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Abstract—Objective: Falls are often accompanied by huge
social costs, and fall risk assessment is essential to protect
the elderly from serious injuries and reduce financial burdens.
The standard timed up and go (TUG) balance assessment
test focuses on the total walking time and scenarios without
environmental changes, which is flawed in providing rich
information related to falls and evaluating the gait adaptabil-
ity in response to environmental changes. Therefore, a fall
risk assessment system that relies on a variable environ-
ment is actually needed. Methods: We have constructed an
environment-adaptive TUG (EATUG) test system with three
terrain surfaces (levels/obstacles/stairs). One hundred and
three elderly from Shenzhen Luohu Hospital is recruited to
participate in the experiment. The wearable inertial sensors attached to the two shanks are used to acquire data, and the
gait parameters that may be related to falls are extracted and quantified. Results: Most of the parameters have significant
differences between the high-risk group and the low-risk group (e.g., peak power, maximum radius, double support,
etc., p < 0.001). In addition, the average sensitivity and specificity of fall risk prediction are 85.7% and 92.9%, while the
average accuracy is 9.52% higher than the standard TUG test. Conclusion: The EATUG test system can provide richer
gait characteristics and fall-related information, which is a good improvement on the drawbacks of the standard TUG test.
Significance: The proposed test system is expected to replace the standard TUG test and be used for fall screening of
high-risk elderly in the community to reduce the occurrence of falls.

Index Terms— Falls risk assessment, timed up and go (TUG) test, the elderly, wearable inertial sensors, environment-
adaptive TUG (EATUG) test.

I. INTRODUCTION

ACCORDING to the World Population Prospects (WPP)
2019 report, the elderly population over 65 years old
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accounts for 9% of the global population, by 2050, one in
six people in the world will be over age 65 (16%). Besides,
the number of persons aged 80 years or over is projected to
triple, from 143 million in 2019 to 426 million in 2050 [1].
With the aging of the population, falls have become a major
safety problem for the elderly, adults older than 65 years of
age suffer the greatest number of fatal falls. According to
World Health Organization (WHO) statistics, approximately
37.3 million falls need to be treated every year, which is
the second leading cause of unintentional injuries after road
traffic injuries [2]. The financial costs associated with fall-
related injuries are substantial. For example, the American
Centers for Disease Control and Prevention (CDC) report that
every year about $50 billion is spent on medical costs related
to non-fatal fall injuries, and $754 million is spent related to
fatal falls [3].

Studies have shown that targeted interventions (e.g., sports
training) can prevent falls [4], [5]. Therefore, it is of great
significance to assess the risk of falls in the elderly. Through
the fall risk assessment, the elderly with high fall risk can
be screened out, and intervention measures can be taken on
them to improve their gait stability. Commonly used clinical
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gait and balance tests include the Timed Up and Go (TUG)
test, the Tinetti Balance Assessment, and the Berg Balance
Scale (BBS) [6]–[8], etc. The TUG test is quick, requires
no special equipment or training, and is easily included as
part of the routine medical examination. Given the above
advantages, the TUG test is widely used for gait and fall risk
assessment and is recommended by the American Geriatrics
Society (AGS) and the British Geriatric Society (BGS) [9].
It has been found that the time parameter of the TUG test
is related to the risk of falling [10]. However, the standard
TUG test simply depends on the total time, ignoring the value
of other gait characteristics, and is not yet sufficient to fully
assess the risk of falls, as criticized in many studies [11]–[14].

Besides, the standard TUG test focuses on walking in
horizontal terrain, which is not sufficient to evaluate the gait
adaptability of the elderly in complex environments [10]. The
elderly living in the community usually need to adjust their
gait in response to changes on the trail, which is strongly
related to falls [15], [16]. For example, it is necessary to
avoid obstacles that suddenly appear on the sidewalk, and
the changes in gait parameters at this time can reflect the
ability of gait balance control. Compared with individual
general fall risk factors (i.e., subject characteristics, clinical
gait and balance testing, quantitative gait assessment), the
assessment of gait adaptability for terrain changes can improve
the classification of expected falls [17]. Therefore, there is an
urgent need for a walking balanced assessment system that
relies on a variable environment and multiple parameters.

External factors such as obstacles and slopes can effectively
reflect the gait adaptability of the elderly and promote fall
risk assessment [18] [19]. Wang et al. use the performance
to predict the risk of falling for the elderly, i.e., the behavior
in the process of crossing the stairs [20], [21]. It is of great
significance to establish the research on the activities of the
elderly on the stairs [22]. Secondly, obstacles are also used
to measure gait adaptability. The related gait test has found
that the adjustment ability of the elderly in encountering
obstacles is worse than that of the young [23], [24]. Besides,
although the TUG test has flaws, it involves representative
movements in our daily lives (e.g., standing, walking, turn-
ing, and sitting) and does not require complicated instruc-
tions, the advantages are worth retaining [25]. In summary,
we designed experiments based on three different terrain
surfaces (levels/obstacles/stairs) and evaluated the adjustment
of gait parameters with environmental changes.

This research mainly focuses on three objectives:
(1) Establish a fall risk assessment system for the elderly
that simulates the community environment, which can
involve terrain changes, provide rich gait characteristics
and information related to falls, and have a higher fall
risk prediction performance; (2) Compare the significant
differences of the gait spatiotemporal parameters of the
elderly with high fall risk and low fall risk under different
TUG tests; (3) Estimate the influence of variability terrain
on the gait parameters to explore the gait adaptability of
the elderly. In general, we hope this work can provide
comprehensive guidance for fall risk assessment of the
elderly in the community, improve the accuracy of high-risk

screening, formulate intervention strategies and ultimately
reduce the occurrence of falls.

The rest of this paper is organized as follows: Section II
describes the experimental setup and data collection in detail.
Section III shows the data processing and feature extraction
process. Then, the results of the significance analysis in
different aspects are given in Section IV. Section V ana-
lyzes and discusses the contribution and limitations of this
research. Finally, Section VI summarizes the work and looks
forward to future tasks.

II. EXPERIMENTAL SETUP AND DATA COLLECTION

A. Participants
One hundred and three elderly (24 male and 79 female)

from the Luohu District Medical and Nursing Integrated
Geriatric Hospital of Shenzhen are recruited as experimental
subjects. All subjects live in the community, and the inclusion
criteria are as follows: (1) The elderly are over 60 years
old; (2) The elderly can use a walker or walk independently;
(3) The elderly do not have severe osteoporosis; (4) The
elderly have a normal cognitive function (Montreal Cognitive
Assessment score ≥23 [26]) and are not accompanied severe
neurodegenerative diseases; (5) The elderly can complete all
questionnaires and experimental tests. Before the experiment,
participants are required to sign an informed consent form, and
all experiments involving human subjects have been approved
by the relevant institutional review board.

To divide the elderly into high-risk and low-risk groups, the
questionnaires and the berg balance scale (BBS) are used. Par-
ticipants are first asked to fill the questionnaire, which included
the following aspects: (1) Personal information (age, height,
etc.); (2) History of falls within the past year; (3) History of
diseases (high blood pressure, diabetes, etc.); (4) History of
medications (sleeping pills, psychotic agents, etc.); (5) Living
conditions (regular exercise, use crutches, etc.); (6) Psycho-
logical factors such as fear of falling. Subsequently, static
and dynamic balance BBS tests are performed on the elderly.
Considering the fall history and BBS score, the criteria for the
classification of fall risk are determined [27]–[29]. The elderly
who has experienced multiple falls (n ≥ 2) in the past year will
be direct as a “high-risk group” because it is likely to be caused
by a physical disorder [22]. Besides, the elderly experienced
one fall (n = 1) and BBS score ≤ 45, no fall (n = 0) but
BBS score ≤42 were assigned to the high-risk group, while
the others were assigned to the low-risk group (Fig. 1). All the
operation is performed by a professional physical therapist.
Finally, the high-risk and low-risk groups are assigned 32 and
71 subjects. Cohort characteristics are shown in Table I.

B. Environment-Adapting TUG Test System
Studies have shown that the gait adaptability of the elderly is

related to the environment, and about 31% of falls are caused
by environmental changes [30]. Ferraro et al. demonstrate that
when walking on a sloping surface, the step length, mean
cadence, and mean normalized velocity of elderly people are
significantly reduced [19]. Caetano et al. evaluate the response
of gait adaptability changes to obstacles or stepping targets
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Fig. 1. The flow chart of the classification of the elderly into high-risk
and low-risk groups.

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF OLDER PARTICIPANTS

and find that the gait characteristics of the elderly show slow,
short, and multiple steps with longer time in double sup-
port [31]. Therefore, studying gait adjustment strategies when
encountering obstacles or stairs can provide more information
related to the risk of falling. We designed an environment-
adaptive TUG (EATUG) test system based on the community
environment, which consists of three different terrain tests,
describe as follows.

1) Standard TUG Test: Participants are asked to stand up
from the chair, walk 3 m on flat ground at a comfortable pace,
then turn around, return to the chair, and sit down [32]. The
standard TUG test is shown in Fig. 2 (a).

2) Bypass and Overpass TUG Test: Participants should
stand up from the chair, walk 1.5 m and overpass an obstacle
(10 cm high and 15 cm wide), turn around after walking
3 m, and bypass the obstacle when returning, as shown in
Fig. 2 (b).

3) Ascent and Descent TUG Test: Participants should stairs
ascent first, walk through a 0.8 m flat terrace, then descend the
stairs, and return at 3 m, as shown in Fig. 2 (c). The height
and width of each staircase are 15 cm and 20 cm.

C. Data Collection
The data is measured by two inertial sensors

attached to the left and right shanks (about 15 cm
below the knee joint). The sensor node consists of an
STM32F407 microcontroller (STMicro electronics, Geneva,
Switzerland), an MPU9250 accelerometer and gyroscope
module (TDK InvenSense, San Jose, CA, USA), an Arduino
Bluetooth module, and a lithium battery (300 mAh). The
circuit board integrating each module is installed in a small
casing, and the size of each node is 56.5 × 37.5 × 15.5 mm3,

weighs about 30 g, and the sampling frequency is 60 Hz. The
range of accelerometer and gyroscope is ±8g and ±1000◦/s,
respectively. Finally, the two inertial sensors are connected
by wires and can be used for synchronous data collection
through interrupt trigger signals.

Before data acquisition, the elderly will be instructed and
trained to promote better execution of the test. During the
experiment, the elderly was allowed to use walking aids, and
each TUG test would be performed at least twice, with a five-
minute rest between two tests. Throughout the environment-
adaptive TUG tests, the two sensors are kept on the sagittal
plane of the shank, and video tracking is used as a refer-
ence. The motion capture is through a high-definition infrared
camera (Micro Star Electronic Technology Co. Ltd, Shenzhen,
China) with a capture frequency of 30 Hz.

III. METHOD

A. Preprocessing
Before parameter estimation, the raw accelerometer and

gyroscope data need to be pre-processed. For acceleration
signals, the detrend function is used to process all signals
to remove the influence of static gravity components and
other low-frequency trends [22]. For the gyroscope signal,
the skewness of the signal needs to be calculated for each walk
to measure the asymmetry of the signal. If the skewness of the
signal is less than zero, the gyroscope signal will be automat-
ically inverted in the software to ensure the correct polarity of
the signal [33]. Before further processing, the zero-phase 5th
order Butterworth filter with a 5-Hz corner frequency is used
to filter the signal after skew correction and trend removal.
All operations are performed on MATLAB R2019a.

B. Gait Parameter Extraction
The clinical practice guidelines of AGS and BGS to prevent

falls provide the main risk factors associated with falls in
the elderly [9]. Many of the self-reported factors discussed
in the guideline are used to create logistic regression models
to predict the risk of falling [10]. Besides, some currently
reported studies use quantitative TUG test parameters to
evaluate the risk of falls, which provides a reference for feature
extraction of gait parameters [22] [34]. Our purpose is to
extract the features based on the sensor data of the anterior-
posterior (AP), medio-lateral (ML), and superior-inferior (SI)
axes and capture the biomechanical characteristics of the
elderly during walking [35]. The derived variables of gait para-
meters extracted in this study are divided into three categories,
including time parameters, angular velocity parameters, and
acceleration parameters (Table II).

Temporal Parameters: To estimate the temporal parame-
ters (No.1-4), two essential events need to be detected, i.e.,
the heel contact event (HC) and toe-off event (TO) [35].
The previous report used adaptive algorithms to determine the
timestamp of HC and TO events from the gyroscope ML axis
signals of each shank [33]. The adaptive algorithm proved
to be robust not only to different characteristic subjects and
walking speeds but also to noise in angular velocity signals
during movement. Because of the superiority of this algorithm,
it is used to detect the essential gait events in this study.
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Fig. 2. The environment-adaptive TUG tests. (a) Standard TUG test: Participants stand up from the chair, walk 3 m on a flat ground, then turned
back to the chair and sit down. (b) Bypass and Overpass TUG: Participants overpass the obstacle first and bypass the obstacle when returning.
(c) Ascent and Descent TUG: Participants stairs ascent first and stairs descent when returning.

TABLE II
SUMMARY OF GAIT PARAMETER CHARACTERISTICS

Fig. 3. Mid-swing point derived from ML axis gyroscope signals, and
the HC and TO events are marked.

The HC and TO events detected from the gyroscope ML
axis signals of each shank are shown in Fig. 3. In addition
to the essential gait events, the mid-swing points are marked
synchronously. As described in [33], the mid-swing point
is easier to detect than HC and TO events, and it corre-
sponds to the maximum point of the angular velocity signal.

Therefore, the mid-swing point is generally detected first,
then the timestamps of HC and TO events are determined
according to the point. The detected HC and TO events
are used to calculate the temporal gait parameters listed as
follows.

The stride time is the time from the HC point of one foot
to the HC point of the same foot. The step time is the time
from the HC point of one foot to the HC point of the other
foot. The single support is calculated as the time between the
TO point and the HC point on the same foot divide by the
gait cycle time, which is equal to the swing time of the other
foot. The double support is calculated as the time that both
feet contact the ground divide by the gait cycle time. As an
example, the estimation of right shank stride time and step
time are described in Eq. (1) and (2), respectively. In this
study, all gait parameters of left and right shank sensor data
are merged.

stride time (i) = tR HC (i + 1) − tR HC (i) (1)

step time (i) = tR HC (i + 1) − tL HC (i) (2)

where RHC means right heel contact, and LHC means Left
heel contact.

Angular Velocity Parameters: Several parameters (No.5-9)
related to fall risk can be directly derived from the three
axes gyroscope data to analyze the gait characteristics of
participants in the EATUG test [10]. These parameters are
described as follows.

The total walking time is calculated as the time between
the first mid-swing point to the last mid-swing point (Eq. 3).
The maximum angular velocity is expressed as the maximum
value of the sum of the amplitudes of three axes, which can
reflect the swing characteristics of each participant during the
test. The maximum angular velocity radius is calculated as the
maximum angular velocity times the height of each participant,
which can reflect the linear velocity of the shank (the linear
velocity is equal to the radius times the angular velocity, and
the radius is proportional to the height) (Eq. 4). The mean
amplitude of the mid-swing point refers to the average value
of all mid-points detected of the ML axis angular velocity
signal. The range of the mid-swing point is calculated as the
absolute difference between the maximum and minimum of
the mid-swing point, which can reflect the range of movement
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TABLE III
THE MEAN AND STANDARD DEVIATION OF THE ABSOLUTE AND

RELATIVE ERRORS OF THE TEMPORAL PARAMETERS

of the shank.

total time = t (Final mid − swing)

− t (First mins − wing) (3)

Max angular radius = max angular(ML+AP+SI)

∗hight

100
(4)

Acceleration Parameter: Parameters (No.10-14) derived
from acceleration signals (e.g., variance [21], peak power [34],
etc.) are used to distinguish the risk of falls. To make an
effective discriminant analysis of the fall risk under the adap-
tive TUG tests, the following three axes acceleration signal
parameters are extracted.

The variance is calculated as the sum of the dispersion of the
acceleration signals for each axis, which represents the vitality
measure of the participants. The maximum acceleration refers
to the maximum value of the acceleration signal amplitude
(ASM) (Eq. 5). The maximum velocity is calculated as the
numerical integration of the ASM, while the peak power is the
maximum velocity multiplied by the mass of the participant.
The Maximum forward lean is expressed as Eq. (6).

ASM =
√

(AP)2 + (SI )2 + (M L)2 (5)

θ = arctan

√
(AP)2 + (M L)2

SI
· 180o

π
(6)

C. Validation of Temporal Parameters Using Xsens
Before the EATUG test, a pre-experiment was conducted

to verify the reliability of the proposed fall risk system.
A total of 10 participants were asked to wear Xsens (https://
www.xsens.com/products/xsens-mvn-analyze) and wearable
inertial sensors to perform the standard TUG test, then the
adaptive algorithms were used to estimate the temporal para-
meters, i.e., stride time, step time, and support phase [33].
These parameters of the sensor data recorded by Xsens are
used as ground truth [36]. The mean and standard deviation
of the absolute and relative errors between the inertial sensors
and Xsens is shown in Table III.

The results show that the average absolute error of stride
time and step time are 21.7 ms and 14.8 ms, respectively.
Besides, the average absolute error of the single support phase
and the double support phase is not more than 1.5%, indicating
the good performance of the inertial sensor and Xsens. The
above results prove the high reliability of the proposed system,
which has been verified in previous reports [10], [33].

D. Statistical Analysis
In this study, the extracted gait and physiological charac-

teristics are used for statistical analysis. Fisher’s exact test is
a method suitable for two binary variables, which is used in
the gender variable test in Table I. Then, the gait parameters
of the elderly in the high-risk and low-risk groups from
three TUG tests are compared. The Lillie function in the
MATLAB statistical analysis toolbox is used to determine
the normal distribution of the 14 variables obtained. For
normally distributed variables, the two-sided t-test is used to
analyze the significance of the difference between high-risk
and low-risk elderly. For non-normally-distributed variables,
the Mann-Whitney (†) test is used. P-value less than 0.05 (∗) is
considered to be statistically significant. Besides, the influence
of different terrain on the gait parameters of the elderly
is analyzed, which can reflect the gait adjustment strategies
in response to environmental changes. To control multiple
comparisons, the Benjamini- Hochberg adjustment is applied
to correct the p-value by using the fdr_bh function (the default
value of false discovery rate is 0.05) [22].

E. Feature Selection and Classification Model
The gait parameters with significant differences from the

three TUG tests are used for feature selection, thereby con-
structing a support vector machine (SVM) classifier with better
prediction performance. In this paper, the LVW (Las Vegas
Packaging) method is used for feature selection. Generally,
LVW uses a random search strategy to search for feature
subsets under the framework of the Las Vegas method. The
prediction error of the finally embedded ensemble classifier is
used as the evaluation criterion of the selected feature subset.
The pseudo-code of the LVW algorithm is shown in Table IV.

The three SVM models are fused into the final prediction
model of the EATUG test system by using the voting method.
To obtain unbiased classification results, this work uses 5-fold
cross-validation to test the performance of the proposed sys-
tem, which is repeated 10 times. For each verification, 82 sub-
jects are used as training data, and the remaining 21 subjects
are used as test data. It also should be noted that the high-risk
and low-risk elderly in the training and test data maintain a
consistent ratio. The performance of the system is evaluated
by the accuracy, sensitivity, and specificity of the prediction
results, as shown in Eqs. (7) - (9). The three independent TUG
tests and the EATUG test results are described in the ROC
curve (Fig. 4).

Accuracy = T P + T N

T P + F P + F N + T N
× 100% (7)

Sensitivity = T P

T P + F N
× 100% (8)

Specificity = T N

T N + F P
× 100% (9)

where TP represents the number of correct predictions for
which the instance is positive; FP represents the number of
incorrect predictions that an instance is positive; FN represents
the number of false predictions for which the instance is
negative; TN represents the number of correct predictions that
an instance is negative.
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TABLE IV
THE PSEUDO-CODE OF THE LVW ALGORITHM

Fig. 4. ROC curves of the output results of three fall prediction tests
based on different terrains and the EATUG prediction system.

IV. RESULTS

Table I shows the results of the significance analysis
between the cohort characteristics of the high-risk and low-
risk groups. There are no significant differences in the cohort
characteristics of the height, weight, and gender between the
high-risk group and the low-risk group, indicating the risk of
falling is not related to these physiological factors. However,
there are significant differences in the age of the elderly with
different risks of falling. It demonstrates the view that gait
variability will increases with age, leading to a higher risk of
falling [37]. The statistical analysis results of the remaining
various gait characteristics and terrain tests are described as
follows.

A. Results of the Significance Analysis Based on
Different Fall Risks

Standard TUG Test: The significance analysis results of
all parameter variables obtained by the standard TUG test in

TABLE V
SIGNIFICANT ANALYSIS OF PARAMETER DIFFERENCES BETWEEN THE

TWO GROUPS OF THE ELDERLY

the high-risk and low-risk groups are shown in Table V. The
Mann-Whitney U test is marked with †, while the p-values
without †remark refer to the two-sided t-test. The p-value of
the test less than 0.05 indicates a significant difference, and the
result will be bolded. The result shows significant differences
in all parameters except for the maximum acceleration and
forwards lean, indicating a good distinction between high-
risk and low-risk groups. The gait adjustment of the high-risk
elderly will be significantly slower than that of the low-risk
group because the high-risk group is accompanied by larger
stride time, step time, and double support phases. For the angu-
lar velocity and acceleration parameters, the maximum peak
power and angular velocity radius of the low-risk group are
larger, with an average of 107.6 (kg. m/s2) and 14.3 (rad. m/s),
respectively. In summary, the high-risk elderly is accompanied
by a slower gait adjustment and greater double support phases,
which reflects the close correlation between the risk of falling
and gait control.

Bypass and Overpass TUG Test: Table VI shows the
significance analysis results of all the parameter variables
obtained through the bypass and overpass TUG test. Except for
the maximum acceleration and the range of mid-swing point,
the remaining 12 characteristics have significant differences,
which are similar to the standard TUG test. For the derivative
parameter of the acceleration signal, the variances of the
elderly in the high-risk and low-risk groups are 23.1 and
34.3 m2/s4, respectively. The variance is expressed as the
sum of the fluctuations of the three-axis acceleration signals,
reflecting the higher gait dispersion of the low-risk group.
Besides, although the Mann-Whitney U test result of the
maximum forward lean is less than 0.05 (0.047), the parameter
is not suitable as an effective feature to distinguish fall risks.

Ascent and Descent TUG Test: The results of the signifi-
cance analysis of all the parameter variables obtained through
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TABLE VI
SIGNIFICANT ANALYSIS OF PARAMETER DIFFERENCES BETWEEN THE

TWO GROUPS OF THE ELDERLY

TABLE VII
SIGNIFICANT ANALYSIS OF PARAMETER DIFFERENCES BETWEEN THE

TWO GROUPS OF THE ELDERLY

the ascent and descent TUG test are shown in Table VII. There
are three characteristics in the acceleration parameter and the
angular velocity parameter that have no significant difference,
including the range of mid-swing point, the maximum acceler-
ation, and the maximum forward lean. Based on Table V-VII,
the remaining 11 parameters have significant differences in all
three TUG tests. Because the left and right feet need to contact
the surface at the same time during ascending and descending
the stairs, the double support phase of the high-risk group in
this test is the highest, reaching 31.1 ± 11.1%. In summary,
the significance analysis results of the test show that most of
the parameters obtained in this experiment have the function
of distinguishing the risk of falling.

B. Results of the Significance Analysis Based
on Terrain Variability

The significance analysis results of gait parameters based
on different terrains are shown in Table VIII. To estimate the
gait adjustments of elderly with different fall risks in response
to changes in terrain, the high-risk and low-risk groups are
listed separately. For the high-risk group, eight variables have
significant differences between the standard TUG test and the
ascent and descent TUG test, while only three in the standard
TUG test and the bypass and overpass TUG test. The results
can be explained as the ascending and descending terrain is
more complicated. On the other hand, the change in terrain
seems to have an insufficient impact on the low-risk group,
because the number of parameters with significant differences
in all three TUG tests is very close. In other words, the low-
risk elderly has stable control to adjust their gait according to
the environment.

Table VIII also reflects the sensitivity of different parameter
characteristics to the environment. Some parameter variables
(e.g., double support, maximum acceleration, etc.) have signif-
icant differences between different terrains. On the contrary,
there are several parameters (e.g., range of mid-swing point,
etc.) that are not sufficiently sensitive to the ascent/descent
TUG test and bypass /overpass TUG test, but have signif-
icant differences between the other two terrains. Besides,
the variability of acceleration parameters is more related to the
change of environment, because most acceleration parameters
between different terrains have significant differences, while
angular velocity and temporal parameters are not. For example,
in terms of temporal parameters, except for the double support,
the stride time, step time, and single support do not change
significantly.

C. Results of the Fall Risk Assessment
The ROC curves of the predicted results of the three inde-

pendent TUG test and the fused EATUG test system is shown
in Fig. 4. The prediction result of the EATUG test system is
the best, and the performance of the three independent TUG
tests is equivalent. The average accuracy of the standard TUG
and EATUG tests for predicting the risk of falling for the
elderly is 80.9% and 90.5%, respectively. The accuracy of the
EATUG system has increased by 9.52%. Besides, the sen-
sitivity and specificity of the standard TUG and EATUG test
results are also estimated. Specifically, the sensitivity based on
the standard TUG test is 71.4% and the specificity is 85.7%,
while the sensitivity based on the EATUG test is 85.7% and the
specificity is 92.9%. Furthermore, the average ROC curve area
of the EATUG system is 0.88. In summary, the EATUG system
has superior predictive performance, which is a significant
improvement on the standard TUG test.

V. DISCUSSION

Because of the drawbacks of the standard TUG test, we con-
structed an environment-adaptive fall risk assessment system
for the elderly and extracted 14 gait parameter variables related
to falls. Through the verification of 103 elderly living in the
community, the advantages of the system are proved. The main
contributions of this research include: 1) The proposed system
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TABLE VIII
SIGNIFICANT ANALYSIS OF PARAMETER DIFFERENCES BETWEEN THE ELDERLY OF THE THREE TERRAINS

can provide richer gait features related to falls and has superior
predictive performance; 2) The proposed system can compare
the significant differences in gait parameters of elderly with
different fall risks under different TUG tests; 3) The proposed
system can estimate the influence of changing terrain on gait
parameters. The specific contributions of this paper will be
discussed in detail as follows.

To simulate the community environment, the EATUG test
based on three terrains (levels/obstacles/stairs) is developed,
and the significant differences in gait parameters of the elderly
with different risks are compared (Table V-VII). The results
show that among the 14 reported gait parameters, 11 para-
meters have significant differences in all three TUG tests,
which is consistent with previous studies [10] [34]. Generally,
the elderly in the high-risk group has slow walking velocity
and a small range of motion, which can be reflected by larger
temporal parameters and smaller acceleration and angular
velocity parameters. Compared with the standard TUG test that
only focuses on the total walking time, the EATUG test system
reveals richer gait parameters related to falls, thus providing a
more comprehensive evaluation standard for the balance ability
of the elderly in the community.

Previous studies have shown that the standard TUG test
cannot assess the gait adaptability of the elderly to the environ-
ment [38]. In Table VIII, there are eight significantly different
variables between the standard TUG test and the ascent and
descent TUG test for the elderly in the high-risk group,
while only three variables have significant differences in the
standard TUG test and the bypass and overpass TUG test.
The above results show that the higher the complexity of the
environment, the more obvious the change of gait parameters,
which has been confirmed in [39], [40]. For the elderly in
the low-risk group, the changes in terrain seem to have little

effect on their gait parameters, which can be observed by
the results of the three TUG tests. In a summary, the high-
risk subjects tend to adopt a more rigid stepping strategy
in a complex environment, while elderly with low fall risk
have stronger gait adaptability to environmental changes [17],
[41]. Besides, Table VIII also shows that gait parameters are
differently affected by the environment, which will provide
substantial guidance for targeted interventions for high-risk
elderly encountering environmental changes.

The fall risk assessment system proposed in this paper
has been verified on the elderly. The results in Fig. 4 show
that the fused EATUG system has the best prediction results,
while the remaining three TUG tests have comparable perfor-
mance. The accuracy of the standard TUG test prediction is
80.9%, which is similar to previous research [42]. However,
the specificity of the standard TUG test is significantly higher
than the sensitivity, i.e., the recognition rate for low-risk
elderly people is higher. In contrast, the EATUG has better
sensitivity, which has improved the accuracy of screening for
high-risk elderly. Furthermore, the accuracy of the EATUG test
is 9.52% higher than that of the standard TUG test, indicating
the potential of the system for long-term monitoring of the
risk of falling for the elderly.

Wang et al. find that multiple falls within a year are more
likely to indicate chronic disease and physical impairments,
while a single fall may be an accident [22]. Therefore, this
study carried out a strict classification procedure in the fall
risk assessment, i.e., the combination of fall history and BBS
balance test. To some extent, the scale method divides the
elderly into high-risk and low-risk groups, rather than falling
and non-falling groups, which tends to have better prediction
results [43]. Smith et al. study the relationship between fall
history and the TUG test, and the results show that multiple
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environmental tests can provide added value for fall assess-
ment [44], [45]. In summary, the evaluation system constructed
in this study can provide a more comprehensive prediction of
the risk of falls, thereby reducing the misjudgment of falls
caused by accidental factors and improving the reliability of
the results.

The experimental results show that it is feasible to use the
evaluation system constructed in this paper to distinguish the
risk of falls in the elderly. It can provide rich fall-related
characteristics and show the gait adaptability of different envi-
ronments. Compared with the standard TUG test, the EATUG
system is proven to have more advantages and retains the
characteristics of simple tests and high operability. Although
Yang et al. also established a fall assessment system adapted to
the environment, it can only be verified in healthy adults [46].
Relatively speaking, our research has more practical signifi-
cance. The system meets the conditions for use in a community
environment and is expected to be used in the early screening
of high-risk elderly people in the future, and to provide them
with appropriate balance training guidance and intervention
methods, and ultimately reduce fall injuries. For example,
Pope et al. have shown that multi-factorial exercise and dance-
based interventions can effectively reduce the risk of falls for
community-dwelling older adults [47].

There are some other improved TUG tests, such as dual-
task TUG test, cognitive TUG test, and cognitive TUG dual-
task test. Péricles A et al. suggested calculating the time for
participants to perform TUG reading alternate letters (e.g.,
“ace”) or count backward by threes from any number between
20 and 100 [48]. Charlotte et al. proposed the cognitive
timed up-and-go dual-task to improve the performance of
the standard TUG test to predict falls in the elderly [49].
Compared with the previous improved TUG test, the EATUG
test focuses on the change of the TUG test platform to provide
more fall-related information. The TUG test that integrates
cognition, dual-task, and environmental adaptation will have
optimistic significance for improving high-risk screening.

In recent years, wearable inertial sensors for tracking
and classification of human activities have been thoroughly
researched. Xsens, as a representative, is widely used in hos-
pitals, research institutions, and laboratories. Although Xsens
has the advantages of high reliability and accuracy in motion
capture, there are also some problems such as high price
and complicated operation, which limit its use in community-
dwelling environments. The system in our paper consists of
two units, each of which weighs only 30g, and is equipped
with a software platform that is simple to operate. Besides,
the cost of this system is approximately $150. This work has
achieved low-cost and simplified screening of high-risk groups
through wearable devices developed in our laboratory.

We acknowledge some research limitations. First, the num-
ber of the elderly participating in this study is 103, which is
relatively small. To further test the performance of the system,
more elderly need to be recruited. Besides, the experiment
divided participants into high-risk and low-risk, and we hope
to assess the risk of falls for the older adults in more detail.
Therefore, subjects with a medium risk of falls need to be
labeled. Recently, 86 elderly have been recruited from the

community. The system will be further verified in the future
to evaluate its prediction results for the high-medium-low fall
risk groups. We have reason to believe that through further
improvements, the fall risk system proposed in this study can
be truly used in a community environment.

VI. CONCLUSION

In this study, the constructed EATUG fall risk assessment
system proved to be an improvement of the standard TUG
test. The experiments of the elderly in the community show
that the system can not only provide significant differences
between the high-risk and low-risk groups but also reflect
gait adaptability to environmental changes. Compared with the
standard TUG test, the EATUG system has higher prediction
accuracy and is expected to be used in clinical and community
fall risk screening and intervention guidance.
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