
SCV helicase protein derived from the SARS CoV [101]. The
sensor could perform the detection in a minute and showed a
LOD of 3.5 ng/mL.

Piezoelectric nanosensors also monitor the changes in vis-
coelasticity by noting the frequency, which affects the quartz
crystal resonator [102]. During the sensing activity by such
sensors, isolation equipments are used to avoid any hindrance
caused by the external environment. Table I discusses the
comparison of different piezoelectric detection techniques for
respiratory viruses.

[1l. PHYSICAL STRUCTURE OF THE SENSORS
AND THE VIRUS DETECTION PRINCIPLES
A sensor that can detect virus functions like any other
analytical device and possesses three significant parts: a
bioreceptor that senses the analyte, a transducer, and the
detector that gives the digital result. The interaction between

the target biomolecule and the bioreceptor results in either a
physical or a chemical reaction between them [106], [107].
The transducer then converts the changes in molecules into
a detectable signal that can be quantified or measured with
the help of a digital detector [108]. The transduction process
can be based on either the following sensors: electrochemical,
immuno, thermal, optical, magnetic, piezoelectric. Each of
these types determines the principles based on which the
sensor functions [109]. The use of nanomaterials increases the
overall sensitivity and selectivity of the sensor by enhancing
the overall fabrication quality of the sensor. This can be better
understood as depicted in Fig. 3, which discusses the attack
by a respiratory virus (like the respiratory syncytial virus), its
life cycle, physical structure of a nanomaterial-based sensor
and its mechanism of sensing.

IV. ANTIBODY ORIENTATION AND BONDING APPROACH

The nanomaterial-based immunosensors are used for the
detection of viral particles. The function of these sensors
is affected by one or more of the following conditions: the
affinity of antigens, the orientation and accessibility of the
binding sites upon immobilization, and the total number of
binding sites available on the surface of the sensor. The
strategies based on which the immobilization occurs may
differ, giving varying results and efficiencies. These also affect
the orientation to which the attached antibodies adapt. For
instance, when antibodies take a ‘flat-on’ orientation then the
adsorption method is used for antibody immobilization [111].
This antibody orientation can become an obstacle for the
antigens to approach antibody binding sites (Fig. 4). This,
therefore, causes a lowering of antigen-binding capacity [112].
However, achieving a 100% specific orientation is not possible.
This can be attributed to site-specific changes when antigen
binds to the sensor and results in attachment of other reactive
groups. Such immobilization strategies are also influenced
by the kind of nanomaterial used and should be compatible
with the target analytes to avoid the reduction in specific
orientations.
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Fig. 5. Mechanism of sensing of nanomaterials-based sensors for respiratory viral detection.

V. SENSING AND MEASUREMENT MECHANISMS

Increasing the conductivity of the sensors influences their
sensitivity and limit of detection. Nanomaterials contribute
towards aiding the sensing and measurement mechanisms
of the sensor. There are many different sensing mecha-
nisms on which sensors operate during virus detection. SPR
being an optical technique, has significantly contributed to
the processing of immunoassays. Such sensors can simul-
taneously analyze multiple biomolecules and perform real-
time monitoring of various analytes having or devoid of
labels [113]. Their sensing happens when a thin layer of
metal is layered on a dielectric waveguide, and data is used
after reflecting p-polarized light. On the contrary, total internal
reflection ellipsometry makes use of the reflecting s-polarized
light [114], [115].

There exist other sensing mechanisms like the alternat-
ing current electrokinetics capacitative sensing method. This
method performs rapid sensing within one step and does
not need any washing step [116]. The interfacial capacitance
between the electrode and the sample is considered to measure
the target analyte amount present on the electrode surface.
Based on this data, the detection protocol is developed. Such
sensors have been explored in recent years for virus detec-
tion [117], [118]. However, these studies have been based
on bulk capacitance and are highly influenced by the matrix
effect.

V1. MECHANISM OF SENSING OF
NANOMATERIALS-BASED SENSORS FOR
RESPIRATORY VIRAL DETECTION

During virus detection using nanomaterial-based sensors,
three basic steps occur, each linked with explicitly with
the previous step. First, the target molecule is recognized
by a fixed set(s) of biorecognition components. Interactions
between the two occur by either covalent or non-covalent
interactions. Second, any chemical change recorded by the
transducer of the sensor is transferred to the detector. Finally,

the detector displays the results in digital signals on a digital
screen [55]. Many transducers are used during the detection,
like carbon or gold electrode systems, screen printed electrodes
and others. In nanomaterial-based sensors, the transducers use
electrodes embedded with nanoparticles or a nanomaterial that
increases the specificity with which the bioreceptor interacts
with the target biomolecule during the detection process. Also,
they enhance the overall sensitivity and reproducibility of the
Sensor.

Among the kind of sensors used, nanomaterial-based elec-
trochemical sensors have gained wider attention because of
their ability to rapidly carry out the sensing mechanism and
recognize the target molecule within a very short duration.
Such sensors are based on the direct generation of electrical
signals within a short period [119]. Furthermore, most electro-
chemical sensors can perform label-free detection of analytes
that permits the development of point of care devices [120].

VII. ADVANTAGES AND DISADVANTAGES OF
NANOMATERIALS-BASED SENSORS FOR
RESPIRATORY VIRAL DETECTION

As discussed previously, many studies support the supe-
riority of nanomaterial-based sensors over the others due to
their unmatched physicochemical properties like the prominent
surface to volume ratio, high adsorption, the changes in their
quantum aspects and their capacity to react. Hence, a lower
quantity of analytes is more than sufficient for their successful
analysis. Furthermore, rapid processing of the analyte within
a lower budget is possible using such sensors [121]. Even
carbon-based nanomaterials like graphene and its derivatives
are an excellent choice to develop sensors that can detect
respiratory viruses because of their ability to attach to ligands
and other nanoparticles [26]. Other nanomaterials like silica
nanoparticles are also advantageous in creating sensors to
detect viruses because they are biocompatible with other
elements in biological conditions. Moreover, nanoporous mate-
rials have an even better surface to volume ratio which is
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gives them an upper hand over the other nanoparticles that
are currently available [26].

Though nanomaterial-based sensors have attracted the atten-
tion of researchers globally, they still have a few downsides
such as low sensitivity as compared to conventional methods
like RT-PCR assays. Many electrochemical sensors have also
been shown to have lower shelf-life than conventional sen-
sors [76]. Moreover, nanomaterial-based sensors are sensitive
to sample matrix effects too [122].

VIll. COMPARISON OF NANOMATERIALS-BASED
SENSORS WITH CONVENTIONAL SENSORS
FOR RESPIRATORY VIRAL DETECTION

Apart from the recent nanomaterial-based sensors, tradi-
tional methods like cell-culture and colony counting tech-
niques, electron microscopy, immunological assays, PCR,
ELISA, nucleic acid-based detection, and others have also
been popularly used to detect respiratory viral particles. How-
ever, detecting the analyte via these methods requires an
additional sample processing step. Samples like nasal swabs
are collected and put through sample enrichment processes,
only after which the detection assays are carried out. This
step is crucial because it increases the efficiency of the
sensing process and also reduces the time taken to detect the
analyte. Besides being time-consuming, these processes are
often meticulous and are prone to errors.

On the contrary, nanomaterial-based sensors allow for direct
determination of the analyte without the requirement of any
processing steps [123]. The use of conventional sensors is
limited because they cannot be used under the banner of ‘point
of care techniques’ and fail to produce real-time analyses.
An ideal sensor should have: an online sampler that can sample
the analyte, a quick system and analyzes the given sample,
a completely automatic operation, less processing steps, and
elements that enhance the overall sensitivity and specificity of
the sensors. This is where nanomaterials play a fundamental
role. They can provide high efficiency and improve the overall
quality of the sensors. Usage of such nanomaterial-based
sensors will reduce the detection time and encourage in real-
time analysis.

IX. CONCLUSION AND FUTURE PROSPECTIVE

Highly sensitive sensors can be successfully developed
using nanomaterials, such that they give rapid results which
are highly reproducible. In addition to being highly sensitive,
nanomaterial-based FET sensors are also highly selective and
can detect the analyte in low concentrations. Nanomaterials
like graphene and In203 have been incorporated in the open
gated areas of FET to detect respiratory viruses [124]. Ele-
ments like gold nanoparticles and their nanoislands have also
been successfully included in immunosensors to detect viruses
like MERS and COVID-19 under pico and femto concen-
tration ranges [95], [125]. Furthermore, using nanomaterials
in sensor development allows for their miniaturization and
reduces their overall production cost. Affinity sensors can be
easily created using multiple nanomaterials within the same
sensor. Such sensors usually have many electrodes within
the same system, which allows for simultaneous detection.

Hence, such nanomaterial-based sensors can be created as
small point-of-care devices that hold practical applications, are
user-friendly, and do not require trained professionals to detect
respiratory viral pathogens.

Moreover, certain aspects of such sensors still need further
attention. More work needs to be done to determine the
accuracy of the results of nanomaterial-based sensors that can
detect actual samples in real-time under natural conditions.
Most of the work is usually carried out under laboratory
conditions, and hence whether or not they may give similar
results even outside the laboratory conditions must be cross-
checked. Furthermore, wearable biosensing devices can be
created using nanomaterials that offer statistical information
like the development of virus within the body, the antibody
levels, and compare the respiratory virus infection within the
community. This will be particularly useful for uninfected
individuals to avoid such areas to prevent further spreading of
the disease to neighboring regions. Moreover, such innovative
nanomaterial-based sensors can help predict the next pandemic
to a large degree. In conclusion, nanomaterial-based sensors
can prove to be very promising for the detection of respiratory
viral particles. Yet, further work is required to make these
user-friendly and provide quick, accurate and early detection
of the viruses to prevent any other respiratory virus outbreaks.

X. ABBREVIATIONS

Abbreviated form Full form

SARS Severe acute respiratory syndrome

WHO World Health Organization

PCR Polymerase Chain Reaction

RTPCR Reverse Transcription-Polymerase
Chain Reaction

FAT Fluorescent Antibody Test

RSV Respiratory Syncytial Virus
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