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Gait Activity Classification Using Multi-Modality
Sensor Fusion: A Deep Learning Approach
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Abstract—Floor Sensors (FS) are used to capture
information from the force induced on the contact surface by
feet during gait. On the other hand, the Ambulatory Inertial
Sensors (AIS) are used to capture the velocity, acceleration
and orientation of the body during different activities. In
this paper, fusion of the stated modalities is performed to
overcome the challenge of gait classification from wearable
sensors on the lower portion of human body not in contact
with ground as in FS. Deep learning models are utilized for
the automatic feature extraction of the ground reaction force
obtained from a set of 116 FS and body movements from
AIS attached at 3 different locations of lower body, which
is novel. Spatio-temporal information of disproportionate
inputs obtained from the two modalities is balanced and fused within deep learning network layers whilst reserving
the categorical content for each gait activity. Our approach of fusion compensates the degradation in spatio-temporal
accuracies in individual modalities and makes the overall classification outcomes more accurate. Further assessment of
multi-modality based results show significant improvements in f-scores using different deep learning models i.e., LSTM
(99.90%), 2D-CNN (88.73%), 1D-CNN (94.97%) and ANN (89.33%) respectively.

Index Terms— Floor sensors, ambulatory inertial sensors, inertial measurement unit, deep learning, artificial neural
networks, convolutional neural networks, long short-term memory.

I. INTRODUCTION

GAIT defines unique walking pattern in humans which
gets influenced by mutually independent factors such as

height, weight, gender and age etc. Gait patterns get affected
by many factors such as illness [1], fatigue [2], emotions [3],
cognitive and motor tasks [4]. In addition, gait is also prone
to influence from external factors such as clothing, wearing
shoes or carrying load [5].

Gait analysis is on the way to maturity with applications in
many research areas. In the medical field, the study of human
gait is used to monitor and examine certain neurological dis-
eases such as Alzheimer’s and Parkinson’s Disease (PD) [6].
Moreover, gait analysis has applications to assess the ability
of sportsmen after injuries occurred during sport activities [7].

Ambulatory inertial sensors (AIS) are an inexpensive, con-
venient and efficient means to acquire particulars of human
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gait. Inertial measurement unit (IMU) is a type of ambulatory
sensor that has been widely used to acquire gait information
due to its small size, weight and cost [8]. A basic IMU
comprises an accelerometer, gyroscope and sometimes a mag-
netometer, which allows a comprehensive report about the
orientation, velocity and acceleration of the human body.
An important factor to consider is that although ambulatory
sensors are non-invasive, they require the individual to coop-
erate in wearing them on different body parts such as head,
waist, chest, thigh, shank and foot to record gait signals [9].
The benefits of gait assessment and monitoring in patients can
also be realized with smart phone based IMUs [10]. The smart
phone now days is capable of performing all necessary tasks
such as making decisions and contacting the health providers
in case of emergency situations.

While walking, the interaction of human body with the
environment is defined by the point of contact with the
walking surface, which cannot be modified at will. Floor
sensors (FS) are normally used to describe such interac-
tion. FS can be unobtrusive and mainly based on resistive
plates, capacitive plates, piezoelectric sensors or fiber optic
cables [11]. These systems are typically installed indoors,
in controlled environments such as offices and buildings. Most
FS have been employed to record physiologically defined
features, such as center of pressure, step length and cadence
etc. [12], [13] rather than for collecting raw data over longer
periods of time [14]. FS require minimal attention by the user
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TABLE I
GAIT CLASSIFICATION USING MULTI-MODALITY SENSOR FUSION

and are suitable for continuous data capture. However, long
term data acquisition motivates advances in sensor technology
and data processing to extract unique features from the gait
information.

In the past few years, the exponential rise in the efficiency
and capabilities of sensor systems has enabled the extraction
of more valuable information from sensing modalities [11].
Different sensing modalities have developed distinct set of
features based on bio-mechanical measures related to physical
body dimensions, body part masses and time varying forces
generated by muscles during the gait cycle. Advances in
gait sensing instruments have resulted in the evaluation of
many human locomotion characteristics obtained from high
quality information. However, the feasibility of a simple and
widely used modality to adequately map the complex gait
features is still unclear. Therefore, to capture the complex
nature of gait information, a multisource and multi-modality
sensor fusion approach is required. In this context, multi-
modality sensor fusion uses information from multiple sources
and provides a more comprehensive description of individual’s
gait [15]. Multi-sensor data fusion can be seen as combining
data captured from multiple information sources however the
resulting information pool produces a new representation, dis-
tinct from those captured by individual sensors. Still accuracy
and performance of these systems is highly debated and there
is significant amount of work for improving the quality of data
from the gait sensors. A survey of results for gait classification
using multi-modality sensor fusion is presented in table I.

Deep Learning (DL) has become the state-of-the-art in many
pattern classification techniques such as iris [16], face [17],
finger-print [18], palm vein [19], ECG [20], human action [21]
and gait [22] etc. DL models require minimal pre-processing
on complex data and are capable of achieving robust and
improved accuracies when dealing with larger volumes and
ranges of datasets. DL is called upon to maximize the use
of data variance and remove the dependencies on hand-
crafted features from individual whilst exploring the effec-
tiveness of the combined information from a discriminant
angle [59]–[62], [64]–[67].

Herewith, we present a unique DL approach to extract and
fuse gait information from two different modalities i.e., FS
and AIS. DL models, such as Feed-Forward Neural Net-
works (FFNN), Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) Networks are used to
automatically extract the data representations, fusing rich
features of gait patterns obtained from the two modalities
and deliver high statistical confidence. Significant improve-

Fig. 1. AIS placed on the user, comprising the Sense-HAT board
attached to the R-PI powered by a portable battery bank (sensor 1) and
9DOF Razor IMUs (sensors 2&3) connected through USB cables to RPI.

ments in f-scores achieved using LSTM are discussed in
section III.

Our motivation in this work, is twofold: First, to analyse
the change in gait occurring due to cognitive activities in
lower portions of human body using two modalities i.e., FS
and AIS; second, to fuse the spatio-temporal information with
the aim to detect changes in human gait for health care
scenarios i.e., age related factors [14], [23] and cognitive
tasks [24], [25]. The effect of a dual tasks on gait at a
certain age has a direct relation with the cognitive difficulty
of the task and the type of gait performed [26]. Indeed,
the importance of cognition is supported by the fact that gait
changes are more common in people having cognitive impair-
ment [27]. Sensors are contributing to the iterative process
of engineering and development of new means to characterise
gait. The comparison of results is complicated by the absence,
to date, of a standard approach to experimental methodology
to evaluate changes in gait from data acquired from the lower
limbs by multiple modalities. In our previous work [28],
feature extraction methods like PCA and CCA have been
used with statistical methods to select the best optimal gait
features for the fusion task. Feature domains containing many
features increase the chances of redundancy and irrelevancy.
In this paper using DL models, the automatic extraction of
features from data leads to substantially more robust and
accurate results as compared to the previous machine learning
techniques. The proposed method is able to achieve reliable
F-scores from a limited dataset.
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Fig. 2. Acceleration and angular velocity values from AIS for 7 gait activities i.e., normal walk, fast walk, dual tasks: subtracting number 3,
number 7, listening, typing on mobile and talking whilst walking.

This paper is structured as follows: Section II describes
the AIS and its functioning, together with the role of FS.
Our approach of DL based sensor fusion is demonstrated
further in that section. Section III presents results followed
by discussions. In the end, section VI concludes paper.

II. METHODS AND MATERIALS

A. Ambulatory Inertial Sensors (AIS)
A portable AIS system has been developed and deployed to

study the effect of gait on the movements in the lower half of
human body. The AIS system comprises: (i) a Raspberry-PI
(R-PI) III Model b+ with a quad core 1.4GHz processor,
1GB RAM, Bluetooth and built-in Wi-Fi; (ii) Sense-HAT
board [29] with a built-in 3D accelerometer (+/−16g) and a
gyroscope (+/−2000dps), (iii) two 9DoF Razor IMUs [30]
with Atmel SAMD21cortex-M0+ microprocessor (32 bit),
a 3D accelerometer (+/−16g) and a gyroscope (+/−2000dps).
The R-PI with the Sense-HAT board (attached at the top, see
figure 1.) with a 2000-mAh portable battery bank (attached at
the bottom) is called ‘Sensor 1’ which is connected through
USB cables to both 9DoF Razor IMUs called ‘Sensors 2 &
3’. Further, AIS is connected to a workstation for data transfer
and control through a Wi-Fi connection as shown in figure 1.

Different number of sensors have been reported to capture
gait activities in literature. However, deploying the minimum
number of sensors may result in performance bottle necks
whilst recording the complex gait activities [9]. The sensor
positioning and number of sensors attached to the human
body are also important factors whilst judging the quality
of extracted data. Panebianco et al. [32], reported accuracies
using 17 algorithms on 5 IMUs placed on back (1 IMU),
shanks (2 IMUs) and feet (2 IMUs). To estimate the stance
time, results obtained from the acceleration values of shank

and foot performed better than the lower trunk. However,
angular velocity estimation performed better in the detection
of toe off and heel-strike events, with noticeable dependencies
on sensor position.

From AIS, raw data on acceleration and angular velocity
values is obtained from sensors 1-3 as shown in figure 2. The
default sampling frequency of sensor 1 is 30Hz while sensor
2 and sensor 3 are sampled at 100Hz. After filtering and re-
sampling, the spatio-temporal information from all three sen-
sors of AIS is synchronized at 20Hz. Raw acceleration values
are in two’s compliment format, therefore they are converted
into values between +16g and −16g. To calculate the angle (θ)
from raw angular velocity (ω) values, the following formula
is used:

θ = ω.�t + θ (1)

where �t is the time step. The nature of experiments requires
subjects to start walking from one end of the FS to the other in
forward direction whilst wearing the AIS. Therefore, all IMUs
are aligned so that the highest acceleration (in forward direc-
tion) is represented by X-axis; weaker acceleration (vertical,
in up/down direction between heel strike and toe off events of
each foot) is represented by Z-axis; the weakest acceleration
(lateral, in left/right direction) is represented by Y axis. For
different gait activities, the results obtained from the three AIS
sensors are shown in figure 2.

B. Floor Sensors (FS)
In this work, an original FS system (size: 2 m × 1 m

approx.) is used to acquire the spatio-temporal dynamics of
the ground reaction force during the chosen gait activities.
This system comprises 116 plastic optical fiber (POF) sensor
elements, each terminated with an LED as a light source and
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Fig. 3. Left: 3 plies of FS, Right: Overall connection of 116 POF sensors
to the outside workstation through a dedicated RPI.

a photodiode as detector. The three-ply arrangement of POF
based cables with circuit boards and wires are enclosed around
the periphery of the FS and connecting with an umbilical
cord to a R-PI in a shielded box as shown in figure 3.
The set of POF sensors provides efficient sampling of the
spatial-temporal distribution of the integrated transmission
losses resulting from the applied pressure on the contact
surface. The R-PI is used to transfer information to external
work station using a Wi-Fi connection.

Data obtained from FS is a string of values output from
12bit ADC converter at every timestamp. These strings of
information are processed and converted into transmitted light
percentages. FS is synchronized at the same frequency of 20Hz
used with AIS. Figure 4 shows the spatial average of the
spatio-temporal information obtained from FS from gait activ-
ities,

S A [t] = 1

n

∑n

k=1
(Fk[t]) (2)

where n is the total number of sensors and Fk is the amplitude
of the individual sensor response. The full gait cycle can be
represented (see figure 1 in [15]) as 5 events in the stance
phase. Some of the gait events are possible to identify by visual
inspection of data obtained separately from both modalities.
For illustration purposes, in figure 5 only HS is indicated
on time patterns from the FS signal (as the mean of all
sensor values) and the AIS signal (as the root sum of squared
maximum accelerations in all 3 directions, given by

Amax = 2
√

A2
x + A2

y + A2
z (3)

C. Gait Activities
Human gait is no longer considered as an automated activity

that utilises minimal higher-level cognitive input. In fact, the
multi-faceted neuropsychological effects on gait and the inter-
connection between the mobility control and related factors
incorporate new research pathways. Woollacott et al. reviewed
the effect of dual task paradigms to observe the effect of
age related changes in balance control and reductions in
stability whilst performing an additional activity in healthier
and elderly adults [33]. O’Sheas et al. [34] observed the

performance of simultaneous motor or cognitive tasks such as
walking at a certain speed (single task), transferring a coin
(motor task) and performing number subtraction (cognitive
task) on 15 PD patients. They concluded that gait changes
whilst performing a cognitive and motor demanding task,
however an additional secondary task does not necessarily
determine the severity of disease. Costilla-Reyes et al. reported
the capability of POF based FS (the “intelligent carpet” [35])
to detect changes in gait patterns using 10 manners of walk-
ing [36]. Zebin et al. [37] reported 6 daily life activities with
92% average recognition accuracy using only accelerometer
and gyroscope data as inputs.

In this research, we have conducted 7 gait patterns with
different activities i.e., normal walk, fast walk, subtracting
3 from a random number, subtracting 7, listening to the
story, typing on mobile and talking to the operator. Data is
collected from 11 healthy volunteers (gender: male/female;
age[year]: 30.18 ± 7.7; weight[kg]: 71.18 ± 11.1; height[cm]:
173 ± 7.8), wearing AIS and walking on the FS at the same
time. Each gait pattern is repeated 10 time for every activity.
It takes the average user approximately 35 to 40 minutes
to complete the 70 gait experiments including settling time
between the experiments. A single gait activity starts when the
user starts walking from one end of the FS and finishes when
user steps off the FS on the other end. Therefore, one activity
means recording of 2-3 step patterns and not a complete gait
cycle. Data obtained from both modalities was stored in CSV
format files on their dedicated RPIs and used on a workstation
for further processing and fusion as presented further. For
the proposed study, Manchester University Research Ethics
Committee (MUREC) has granted the ethical approval to
conduct experiments on healthy volunteers using FS and AIS.
Written consent from each volunteer’s was obtained prior to all
experiments and research was conducted in accordance with
the general guidelines of ethics board.

D. Deep Learning Based Multi-Modality Sensor Fusion
Multi-modality sensor fusion results in producing new data

representations which are unique to the collection of individual
sensors and modalities. Several modalities have demonstrated
their capabilities to capture gait attributes and anomalies;
however, most of these methods rely on handcrafted features.
In such approaches, feature engineering might lose the salient
features involved in problems. In our work, DL achieves
the learning and extracting of highly statistically significant
features from the gait activity data recorded from two different
modalities. DL models implemented and used to extract gait
features from both modalities, are discussed as follows:

1) Feed-Forward Neural Network (FFNN) Model: The neural
network in which output from one layer is fed to the next layer
in forward direction without any loops in the network is called
a feed-forward neural network [38]. The basic architecture of
a FFNN model consists of an input layer, few hidden layers
and an output layer of neurons. In FFNN, the neurons in one
layer are fully connected to the next layer through synapses or
assigned weights to learn the complex representations of data.

In our work, for AIS, the training set is a 2D vector
(73920 × 18) in which each row represents the spatial data
at a single time instance. 18 Input values are passed to the
fully connected (FC) layers of sizes 16, 12, 10, 8 and an
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Fig. 4. FS results of a user performing 10 gait cycles for 7 gait activities i.e., normal walk, fast walk, dual tasks: subtracting number 3, number 7,
listening, typing on mobile and talking whilst walking.

Fig. 5. (a) FS mean of sensor values vs time frames obtanied from FS;
(b), (c), (d) Root sum of maximum accelerations vs time frames from AIS
sensor-1,sensor-2,sensor-3 for a normal walk gait pattern. The notable
heel strike dip at the dashed lines is alternating between the two legs:
HS1-Right foot and HS2-Right foot from sensor 3 and HS1-Left foot and
HS2-Left foot from sensor 2. Sensors 1 is not sensitive to HS1 and HS2,
as expected, because of its position close to centre of mass and not on
the limbs.

output layer of size 7 (representing 7 gait activities). The first
layer size (16 being a multiple of 2 and closer to the average
of input (18), output (1)) is selected, however, any number
between number of input and output can be selected. Also
higher accuracy is observed using first layer of size 16 than 8.
The effect of every weight at FFNN layers is determined by the
activation function which allows the model to achieve a desired

output. To address the non-linearity of the spatio-temporal
gait patterns in our dataset a Rectified Linear Unit (ReLU)
activation function [39] is implemented at all the hidden layers.
The weight of every neuron is multiplied by the input and
passed through the activation function. Propagation continues
until a prediction is achieved. At the output layer of size 7,
a linear classifier Softmax is used to transform results into
probabilities [40].

For FS, the training set is also a 2D vector (73920 × 116).
116 input values are passed to the FC layers of sizes 64, 32, 10,
8 and an output layer of size 7. For the multi-modality case,
in order to create a balance between the number of features,
the FC layers of size 10 from each modality are merged as
shown in figure 6. The outputs from each layer are passed
in forward direction to the next layer. For multi-modality
case, forward propagation takes places over the merge
layer.

Likewise forward propagation, the FC layers are responsible
for the propagation of error in back ward direction. The
predicted results are compared with the actual results and the
error is quantified with the help of a cost function [41], [42].
We have used cross-entropy, based on a logarithmic function
to handle very small errors. The error is back propagated in
the form of updated weights send to the neurons layer-wise in
backward direction. Among the gradient based algorithms such
as stochastic gradient descent [43], conjugate gradient [44] and
Adam [45], which are the commonly used methods for error
optimization, the latter is used to determine the learning rate
of new weights and biases in our research.

The above procedure is repeated and weights are updated
after each batch of observations from the training set for each
modality. Batch size of 120 observations is selected to update
the weights which is equal to one activity. One epoch is
completed when one whole training set passes through the
FFNN. We have trained all experiments through 100 epochs
for all cases. Results are further discussed in section III.

2) Convolutional Neural Networks (CNNs): CNN is a typical
DL model which uses different levels of abstraction to learn
the hierarchical representations of patterns existing in the
dataset. CNN have been extensively utilised to classify and
recognize humans based on various gait parameters i.e., foot-
steps [46], gender and age [47], gait energy images [48],
gestures [49] and freezing of gait [50] etc.

a) 1D-Approach: A basic CNN consists of an input
layer, convolution layers, down-sampling or pooling lay-
ers, flattening layers, FC layers and an output layer [51].
In this work, the implementation of 1D-CNN for single and
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Fig. 6. Block diagram of single modality and multi-modality cases.

multi-modality cases can be seen in figure 6. For AIS, the
training set 73920 × 18 is converted into 73920 arrays of size
1 × 18, where a single array determines the spatio infor-
mation at a single time instance. Each array is passed to
a 1D-Convolution layer (Conv1: 32 filters, kernel size 3,
stride 1) to automatically extract the unique variability features
from the training dataset. Max-pooling layer (MP1: kernel
size 2) is used to down-sample the large volume of data
after convolution. Results obtained from MP1 are feed to
another 1D-Convolution layer (Conv2: 16 filters, kernel size 3,
stride 1) and a Max-pooling layer (MP2: kernel size 2).
Extracted features from max-pooling layers are in 2D format
and therefore required to get aligned in a 1D feature vector
of inputs for FC layers using the flattening function. FC layer
of size 16 is used to connect flattening output. ReLU is the
activation function used to handle the non-linearity at the
convolution layers and the FC layers. Softmax function is used
at the output layer (size 7) as discussed earlier.

For FS, the training set 73920 × 116 is converted into
73920 arrays of size 1 × 116, where a single array con-
tains the spatial information at a single time instance. Each
array is passed to a 1D-Convolution layer (Conv1: 64 fil-
ters, kernel size 3), Max-pooling layer (MP1: kernel size
2), another 1D-Convolution layer (Conv2: 16 filters, kernel
size 3), Max-pooling layer (MP2: kernel size 2), flattening
layer and a FC layer of size 16 followed by output layer
of size 7. For the multi-modality case, in order to create a
balanced number feature set, the FC layers of size 10 from
each modality are merged. Results obtained for all cases are
discussed in section III.

b) 2D-Approach: The implementation of 2D-CNN for sin-
gle and multi-modality cases can be seen in figure 6. The same
number of layers and filters at each layer are used for the 1D
and 2D approach. However the dimensions of inputs and size
of convolutional and max-pooling layer are different. Since
CNN are most commonly applied to analyze visual images,
therefore we have utilized their ability by transforming the 18
inputs of AIS into a 5 × 5 image and 116 inputs of FS into a
7×7 image with zero padded columns each. The filters kernel
size is 3 × 3 for each convolutional layer and 2 × 2 and the

max-pooling layer. Results obtained for all cases are discussed
in section III.

3) Long Short Term Memory (LSTM): The basic structure
of Recurrent Neural Networks (RNNs) is similar to FFNNs,
where connections exist among hidden layer units based on
time delays. These connections retain the information from
previous inputs and help to find out the temporal correlations
between events which are spread out in the dataset. However,
the network output while cycling around recurrent connections
gets affected from exponentially vanishing or exploding gra-
dients [52]. Therefore, the efficient gradient-based technique,
Long Short-Term Memory (LSTM), is introduced to cover the
time lag between the time steps by enforcing constant error
flow within special cells [53].

LSTM models work on time-processed data and are capa-
ble of learning time dependencies in sequence prediction
problems. Since timestamps are equal in number for both
modalities, the first layer of operation has been implemented
with 16 blocks for both cases. Stacked layer LSTM models
have been used to deeply exploit the dependencies between
time-stamps [54]. The two stacked layered LSTMs, reported
in many cases have been adopted in our approach to implement
the individual [37] and multi-modality cases [55].

For AIS, the training data set is a 2D vector
(73920 timestamps × 18 inputs) which is converted into a
3D vector (73824 time-stamps × 120 window samples ×
18 inputs), with 120 window samples out of 119 serve as
memory for the associated time-stamp. Training data is fed
to the successive LSTM model in the form of batches of size
120 for different epoch values. The LSTM stack of two layers
is implemented with 16 LSTM units on each layer, followed
by a dropout layer (DO) utilizing 20% probability of data
to prevent any overfitting. In case of FS, we have training
data as a 3D vector (73824 time-stamps × 120 window
samples × 116 inputs) following a similar LSTM model like
AIS. After two layers a similar layered approach has been
utilized as in case of FFNN, 1D-CNN, 2D-CNN for single
and multi-modality cases as shown in figure 6.

4) Fused Approach: The fusion approach in this work is
DL based fusion of lower human body joint angle trajectories
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(obtained from an AIS modality) and ground reaction forces
generated by feet (obtained using POF based FS modality).
The implementation of AIS and FS that each modality records
their datasets on their own RPI. The two RPIs are programmed
to synchronize and record readings at 20Hz. Both modalities
are checked and synchronisation is verified by test programs
before starting experiments. From the point of view of the
fusion task, the data is collected from synchronized RPIs
separately and used for further analysis purposes.

Python environment libraries, including TensorFlow and
Keras, are utilized to implement and run DL models.
DL model layers are capable of processing the body orien-
tation, positioning and forces in space and time using AIS.
Likewise, these layers are equally useful to process the effect
of forces resulted in foot on ground contact captured in FS
data. In this research, we have used the first two layers from
each DL models (as shown in figure 6) to automatically extract
unique gait activity features from both modalities that mostly
contribute towards gait classification whilst dropping the less
significant values across the complex network layers. Fusion
of such unique information helps to retain most of the gait
activity dynamics from individual modalities. Keras functional
API defines advanced network topologies and help to design
complex problems unlike sequential APIs. We have used Keras
functional API to build arbitrary graph of layers and handle
shared layers to fit our fusion approach. There are many types
of merge layers supported by Keras Functional API [56], some
of the implemented merge layers used in our approach are as
follows:

1. Add: Adds two same-sized input vectors (element-wise)
into a single vector of the same size as input.

2. Multiply: Multiply two inputs vectors (similar to add).
3. Average: Computes the average of two input vectors.
4. Maximum: Computes the maximum of the two input

vectors (element-wise) into a single vector of same size.
5. Minimum: Computes the minimum of the two input

vectors.
6. Concatenate: Combines two inputs vectors into a single

long vector, so that that the second input comes after first.
The listed layers perform arithmetic operations on their

input layers and require them to be the same shape for fusion.
However, concatenate layer can work with different shape
inputs. Results obtained using these layers are discussed in
section III.

III. RESULTS AND DISCUSSIONS

The captured movements in the lower parts of the human
body, by AIS and of foot falls by FS, in the general case are
not independent from each other. The perceived coordination
and complementarity of both data sources justify the need
of fusion. It is also expected that fusion would partially
accommodate possible inaccuracies in spatio-temporal data in
certain situations resulting in improved robustness as com-
pared to a single modality. In our work, comparing the results
achieved using single and multi-modality systems are used to
explore the benefits of complementary modalities in compari-
son with the cost and acceptability by the user. While retaining
our focus on multi-modality fusion, significant differences
in the performance of multiple DL models are summarized
below:

Fig. 7. F-scores for overall gait classification using merge layers
(Epochs: 100, Batch size: 120).

A. Multi-Modality Fusion
For the classification of gait activities, 8,400 samples are

obtained from one person during 7 gait activities using one
modality. Therefore, total 92,400 samples are collected using
one modality and 184800 using multi-modality case. Each
case of single and multi-modality is split into 80% training
(73,920 samples shown in figure 6), 10% validation and 10%
test sets before feeding to the DL model. Training data from
two modalities (92,400 × 2 = 184,800 samples) is further
tested and verified for epochs 1-100 and batch size 120 across
the test datasets. All data processing and computational tasks
were conducted on Lenovo ThinkPad with Intel® Core™ i7-
8560U CPU @ 1.9GHz 2.11GHz and 8GB physical memory.

It is expected to achieve higher f-scores for FS (116 inputs)
as compared to AIS (18 inputs) which is corroborated by
Table II. It is also understandable that the execution time to
generate classifications from FS is much higher than AIS.
In our work, we have proposed a fusion strategy to balance the
disproportional number of inputs between the two modalities,
without substantial degradation of the information content. The
classification features obtained using the fused multi-modality
data yielded better f-scores as compared to individual modal-
ities using all DL models (see Table II, columns 3, 5 & 7).
However, this is achieved at higher execution time than single
modalities. The effectiveness of this DL based multi-modality
fusion has been further tested and verified using different
fusion techniques as discussed in section II.D.4. The ‘add’
method appears to deliver the most accurate fused result
among all. However worst f-scores are obtained using ‘mini-
mum’ and ‘multiply’ methods in case of 2D-CNN, as shown
in figure 7.

B. DL Models
The accuracies for DL models: FFNN, 1D-CNN, 2D-CNN

and LSTM are higher in multi-modality cases compared to
individual modalities. In case of FS (see Table II, column 3),
1D-CNN shows higher accuracies for all epochs when com-
pared with FFNN and 2D-CNN. Comparison of 1D-CNN with
LSTM shows mixed results with higher accuracies for 50 and
100 epochs in the latter case. LSTM models work on time
processed data and are capable of learning time dependencies
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TABLE II
F-SCORES FOR SINGLE MODALITY AND MULTI-MODALITY FUSION USING DL MODELS

in sequence prediction problems. Since the time-stamps are
equal in number for both modalities, the first two layers
of operation have been implemented with 16 units for both
cases. A higher number i.e., 32 or 64, is reportedly beyond
the capabilities of the computer system used. LSTM shows
higher accuracies for all epochs when compared with FFNN,
1D-CNN and 2D-CNN in case of AIS (see Table II, column
5). For the multi-modality fusion case, LSTM has the highest
accuracies for 10, 50 and 100 epochs of all DL models.

In case of 1D-CNN and 2D-CNN, the first two layers of
operation have the same number of filters for single and
multi-modality cases. FS data, considering a 5-fold larger
number of inputs compared to AIS, have shown the maximum
accuracy with 64 filters, as compared to AIS with 32 filters.
AIS has been checked with 16 filters too manifesting reduced
accuracies. The scope of this research is to report the most
suitable approach for the fusion task. 1D-CNN proves itself
as a second choice when compared with 2D-CNN and a single
exception at 1 epoch with FFNN.

Columns 4 & 6 show that for FS, the execution time to train
1D-CNN, 2D-CNN and LSTM models is significantly higher
than AIS for all epochs. Only FFNN has comparatively closer
execution times using FS and AIS. In case of multi-modality
fusion, FFNN takes much lesser time compared to LSTM
which manifests the highest execution time for all epochs
(see Table II, column 8). Therefore, the execution time is in
a trade-off with the overall performance of the system. Best
accuracy could be achieved using LSTM-based DL model
when speed of execution is not of concern and data processing
system with higher specifications is utilized.

Model-wise multi-modality fusion f-scores for all gait activ-
ities in figure 8 demonstrate that LSTM yielded f-scores
superior to all other DL models. The ‘typing’ and ‘talking’
gait show worst f-score results among all activities: 64.09%
(lowest) and 80.01% in case of FFNN; 75.87% and 70.09%
in case of 2D-CNN. 1D-CNN model appears as the second
choice due to its second highest f-scores for all gait activities,
with some exceptions in ‘subtracting-3’and ‘listening’, as well

Fig. 8. Model-wise f-scores of multi-modality fusion for all classes
(Epochs: 100, Batch Size: 120).

as ‘subtracting-7’ gait, showing lesser f-scores than 2D-CNN
and FFNN respectively. It is noticeable that 1D-CNN shows
worst f-score for ‘listening’, which is as high as 89.03%
compared to FFNN (64.09% for ‘typing’ gait) and 2D-CNN
(70.09% for ‘talking’ gait). Standard deviation in model- wise
f-scores of multi-modality fusion for all classes is calculated
as: LSTM (0.09%), 1D-CNN (3.05%), 2D-CNN (10.18%) and
FFNN (11.81%).

Furthermore, FFNN shows an overall f-score of 89.33%
with minimum execution time (03min:06sec) and LSTM
shows a highest f-score of 99.9% with maximum execution
time (23hr:23min:45sec). However, 1D-CNN appears as the
best DL model for overall performance for the proposed
multi-modality fusion due to its performance f-score (94.97%)
and a reasonable execution time (21min:14sec) to train the
model (see table II, columns:7 & 8).

IV. CONCLUSION

Multi-modality sensor fusion based on DL is new and
reports of such fusion are few, which should be interpreted
in the light of scarcity of suitable datasets. We demonstrated
multi-modality sensor fusion for gait activity classification
using deep learning. FFNN, 1D-CNN, 2D-CNN and LSTM
models were implemented and used to fuse spatio-temporal
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gait activity data using two sensing modalities: ambulatory
inertial sensors and floor sensors. Overall performance was
studied in detail and revealed best f-score of 99.9% in case of
LSTM and fastest execution time 3 min 06 sec in the case of
2D-CNN.

The classification obtained from multi-modality sensor
fusion would undoubtedly be superior compared to that from
a single modality. However, the choice of optimal fusion
algorithms should also involve the assessment of practicality,
design, built and maintenance characteristics of such complex
systems.
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