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Abstract—The recognition of gait pattern variation is of
high importance to various industrial and commercial applica-
tions, including security, sport, virtual reality, gaming, robot-
ics, medical rehabilitation, mental illness diagnosis, space
exploration, and others. The purpose of this paper is to study
the nature of gait variability in more detail, by identifying gait
intervals responsible for gait pattern variations in individuals,
as well as between individuals, using cognitive demanding
tasks. This work uses deep learning methods for sensor
fusion of 116 plastic optical fiber (POF) distributedsensors for
gait recognition. The floor sensor system captures spatiotem-
poral samples due to varying ground reaction force (GRF)
in multiples of up to 4 uninterrupted steps on a continuous
2 ×1 m area. We demonstrate classifications of gait signatures, achieving up to 100% F1-score with Convolutional Neural
Networks (CNN), in the context of gait recognition of 21 subjects, with imposters and clients. Classifications under
cognitive load, induced by 4 different dual tasks, manifested lower F1-scores. Layer-Wise Relevance Propagation (LRP)
methods are employed to decompose a trained neural network prediction to relevant standard events in the gait cycle,
by generating a “heat map” over the input used for classification. This allows valuable insight into which parts of the gait
spatiotemporal signal have the heaviest influence on the gait classification and consequently, which gait events, such as
heel strike or toe-off, are mostly affected by cognitive load.

Index Terms— Deep convolutional neural networks (CNN), cognitive load, ground reaction force (GRF), sensors fusion,
interpretable neural networks.

I. INTRODUCTION

GAIT recognition has been intensively studied in recent
years for the best achievable accuracy in distinguishing a

certain target case in a plethora of applications, e.g. in health-
care, biometrics [1] and authentication for surveillance and
forensics [2]. Conventional gait sensing technologies are bor-
rowed from well populated research areas, such as image and
video recognition, wearable sensors [1], and speech recogni-
tion [3]. Previous studies proposed cameras to record video
sequence of the body motion [4], wearable sensors to acquire
the limbs’ trajectories and body posture [5], or microphones
to capture the sound of footsteps [3]. These methods generally
perform well, however the quality of data embodying the
spatial and temporal aspects of gait is affected by clothing’s
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conditions, angles in video sequences, the limitation in the
format of the captured signals in wearable sensors and motion
capturing systems, or the presence of other environment
acoustic noise in the captured footstep sound.

An alternative approach is to use force plates to acquire
the ground reaction force (GRF) [6], considering that the
interaction with the walking surface is at the point of contact
with the environment, which cannot be avoided or modified at
will. However, force plates cover small areas, and the user may
often need to artificially modify their gait aiming to step at a
certain location. A preferable choice for GFR sensing of gait
would be a large area unobtrusive floor sensor system, deliv-
ering high resolution spatiotemporal signals, which requires
minimal (if any) cooperation or special attention by the user
and allows long period, continuous data capture [1].

Due to the ambulatory nature of human gait, the environ-
ment varies, directly or indirectly rendering an individual’s
gait inconsistent. A growing body of studies demonstrates that
attention demanding tasks alters the walking pattern in all
healthy individuals in response to dual tasking, and gait should
not be regarded as an automated motor activity that receives
minimal higher-level cognitive input [7], [8]. Certainly, delib-
erate gait is essential for humans to navigate within often
complex environment’s while concurrently execute cognitive
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demanding tasks while walking to reach a desired destination.
The progressive adjustment of gait is regarded as a way
for individuals to minimize the energy cost during the gait
cycle, while walking based on environment’s burdens [9], [10].
Humans continuously optimize energy cost in real-time, even
if the energy savings while walking are small [11]. Thus,
the energy conservation drives changes in gait dynamics, based
on cognitive processing of information.

Furthermore, person’s emotional state, such as pride, hap-
piness, fear and anger, are found to affect gait [12]. However,
the inconsistency of gait can be advantageous for gait biomet-
ric verification since gait under cognitive load would carry a
unique signature due to individual variations in the cost of
processing cognitive information. Another possible scenario
is to detect and characterize cognitive decline with age e.g.
facilitated by floor-embedded inexpensive sensor systems.
Such a scenario is relevant to clinical diagnosis of mobility
decline and impairments in gait and postural control due to
natural aging process [13]; fall risk [14], [15] as well as mental
decline, e.g. Alzheimer’s disease, dementia with Lewy bodies,
vascular dementia, Parkinson’s disease [16].

This work utilizes floor sensors and implements an original
protocol for recording gait under cognitive load (“dual tasks”).
For the purpose, a healthy subject’s natural gait is used as a
control recording for the acquisition and processing of gait
data under a cognitively demanding task. This work addresses
in a novel way a number of challenges, identified in literature
and by own observations, pertaining to the physical sensing
layer, as well as the data processing. Signals are recorded
with an original floor sensor system, specially designed, and
built for optimal spatiotemporal sampling with multiple plastic
optical fiber (POF) distributed sensors [17]–[20]. Multiple
sensor fusion is achieved by deep learning with convolutional
neural networks (CNN) used to classify subjects’ gait. Explain-
able [21] CNN methodology is applied to relate achieved clas-
sifications to the input data, allowing visually observable gait
events to be identified as most relevant for a certain class. The
explainable methodology is based on the existing well-defined
cyclic locomotion patterns in healthy human gait, allowing to
query what part of the gait cycle is essential for recognition
and what are the parts acting as a background (irrelevant for
the classification) by CNN processing. Layer-Wise Relevance
Propagation (LRP) techniques are applied in this work to
interpret the CNNs prediction and identifying the gait events
with largest weight for gait recognition.

The rest of the paper is organized as follows. After intro-
ducing the necessary background in section II and methodol-
ogy in section III, the experiments and results are presented
in section IV. Substantial discussion of the results is included
in section V, followed by conclusions in section VI.

II. BACKGROUND

A. Deep CNNs and LRP
The deep CNNs core building block is the convolution oper-

ator, with the term ‘deep’ referring to the number of layers.
A convolution layer learns a high level of abstraction and
pattern by applying convolution operations, with the aim to
extract features’ representations automatically. A convolution

operation Cs for layer s, with an input xi and kernel l, can be
expressed as:

CS = xi ∗ li =
∑N−1

d=0
x (d) ∗ l(i− d) (1)

Here d and ∗ denote correspondingly the iteration index
and the element-wise multiplication. The deep CNNs utility is
based on the ability to model complex relationships between
inputs and outputs and find patterns in divergent data with high
background levels. Widely researched applications, presenting
weak features on high background, are face [22], text [23] and
speech recognition [24]. Since gait is characterized by events
occurring naturally in all healthy humans, a comparatively
small number of weakly manifested features can be picked
up to make a classification in biometrics or indicate a health
condition by detecting spatiotemporal deviations from gait
previously categorized as “normal” for a specific individual.

For most data classification cases a nonlinear deep ANN
model acts as a black box, since the reasons as to why
the models reached such decisions are not straightforward to
trace to physical events. LRP [21] is a backward propagation
method applied in interpretable deep learning, which identifies
which parts of the ANN input vector carry most weight in the
model prediction. This method has proven to be successful in
a number of applications [22]–[24] to identify the divergent
features for a model to make prediction, thus LRP is promising
for unravelling the spatiotemporal signal and scrutinizing gait
events, to the benefit of developing a certain application, e.g.
aid to clinical assessment or to biometric verification.

B. iMAGiMAT System
The iMAGiMAT footstep imaging system is an

original Photonic Guided-Path Tomography floor sensor
head [17]–[20]). It can record unobtrusively temporal samples
from a number of strategically placed distributed POF sensors
on top of a deformable underlay of a commercial retail floor
carpet. Each sensor comprises of low cost POF (step-index
PMMA core with fluorinated polymer cladding and poly-
ethylene jacket, total diameter 1mm, NA = 0.46) terminated
with a LED (Multicomp OVL-3328 625nm) at one end and
a photodiode (Vishay TEFD4300) at the other. The sensors
constitute a carefully designed set to allow collaborative
sensor fusion and deliver spatiotemporal sampling adequate
for discerning gait events. The 1m × 2m area system is
managed by 116 POF sensors, arranged in three parallel
plies, sandwiched between the carpet top pile and the carpet
underlay: a lengthwise ply with 22 POF sensors at 0◦ angle
to the walking direction and two independent plies, each
consisting of 47 POF sensors, arranged diagonally at 60◦ and
−60◦ respectively (see [17], fig. 6 therein).

The electronics is contained in a closed hard-shell periphery
at carpet surface level, and is organised in 8-channel modules:
LED Driver boards as well as input transimpedance amplifier
boards to receive the data and send it to a CPLD (Complex
programmable logic device) to reformat the data for processing
by a Raspberry pi single board computer for export via
Ethernet/WiFi.

The operational principle of the system is based on record-
ing the deformation caused by the GRF variations, as bending
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Fig. 1. Proposed CNN network architecture for gait classification.
Color-coding of boxes: convolution layers and fully connected layer
(blue); pooling layers (green); flattening layer (brown); dropout layers
(navy); input at the top and softmax output layers (gray). The diagrams
are generated using Neutron [30] from GitHub repository based on the
models’ weights and biases.

affects the POF sensors transmitted light intensity is affected
by surface bending. This captures the specifics of foot contact
and generates robust data without constraints of speed or
positioning anywhere on the active surface.

C. Gait
The details of the GRF dynamics follow the gait cycle,

as the 7 intervals defined by the contact of one or both feet
with the walking surface (see [1], fig.1 therein). The full cycle
gait intervals (events) for a single foot are: A- Heel strike
or Initial contact; B- Loading response or foot flat and dou-
ble support; C- Mid-stance; D- Terminal stance or Heel-off;
E- Pre-swing; F- Initial swing and Mid-swing [1]. In a healthy
gait cycle these 7 intervals are grouped in Stance Phase (A,
B, C, D - 60% of the gait cycle, when the foot is in contact
with the ground) and Swing Phase (E, F, G - 40% of the gait
cycle, foot swinging and not in contact with the ground).

Further to our recent topical review [1] on gait recognition,
gait recognition literature in the past two years has been
focused on solving the view- and clothing invariant problem
for video sequences with more advanced AI methods, such
as generative adversarial network [25], [26]. Recent work
on wearable and floor sensors has been applied for medical
applications such as the impact of muscle fatigue on gait
characteristics [27], health monitoring [28] and age-related
differences [29].

III. METHODOLOGY

A. Data Acquisition and Pre-Processing
Twenty-one physically active subjects aged 20 to 40 years,

17 male and 4 females, without gait pathology or cognitive
impairment, participated in this experiment. The study was
carried out under the University of Manchester Research
Ethics Committee (MUREC), ethical approval number
2018-4881-6782. All participants were informed about the data
recording protocol in accordance with the ethics board general
guidelines and each subject written consent was obtained prior
to experiments. Each participant was asked to walk normally,
or while performing cognitively demanding tasks, along the
2 m length direction of the iMAGiMAT sensor head. The
captured gait data is unaffected by start and stop, as it is
padded on both ends with unrecorded several gait cycles
before the first footfall on the sensor. With a capture rate
of 20 timeframes/s (each timeframe comprising the readings
of all 116 sensors), experiments yielded 5s long adjacent
time sequences, each containing 100 frames. The recorded
gait spatiotemporal signals were able to capture around 4 to
5 uninterrupted footsteps at each pass.

Five manners of walking were defined as normal gait plus
four different dual tasks, and experiments were recorded for
each subject, with 10 gait trials for each manner of walking in
a single assessment session; thus the total number of samples
is 10× 5 = 50 per-subject. The five manners of walking are
defined as follows:

• Manner 1, Normal Gait: walking at normal self-selected
speed.

• Manner 2, Gait while listing to a story: audio input
through headphones, then answer questions after gait
recording is completed.

• Manner 3, Gait with serial 7 subtractions: normal walking
speed attempted, while simultaneously performing serial
7 subtractions (count backward in sevens from a given
random 3-digit number).

• Manner 4, Gait while texting: normal walking speed
attempted, while simultaneously typing text on a mobile
device keyboard.

• Manner 5, Gait while talking: walking at normal
self-selected speed while talking or answering questions.

A set of measured data as xn,s = [ xn,1 . . . xn,116 ] ∈ Rn×116

is harvested from the iMAGiMAT system, where n is the
number of the data block (100 frames) and s enumerates the
POF sensors. A total number of 1050 samples are recorded
for 21 subjects and placed in a 3D matrix of dimensions
1050× 100× 116. The recorded amplitude of data varies due
to the weight of each subject, therefore, data standardization
is implemented as a pre-processing step, to ensure that the
data is internally consistent, such that the estimated activations,
weights, and biases update similarly, rather than at different
rates, during the training process and testing stage. The
standardization involves rescaling the distribution of values
with a zero mean unity standard deviation, using the following
equation:

�xn,s = xn,s − μ(xn,s)

σ (xn,s)
(2)
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Here �xn,s is gait data rescaled so that μ is the mean and σ

is the standard deviation.

B. CNN Structure
Gait analysis in this study is handled as a supervised

learning process. Here, we propose a CNN model, based
on extensive experimentation with different algorithms and
architectures in our previous work [31]–[34], as automatic
feature extractor and classifier. The model shown in figure 1
maps the gait spatiotemporal signal�xn,s to an output label y by
learning an approximation function y = f

(
�xn,s

)
. The network

consists of an input layer, 4 convolution layers, 4 pooling
layers, 2 fully connected layers, 1 batch normalization, and an
output layer with a softmax classifier. The set of 12 stacked
layers in figure 1 utilizes Conv1D kernels (filter size × number
of feature maps × number of filters), MaxPooling strides of 2
and pool size of 2.

The network total parameters are 71,669, with 71,477 train-
able and 192 non-trainable parameters. The parameters can
be calculated from figure 1 as 71, 477 = ∑

kernels+ bias.
A stride of 1 and the same padding is used in the convolutional
layers to output the same length of the original input shape.
To improve the model performance, a regularization method is
utilized as follows: (1) Batch normalization (to normalize the
activations of the previous layer at each batch, by maintaining
the mean activation close to 0 and the activation standard devi-
ation close to 1 [35]). (2) The Batch normalization followed
by a dropout [36] of size 0.5, after the last MaxPooling layer
was flattened, by transforming a matrix to one single column
vector. (3) Dropout of size 0.2 before the output layer.

An ADAM [37] (A Method for Stochastic Optimization) is
utilized to train the model. The used optimizer parameters are
α = 0.002, β1 = 0.9, β2 = 0.999, ε = 1e-08. Here α is the
learning rate or the fraction of weights updated; β1 and β2 are
the exponential decay rates for the first and second moment
estimates, respectively; ε is a small number to avoid division
by zero. The loss is computed using categorical cross-entropy
in every iteration to minimize the network error [38]. The
convolutional layers weight parameters are initiated with a
Glorot uniform [39] with zero bias. The model is trained
and validated (for several experiments) using a batch size
of 100 samples for each iteration; 200 epochs are found
optimal to train the model. The training and validation sizes
are set to be 70% and 10% respectively, where 20% is reserved
for testing the model accuracy. The model is trained, validated,
tested for several runs with data split using a random state
parameter of 42, 100, 200, 2020. The mean performance and
standard error are used to report the accuracy as follows

SE =

√∑
(F−μ)2

q
√

q
(3)

Here F is the F1 score, μ is the F1 scores mean and q
is the number of F1 scores accuracies. The numerator is the
standard deviation.

C. LRP
In this paper the POF sensor spatiotemporal signal �xn,s is

learned by the CNN model to make a prediction of gait class

c using a classification function fc(x). This function can be
interpreted as a “heat map”, or relevance scores, to quantify
certain signal changes associated with gait intervals. The
interpretation of this function is achieved by decomposing the
classification decision into regions of relevance contributed
to the model classification scores. This approach is known
as LRP [40], which is based on backpropagated quantity
preserved between intermediate nodes of adjacent layers. The
LRP produce a heat map identical to the original spatiotempo-
ral signal �xn,s , which can be overlaid on the original signal to
highlight the contributions of gait intervals to the CNN model
prediction of gait class. As the CNN consists of stacked layers,
each layer has feature maps and can be treated as neurons,
where neurons are activated according to [40]:

a1+l
j = σ

(∑
i

gi j + b(l+1)
j

)
(4)

with gi j = al
iω

(l,l+1)
i j

The sum is computed over all previous layer neurons that are
connected to neuron j , where al

i denote the activation of a neu-
ron i in the previous layer in forward direction, and gi j denote
the contribution of neuron i in layer l to the activation of the

neuron j in layer l+ 1. The neuron weight ω
(l,l+1)
i j is received

in forward direction by neuron i from neuron j in the previous
layer and b(l+1)

j is a bias term. The function σ is a non-
linear monotonously increasing activation function to define
the output of that node given an input, ReLU = max(0, x)
passing only positive signals. During CNN supervisory train-
ing, these parameters are learned by computing the output
fc (x) based on evaluating a1+l

j in a forward pass and updated
by back-propagation using the model error. For the latter,
computations are based on categorical cross entropy [38]. The
LRP approach utilizes the CNN output fc for input xn,s and
generates a “relevance score” Rl

i for the i th neuron of layer
l and Rl+1

j from the j th neuron in layer l + 1, where the
relevance conservation principle is satisfied as [41]:∑

i
Ri←− j =

∑
j

R j = fc (x) (5)

IV. EXPERIMENTS AND RESULTS

A. Overview
All algorithms for LRP computation are implemented in

Python 3.7.3 programming language using Keras 2.2.4 [42],
TensorFlow 1.14.0 and iNNvestigate GitHub repository [43].
All codes are run using a desktop with intel core i7 6700 CPU
@3.4 GHz. After data standardization, the deep CNN model
is applied on the dataset in order to test the validity of the
algorithms for identifying gait signatures. We compared the
CNN predictions to manually labelled ground truth in several
experiments, based on individuals’ identity and the changes
to normal gait incurred by cognitive load. The models’ clas-
sification performance is evaluated using confusion matrices.
The performance of the LRP methods is examined in detail in
subsection D.

B. Gait Signature Classification
The proposed model is trained, validated, and tested on

K × n × s (K = number of samples, n = number of frames,
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Fig. 2. Gait signature classification confusion matrix for 21 subjects. The
diagonal squares are the true positives, in this case 100% of classification
and elsewhere are the false positives (0%).

S = number of POF sensors) spatiotemporal samples as
K × 100× 116 for several runs using different random state
parameters. K is chosen on the basis of experimental protocols
and the mean performance and standard error are used to
calculate the accuracy.

Experiments are conducted to investigate the ability of
the deep CNN to identify gait signature patterns by fusing
116 POF sensors in the model’s deep layers, to extract gait
patterns automatically in the following experiments.

Experiment 1 (21 Subject Gait Signature Verification): To
demonstrate the model’s ability to verify the identity of
a subject based on their gait signature, we assigned each
subject’s data a label numbered from 0 to 20, containing
50 samples of normal and cognitive load as explained in
section II.D. The model is trained, validated and tested on
K = 1050 samples with different random state parameters,
and the mean performance and standard error are used to
calculate the accuracy. The median classification confusion
matrix is shown in figure 2, where the model achieved F1-
score of 100% prediction and mean performance and standard
error of 99.5± 0.28%.

Figure 3 demonstrates the learning curve performance of
the CNN over the iterations while training. We generate the
training loss for each of the training sets and validation loss for
each of the validation sets over the epochs. Figure 3a shows
the average training and validation losses. The training loss
starts from 3 and gradually reduces to 0. The validation loss
generally follows the training loss, with a few spikes, and
stablizes after 150 epochs. As expected, accuracy increases
with decreasing loss, demonstrated in figure 3b. The average
training and validation accuracy stablizes after 150 epochs
after a few spikes.

For additional testing of the model performance in real-
life scenarios, we evaluate the model on imposter and client

Fig. 3. Model training and validation loss in (a) and model accuracy in
(b) for 21 subjects in 5 classes.

classification. The client’s data are used for the model training
and validation and only 20% of that data is used for testing,
while the imposters data are only used at the testing stage. The
model at the testing stage predicts the client’s gait sample
identity with an F1 score of 100% and unable to predict
the imposter which returns 0% F1 score. This is achieved
by taking 17 subjects as clients (K = 850 samples), and
4 subjects as imposters (K = 200 samples). Clients were split
70%-10%-20% for training validation and testing respectively.
In the testing stage, the model was able to distinguish correctly
imposters and clients in 100% of cases.

Experiment 2 (Gender Classification): To demonstrate the
model ability to recognize gait signatures, we perform a
two-class classification based on the gender of the subject
using the normal gait and cognitive load samples. The model
is trained and validated with 6 subjects (K = 300 samples)
including 3 males and 3 females. Model testing is by predict-
ing the gait class of two new subjects (K = 100 samples, never
seen by the model), the selection of males and females are
done randomly. In this experiment the deep CNN prediction
achieved F1-score of 95%, with 96% true positive prediction
for the male samples, and 94% true positive prediction for the
female samples.

Experiment 3 (21 Subjects Cognitive Load Classification):
The aim of this experiment is to show that in healthy subjects
the influence of cognitive load on gait varies from subject to
subject and the normal gait can be predicted with higher true
positive rates than predictions under cognitive load. Five types
of gait signatures, normal and four cognitively demanding
task patterns, are learned for 21 subjects. The performance
observed for the 5 classes is shown in figure 4, as the median
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Fig. 4. Confusion matrix for classification under cognitive load: 21 sub-
jects, 5 classes.

Fig. 5. Model loss (a) and training and validation accuracy (b) under
cognitive load, 21 subjects and 5 classes.

confusion matrix based on several runs with F1-score of 50%
and mean performance and standard error of 48.25 ± 1.03%.
The results show that normal gait is predicted by a true positive
incidence of 92%, while there is notable confusion between the
dual tasks performed by the 21 subjects. The different random
state parameters return the same result, where the normal gait
true positive prediction is higher than 90% and substantial
confusion between the dual task cases. Figure 5 shows the
CNN learning curves over the training iterations, where the

TABLE I
MODELS CLASSIFICATION ACCURACY FOR EACH SUBJECT

TABLE II
F1-SCORE PREDICTIONS FOR BINARY CLASSIFICATION

training loss declines from 1.8 to 0 while the validation
loss rises from 1.8 to around 4 for 200 epochs, resulting in
low validation accuracy as per figure 3b to evidence severe
overfitting.

Experiment 4 (Single Subjects Cognitive Load Classifica-
tion): In this experiment gait patterns are investigated within
each subject, to show that each subject gait under cognitive
load can be learned and predicted. This is achieved by training,
validating, and testing the CNN to classify each subject gait
pattern using the normal gait and cognitive load. Each subject
data is split using random state of 62 to cover all the 5 classes
for testing with K = 50 samples. The model evaluation using
the F1- score is detailed for each subject in table I. Gait data
is predicted with more than 85% F1-score for 16 subjects, and
for 6 subjects F1-scores are between 65% and 77%.

Experiment 5 (Binary Classification Under Cognitive
Load): To study patterns for each of the 4 dual tasks (M2-M5)
representing variants of cognitive load, we organize the data
into four groups so that binary classification performance to
distinguish between gait under normal (class 0) and cognitive
load (one of classes 1, 2, 3 or 4, depending on the particular
data group) conditions can be studied separately for each
dual task. The CNN is trained 16 times, implementing 4 runs
with each of the 4 data groups. The F1-scores for each run
are shown in table II. The first run in each data group is
based on training and validating the CNN on 20 subjects
and test the model on 1 subject. In the second run, the
numbers are 19 and 2, respectively; in the third – 17 and
4 respectively. The last run is based on splitting the data into
70% for training, 10% for validation and 20% for testing, using
K = 420 samples with 200 random state parameters (since the
accuracy doesn’t change with the random state). As shown
in table II, the highest classification performance is achieved
in the first runs (except for the group containing class 3). This
is used essentially in the implementation of LRP to analyze
the gait classes for that subject in the first run, as reported
further.
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TABLE III
F1-SCORE PREDICTIONS FOR COMPRESSION OF CNN WITH

CLASSICAL CLASSIFIERS

C. Comparison With Statistical Classifiers
Gait signature recognition achieved high accuracy compered

to Cognitive Load Classification; therefore, the validity of
these achieved classification is verified with statistical clas-
sifier. Here we compare the classification results achieved
by CNN in experiment 1 and 3 with statistical classifier
algorithms (also known as shallow learning), such as Sto-
chastic Gradient Descent (SGD) [44], K-Nearest Neighbors
(KNN) [45], and Gaussian Process Classifier (GPC) [46].
To change the format of the statistical classifiers input, the data
are flattened to length 11600= 100×116, with and samples of
k = 1050 for experiment 1 and 3. The classification F1-scores
on experiment 1 and 3 are shown in Table III. GPC fails in the
true positive prediction of normal gait, while KNN achieves
the best classification results. However, the CNN outperforms
the statistical classifiers for both gait signature recognition and
normal gait prediction.

D. LRP Analysis of Gait Spatiotemporal Classifications
The focus of this section is to identify the features picked up

by the model to classify gait under cognitive load. To obtain
accurate LRP relevance scores Ri , the model true positive
prediction should be high. Therefore, the gait class with high
positive rate is considered for LPR analysis. The learned CNN
model parameters in experiment 1, 3 and 5 were frozen for
LRP analysis. Experiment 4 is to check if there is a variation
in gait within a subjects; therefore it is not considered for LRP
analysis. LRP Sequential Preset a Flat (LRP-SPF) [47] based
on the LRP (see III.C) was utilized for this work, as it has
shown sensitivity to gait inconsistency using perturbation [34].

The iMAGiMAT system captures a sequence of periodic
events as distinct, but similar cycles for each foot. This spa-
tiotemporal sequence is generated by the change of light trans-
mission intensity in the POF sensors: xi = [ x1 . . . x116 ] ∈
Rn×116. However, a typical interpretation of the gait cycle,
based on visual observation, is derived much less from the
spatial component than the temporal one [1]. Thus to progress
towards interpreting the CNN classifications in terms of
observable gait events, we average over the spatial domain
according to:

S A[n] = 1

s

∑116

s=1
(xn,s) (6)

Here xn,s are the readings from individual sensors s at a
specific frame n within each sample and SA is the frame
n spatial average calculated as the arithmetic mean over all
sensors. Figure 6 displays a typical SA of the spatiotemporal

Fig. 6. Representative gait cycle spatial average of a spatiotemporal
signals (see equation 6). Gait events recorded by the sensors in a typical
full gait cycle of two steps ([1] as A, B, C, D, E, F, G): 1- Heel strike,
2- Foot-flattening, 3- Single support, 4- opposite Heel strike, 5- opposite
Foot-flattening, 6- Double support, 7-Toe-off, 8- Foot swing, 9- Heel strike,
10- Double support, 11- Toe-off, 12- Foot swing, 13- opposite Heel strike,
14- Single support, 15-Toe-off.

gait signal, labelling the main gait events [1] over a two-step
gait cycle.

Figures 7 and 8 display randomly chosen samples of single
subjects, returning 100% true positives prediction for gait
signature verification in experiment 1; figure 9 displays ran-
domly selected samples of normal gait classified with 100%
true positives in experiment 3; figure 10 shows predicted gait
samples in experiment 5 for a subject never seen by the model
when the training set is 20 subjects.

The top panels in figures 7, 8, 9 and 10 display calculated
SA aligned against the relevance “heat map”, generated from
the calculated LRP scores and displayed in the bottom panels
(to be discussed further in section V). The SA temporal
sequences have different values on the y axis due to the
nature of the captured gait signal, which is influenced by the
individual anthropometry of subjects.

V. DISCUSSION

A. Classification of Gait Signatures Under Cognitive
Load

The present study investigates the importance of cognitive
load influence for gait inconsistency. We present a comparison
of classification performance between 5 types of gait: normal
and under cognitive load in 4 different tasks. Deep CNNs
not only outperform, unsurprisingly, the classical classifier
methods but also achieve an F1-score of 100% (see figure 2
and table III) for gait signature verification in experiment
1 with 21 healthy adult’s data, and 100% prediction of 4
imposters and 17 clients. The learning curve in figure 3
demonstrates the good match of the CNN methodology for
gait verification tasks. The network parameters are updated via
backpropagation to map gait during training to 21 classes are
correctly optimized at the validation stage, which is important
for the testing stage to make prediction for gait verification.

Experiment 2 is in essence an extra validation of the
adequacy of the spatiotemporal sampling of GRF by the
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Fig. 7. LRP methods applied on a single subject from experiment 1 testing data (each column is one pair), to identify gait events relevant for the
CNN prediction to classify the cognitive load impact on gait. SA of gait spatiotemporal signals: black; SA for LRP relevance signals over gait temporal
period: blue; POF LI (Plastic Optical Fiber Light Intensity). Vertical red bars with numbers display correspondence to gait events as per fig. 6: 1,5-
Loading response or Foot flat and Double support, 2,3,4 - Loading response or Foot flat and Single support.

Fig. 8. Consistent with identifying gait events relevant for the CNN prediction, random subject from experiment 1 gait events are: 1,4- Loading
response or Foot flat and Single support, 2,3- Foot swing and opposite Heel strike, 5- Loading response or Foot flat and Double support.

Fig. 9. LRP methods applied on normal gait samples (from different subjects) from experiment 3 testing data, to identify gait events relevant for the
CNN prediction to classify the cognitive load impact on gait. Gait events are: 1, 2, 3- loading response or Foot flat and Double support.

116 sensors and their fusion, as well as that the classification
performance of the trained models. An F1-score of 95% is
achieved for test data from an unseen male as well as an
unseen female. Although experiment 2 has the character of
a sanity check, the results lend support to the value of floor
sensor gait data as a biometric.

Experiment 3 is conducted to study the possibility to classify
cognitive load on healthy subjects. It has shown that normal
gait is classified with higher true positive rate compared to
any of the cases of gait under cognitive load. This experiment
also indicates that the achieved true positive rates in predicting
normal gait are higher for the CNN model compared to the

classical classifiers (see figure 4 and table III). The learning
curve in figure 5 indicates overfitting [48], to imply that
the gait patterns under cognitive load diverge among the 21
subjects. Samples obtained under cognitive load samples are
hard to fit due to the inconsistency of gait pattern changes
among the subjects.

The results from the first three experiments suggest that
while the dual-task data obviously contributes to the high
F1-scores in experiments 1 and 2, it results in substan-
tially degraded true positive rates in experiment 3. However,
experiment 4 shows that when classifications are within a
single subject the performance is notably better: for 16 subjects
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Fig. 10. LRP methods applied on a single subject from experiment 5 testing data (each column is one pair), to identify gait events relevant for the
CNN prediction to classify the cognitive load impact on gait. Gait events are: 1- Heel strike, 2- Toe-off, 3- between Foot swing and opposite Heel
strike, 4- between Double support and Toe-off.

(out of 21) the gait under cognitive load the F1 score ranges
between 80 to 100%, with the remaining 5 subjects the range
being between 69% to 77%.

These observations can be discussed in the light of humans
having a natural gait pattern evolved over millions of years;
however, changes in gait when experiencing cognitive load at
any particular instance are specific to the individual, expressing
their response to the impaired ability to process cognitive
information. In experiment 5, we use binary classifications
(see table II) to distinguish normal gait from gait under the
4 variants of cognitive load. The best classification results
are obtained when the model learns normal or dual-task gait
features for a single subject. This implies that although learned
gait features under cognitive load may not be readily portable
across subjects, they are consistent for each individual and
can contribute substantially for correct subject classifications;
however, the accuracy drops if more subjects are involved.

B. Interpretation of Classifications
Figures 7, 8, 9 and 10 provide the link between the LRP

relevance scores (“heat map”) and the time sequence of the
calculated SA signal in a single gait cycle window. The LRP
score maxima are suitable pointers to the parts of the gait cycle
which are most relevant for the classifications. For accurate
heat maps the model’s true positive prediction must be close
to 100% for most of the testing samples, which points to
the results from experiment 1 (figures 7 and 8), experiment
3 for normal gait heat maps - in figure 9 and experiment
5 for a single subject predicted gait under the 4 variants of
cognitive load - in figure 10. Focusing just on one complete
gait period (two steps) is justified by the fact that on multiple
repetitive occasions each subject will initiate a gait cycle (see
full description of the gait cycle events in [1]) by performing
a heel strike, strictly followed by other gait events described
in figure 6 and ending in a toe off.

Figure 7 indicates that loading response has high relevance
to assigning a gait signature to one out of the 21 subjects
gait samples, notably even under cognitive load, as indicated
by with gait events numbered from 1 to 5. Figure 8 shows
another subject randomly selected out of the 21. The indicated

gait events are loading response for normal gait (1), gait
while texting (4) and gait while talking (5); Foot swing and
opposite Heel strike for gait while listening to a story (2)
and while performing subtraction (3). The indication of events
numbered 1, 2, 3 on figure 9 implies that normal gait identified
by loading response or Foot flat and double support for
21 subjects. This gait event is marked by the model by 92%
true positive (see figure 4) to distinguish normal gait from
4 cognitive load classes. Figure 10 shows cognitive load gait
samples for one subject as per experiment 5 (the one subject
never seen by the model) summarized as follows:

i. Gait while listening to story: Heel strike is significant
for distinguishing listing to story from normal walking.

ii. Gait while performing serial 7 subtraction: Toe-off is
significant for distinguishing 7 subtraction from normal
walking.

iii. Gait while texting in smart phone: the transition from
foot swing to opposite Heel strike is significant for
distinguishing texting from normal walking.

iv. Gait while talking: the transition from double support
to Toe-off is important to distinguishing talking from
normal walking.

Overall, the LRP analysis indicates that subjects’ normal
gait is characterised by loading response; while the other
cognitive load gait classes is classified by landing or lifting the
feet on/from the surface of the iMAGiMAT system. For subject
verification there are many second relevant scores are used to
predict the identity of the subject based on gait signature.

C. Benefits and Limitations
In view of gait recognition methods, floor sensors capture

high resolution spatiotemporal data of gait, which is adequate
for the monitoring of gait and walking habits in a range of
applications. An unobtrusive floor sensor, such as iMAGiMAT,
avoids the limitations caused by clothing conditions and view-
ing angles in video sequences [25], [26], the format of the
captured signals in wearable sensors [27] and motion capture
systems [49], acoustic noise background in footstep sound
capturing systems [3], or the small area and fixed position
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of force plates [6]. Substantially, when processed by deep
learning methods, floor sensors gait data, when captured under
cognitive load, allows the accurate identification of subjects.
This is suitable for laboratory as well as home/dwelling
use, for healthcare or security, without compromising privacy.
Scaling-up and large area deployment is naturally limited by
cost; however the technology demonstrated in iMAGiMAT
allows the cost of materials for manufacturing the sensor head
to be kept below 150 USD/sq.m [17].

VI. CONCLUSION

We have shown that floor sensors and gait under cognitive
load can be used for subject’s identifications by capturing the
changes in the individual’s unique gait signature due to the
need to process additional cognitive information in performing
additional (“dual”) tasks. We have shown that, despite higher
identification of subjects, gait under cognitive load is variable
among healthy subjects, thus normal gait still consistence.
In particular, LRP analysis of gait classifications indicate a
possible bridge between the output of artificial intelligence
systems for processing of high quality gait data and deci-
sions based on visual observations by humans, or quantitative
parameters derived from such observations [1], typical in
current practice. An obvious potential impact is in the areas of
biometrics and security [6], with the usual caveats pertaining
to the regular update and fine-tuning of models, e.g. similar to
other areas of biometric recognition. In healthcare alone, gait
data from floor sensors can contribute and enhance the already
significant interest in the detection of the onset of Parkinson
disease [16] and fall risks [14]. It can be speculated that a
possible future direction may involve the inobtrusive sampling
of subjects’ gait under routine conditions over intervals span-
ning periods of physical and mental changes due to ageing.
Analysis of such longitudinal gait data, possibly corrected
for mood, emotional state, and cognitive load personalized
influences on gait, could contribute to earlier detection of
disease onset.
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