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Abstract—The glycated hemoglobin (HbA1c) is regarded as
an essential biomarker for diabetes management. Having an
elevated HbA1c level significantly increases the risk of devel-
oping diabetes-relatedhealth complications.Accurate predic-
tion of HbA1c can greatly improve the way diabetic patients
are treated and can potentially avoid related consequences.
This study devises a framework to predict HbA1c levels
2–3 months in advance by using blood glucose data collected
through continuous glucose monitoring (CGM) sensors and
leveraging advanced feature extraction and machine learning
techniques. The CGM data may often contain missing values
due to sensor issues or not wearing the sensor for some
period. Thus, in the paper, a novel missing data estimation
method has been proposed for a single data point, multiple data points, and entire day CGM data imputation. The CGM
data have been rigorously investigated, and pertinent features were created along with a multi-stage multi-class (MSMC)
classification model to predict futuristic HbA1c levels. To evaluate the developed framework, a total of 150 patients’ data
were sourced from Sidra Medicine, Doha, Qatar, for analysis. The proposed three-staged and five-staged MSMC models
predicted HbA1c levels 2–3 months in advance and obtained overall classification accuracies of 88.65% and 83.41%,
respectively.

Index Terms— CGM sensor, diabetes management, feature extraction, HbA1c prediction, missing data estimation.

I. INTRODUCTION

THE global incidence rate of diabetes mellitus (DM) is
overgrowing. The DM is described by an increase in

blood sugar concentrations. A hormone known as insulin,
generated in the human body’s pancreas, regulates blood
sugar levels. Insufficient insulin production or the inactive
response of the body cells to insulin causes the disease [1].
Hyperglycemia, a significant hallmark of diabetes, can damage
different body organs and cause severe health complications
such as cardiovascular diseases if it goes uninterrupted for a
long period. The ramification of DM overloads the health-care
system, influences economic growth, and increases the cost
of the treatment. Diabetes patients are required to keep their
glycemic profile under control to extend a healthier living. One
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of the significant biomarkers used for diabetes monitoring is
the glycated hemoglobin (HbA1c). The HbA1c is a particular
hemoglobin structure that makes a bonding with glucose in
the bloodstream [2]. The HbA1c test provides an estimation of
average glucose concentrations for the previous 90—120 days.
The proper management of diabetes significantly depends on
the periodical assessment of the HbA1c levels. The HbA1c
test is performed in the lab by measuring the percentage of
hemoglobin attached to the blood sample. The test is often per-
formed to classify diabetes severity and to forecast upcoming
complexities [3]. The American Diabetes Association (ADA)
defines a test value of HbA1c <5.7% as non-diabetic. The test
values between 5.7% and 6.4% are regarded as pre-diabetes
states while HbA1c value ≥6.5% is considered as the subject
developed diabetes.

Advanced prediction of HbA1c is significant for proper
monitoring of diabetes. Studies [4]–[6] demonstrated that
lower-levels of HbA1c play an essential role in reducing or
late triggering of microvascular difficulties arise from diabetes.
However, there is an association between elevated HbA1c
levels and the development of diabetes-related comorbidities.
The prediction of HbA1c given current blood glucose trends
allows patients and physicians to make changes to treatment
plans, lifestyle, foods, to avoid elevated HbA1c levels. Con-
sequently, an advanced interference will facilitate avoiding
complications, and thus better diabetes management can be
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TABLE I
CGM DATA COLLECTION SUMMARY

ensured. Several studies concluded that HbA1c levels can be
used to infer the future progression of diseases such as cardio-
vascular disease (CVD), nerve, eye, and kidney damage [4].
The population study of East Asian by Sakurai et al. [7] found
high values of HbA1c increase the likelihood of mortality and
death from CVD. Another study [8] correlated HbA1c with
mortality and found a resilient connection between elevated
HbA1c and mortality among the subjects without a previously
known history of diabetes. Diabetic retinopathy is another
health complication that arises from diabetes. The researchers
investigated the association between HbA1c and retinopathy
and found that 10% reduction of HbA1c reduces 43% of
retinopathy development risk [9].

Researchers attempted to estimate a patient’s current
HbA1c level from blood glucose (BG) values. The studies
[10]–[14] estimated current HbA1c levels using
self-monitoring average blood glucose (μBG) measurements
and reported the coefficient of determination (R2) values
around 0.80. All studies estimate current HbA1c that
provides information about the patients’ present HbA1c
levels and their past BG values. The previous studies didn’t
use advanced continuous glucose monitoring (CGM) sensor
data to predict HbA1c. The recent advancements in medical
sensor technologies provide a massive amount of information
in electronic health records (EHR) [15]. The unprocessed
EHR data may provide limited intuition into patients’
health. Therefore, it is necessary to develop an automated
framework that utilizes advanced techniques to detect disease
progression in the early stages, limiting the potential damages.
In this study, a multi-stage multi-class (MSMC) machine
learning (ML) framework is devised for advanced prediction
of HbA1c levels. The present study offers the following
significant contributions:

1) A new clinical trail is designed for advance prediction of
HbA1c and data from 150 diabetes subjects have been
collected using CGM sensor.

2) A novel method has been proposed for missing data
estimation.

3) Seven new techniques are introduced to derive pertinent
features utilizing CGM sensor data.

4) The extracted significant features are selected, and
redundant components are discarded using a new feature
ranking method.

5) An MSMC framework is proposed for advanced predic-
tion of HbA1c.

II. RESEARCH DESIGN AND METHODS

The workflow of the proposed methodology to predict
HbA1c has been outlined in Fig. 1. The CGM sensor data
collected from Sidra Medicine, Qatar, have been utilized to

Fig. 1. The proposed methodology of HbA1c prediction.

develop the framework. A total of 15 days of data from every
patient have been used to build the model. The missing CGM
data points are imputed using a novel data imputation proce-
dure. Pertinent features are extracted by implementing seven
new methods. The features significantly related to HbA1c
have been nominated by assigning a feature importance value
calculated using the Pearson correlation. Finally, the selected
features are used to build the MSMC model for long-term
HbA1c prediction.

A. Data Model
The study enrolled one hundred and fifty subjects (mean

age 12.7 ± 4.5 years; range 6-22 years) with T1DM during
2019 and 2020. The institutional review board (IRB) of the
Sidra Medicine, Doha, Qatar, has approved the research plan
(IRB Number, 1536761-1). The pediatric division at Sidra
Medicine specializes in children’s general care and offers
pediatric patients clinical care. All recruited subjects wore
CGM sensors, Freestyle Libre, for 90–120 days. The CGM
device comprises a glucose sensor implanted into the body’s
subcutaneous tissue. The sensor measures interstitial fluid
glucose levels every 15 minutes and gives 96 measurements
per day. The CGM sensor has a lifetime of 14 days, and
then it was replaced with a new one. The 14 days CGM
data from the sensor were collected and saved to a secured
memory disk. All the subjects continued using the CGM
sensors for 90 days. The HbA1c level was measured for
each subject on the 90th day of data collection at the Sidra
Medicine laboratory. The data collection summary is provided
in Table I.

B. Data Preparation
This study analyzes 150 patients’ 2250 days CGM sensor

data. The patients are split into six and ten classes based on
their HbA1c control levels, as outlined in Table II and III.
The class, C1, consists of 47 subjects with HbA1c levels ≤
7.5%. The subjects in C1 have HbA1c values in the expected
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TABLE II
SPLIT OF 150 PATIENTS INTO SIX (C1-C6) CLASSES BASED ON THEIR

HbA1c LEVELS

TABLE III
SPLIT OF 150 PATIENTS INTO TEN (S1-S10) CLASSES BASED ON

THEIR HbA1c LEVELS

range and therefore they are referred as the good control
group. Contrarily, the class C2 consists of 103 subjects whose
HbA1c values >7.5%. The subjects with HbA1c levels in the
range (7.5%–9%) are assigned to the class C3. The patients
in C3 have their HbA1c values above the expected levels
and therefore, they are defined as medium control group.
However, the class C4 includes subjects with HbA1c values
>9%. The subjects with HbA1c levels between 9% and 12.5%
are grouped together in class C5. The patients belongs to the
class C5 have their HbA1c values significantly higher than the
expected levels. Therefore, the subjects in C5 are defined as
poor control group. Finally, the subjects with HbA1c levels
>12.5% are grouped together in the class C6. The patients in
the C6 have their HbA1c values very high as compared to the
expected levels. Therefore, the subjects in C6 are referred as
uncontrolled group.

Furthermore, the subjects have been split into ten classes
(S1–S10) to evaluate the proposed MSMC model’s efficacy
in predicting a narrow range of HbA1c levels. The class
S1 consists of 25 subjects with HbA1c levels ≤ 6.5%, while a
total of 125 subjects whose HbA1c values >6.5% are assigned
to the class S2. The remaining classes formed by including
subjects based on different HbA1c ranges are S3, S4, S5, S6,
S7, S8, S9, and S10, as outlined in Table III.

III. MISSING DATA ESTIMATION

As CGM devices are worn and need to be replaced every
two weeks, there are missing data instances. To address
this, a data processing stage is incorporated to i) evaluate
the amount of missing data and ii) develop a missing data
estimation method to impute short spans of missing data.

A. Single Point Estimation
In cases where there is only one missing BG value, and

the nearest values are available, the missing BG values are

Fig. 2. The estimation of point based missing CGM data-based of values
of slope.

estimated by taking into consideration the previous and next
available data points. A line is drawn, as shown in Fig. 2 by
connecting the two nearest data points, and the line’s slope
is measured. If the slope is positive, the difference between
the two nearest data points is divided by two and added
with the immediate nearest previous BG value to estimate
the missing value. However, the missing value is replaced
by dividing the difference between the two adjacent points
for the negative slope, followed by adding the immediate next
nearest BG value. Finally, if the slope is zero, the missing data
point is replaced by the immediate nearest previous BG value.
Consequently, the equations used to estimate the missing BG
values are:

xi = xi−1 + xi−1 − xi+1

2
(slope > 0) (1)

xi = xi−1 − xi−1 − xi+1

2
(slope < 0) (2)

xi = xi−1 (slope = 0) (3)

where x is the individual BG value.

B. Multiple Points Estimation
A nearest neighbors approach has been implemented for

missing data estimation when there are two or more missing
data points. The BG values from eight neighbors are consid-
ered to replace the missing values, as outlined in Table IV.
The missing BG value (x) is estimated by taking the eight
neighbors’ average. The inter and intra-day BG values are
included for multiple missing data points estimation. Some
random single and multiple data points have been eliminated
to assess the efficacy of the estimations. The missing val-
ues are then estimated by the mentioned nearest neighbors
approach. An R2 value of 0.82 (±0.13) is observed in the
estimations.

C. Whole Days Estimation
Some patients do not wear their sensors for a day, or the

sensor may have expired in some cases. As we predict HbA1c
in advance by using short term CGM data (15 days), it is
crucial that missing days are accounted for. Thus, in the event
that data is missing for 24 hours, we assume that the subject
follows a similar daily routine in food intake and fills the
missing day with the previous day. We also implemented other
algorithms for the entire day missing data estimation. In the
case of 2 or more missing days of CGM data, an autoregressive
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TABLE IV
THE ESTIMATION OF MISSING CGM DATA POINTS USING EIGHT NEAREST NEIGHBOURS

moving average (ARMA) method is used to estimate the data
as given by:

xt = c + εt +
p∑

i=1

ϕi xt−i +
q∑

i=1

θiεt−i (4)

where xt is a missing data point. For a whole missing day,
there are 96 such missing data points, t is the timestamp
at which the data point is missing. ϕ1, . . ., ϕp , ϑ1, . . ., ϑq

are parameters, c is a constant, and the random variable εt is
white noise. These parameters of ARMA model are estimated
using maximum likelihood function in Matlab toolbox. The
estimations of a full day CGM data for a randomly selected
subject are compared with the true BG values as shown
in Figure 3. The estimations are close to the actual BG
measurements (R2, 0.76 ±0.15).

IV. FEATURE EXTRACTION AND SELECTION

Feature extraction is one of the fundamental steps in
ML-based classification tasks. The collected raw BG data are
transformed to extract pertinent features to have improved
model performance. This study introduces seven different
feature extraction methods for advanced HbA1c prediction.

A. Fractional Derivative Feature
A person’s reaction to food consumption indicates their

glucose metabolizing capacity (GMC). The glucose levels will
be higher for the person with poor GMC [16]. Consequently,
their HbA1c levels will also be higher as it summarizes the
average glucose present in the bloodstream. A new set of GMC
features are derived by adapting the fractional derivatives (FD)
method [17]. The kth order FD of a function g(x) is defined
by:

g(k)(x)≈ lim
h→0

g(x) − kg(x − h) + k(k−1)
2 g(x − 2h) + . . .

hk

(5)

The above expression is simplified by considering the first two
components only and dividing by the time difference as:

g(k)(x) = g(x + h) − kg(x)

(t(x + h) − t(x))k
(6)

This study extracted different GMC biomarkers based on:
GMC(k) = BGi − kBG j

(ti − t j )k
(7)

where BG is blood glucose, ti and t j are times at which the
BG levels have been collected through CGM sensor, i and j
are different time indices (i �= j ). For each value of k = 1, 2,
0.5, −1, and 0.1, total 95 GMC biomarkers have been derived.

B. Time Range Feature
Time in range (TIR) is defined by the proportion of time

a patient passes in a specific range over the total time of
data collection. The typical range for a diabetic should be
within 70–180 mg/dL. TIR and HbA1c have been found to
exhibit high correlation [18]. The study leverages this corre-
lation and introduces novel TIR features to detect fluctuations
in BG levels that are significantly interrelated with HbA1c.
In particular, seven TIR features are defined as shown in the
following equations:

TBR54 =
∑N

i=1(C(xi ) ≤ 54

)
N (8)

TBR70 =
∑N

i=1(C(xi ) ≤ 70

)
N (9)

TIR70−180 =
∑N

i=1(C(xi ) ≥ 70 ∧ ≤ 180

)
N (10)

TIR180−250 =
∑N

i=1(C(xi ) ≥ 180 ∧ ≤ 250

)
N (11)

TIR250−300 =
∑N

i=1(C(xi ) ≥ 250 ∧ ≤ 300

)
N (12)

TIR300−350 =
∑N

i=1(C(xi ) ≥ 300 ∧ ≤ 350

)
N (13)

TAR350 =
∑N

i=1(C(xi ) ≥ 350

)
N (14)

where C represents overall counts, TBR stands for time below
range, TAR is the time above range, x stands for individual
BG values, and N represents the sample size.

C. Cyclostationary Feature
A cyclostationary signal has statistical properties that fluctu-

ate with time. It is represented as multiple interleaved station-
ary signals. For example, hourly BG measurement variation
can be modeled as a cyclostationary process because today’s
hourly BG value at noon will be significantly different than
the BG values in the morning for a specific subject; however,
it is a realistic approximation that for a particular subject,
the daily BG values at 6 am will have similar statistics. Thus
CGM data can be incorporated as the random signal composed
of 24 interleaved stationary processes (representing 24 hours
of a day), each taking on a new value once per day. The CGM
sensor provides a BG measurement in every 15 minutes. The
hourly BG values are derived by taking the average of four
BG measurements for the corresponding hour. An example
of extracted cyclostationary features BG values is outlined in
Table IV for illustrative purposes.
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Fig. 3. The estimation of whole day missing CGM data using ARMA model.

Fig. 4. Extracted cyclostationary feature of a randomly selected subject.

D. Glucose Variability Feature
Glucose variability (GV) represents the measure of oscilla-

tions in BG levels for a defined time such as during a day or
among days. The GV is considered one of the fundamental
indexes used to assess the patient’s overall glucose profile.
Different GV features have been extracted using CGM data
adapted from [19], as outlined in Table VI. The coefficient
of variation (CV) is expressed as a percentage whose high
value indicates greater dispersion around the mean. The CV
is often preferred over SD as a GV feature because the
mean highly influences SD. Data with a high mean value
usually have a high SD. Thus, to normalize the variability,
the SD is divided by the mean while calculating the CV.
The GV index M100 provides a measure of the variation
of glucose values around 100 mg/dL. Another important GV
index, J-index, is a measure of glucose variability used to
assess the patient’s glycemic profile calculated from average
and SD. Mean amplitude of glycemic excursion (MAGE)
is another important metric used for evaluating a patients’
glycemic variation. The MAGE is derived by calculating
the deviations between the successive top and bottom values
larger than one SD of average BG. The mean of daily

differences (MODD) indicates glucose fluctuations between
days. MODD is derived as the average of absolute differences
among the BG levels of consecutive days. Continuous overall
net glycemic action (CONGA) measures glycemic variability
within a defined time window. The CONGA is computed
by taking the differences among the BG data points, and
then SD is calculated on these differences. The glycemic
risk assessment diabetes equation (GRADE) score expresses
the associated risk for observed BG levels. The GRADE
score is described as proportions: <70 mg/dL, 70–180 mg/dL,
and >180 mg/dL are refer to hypoglycemia, euglycemia,
hyperglycemia, respectively.

E. Wavelet Decomposition Feature
The features extracted from the wavelet decomposi-

tion (WD) technique are extensively used for healthcare appli-
cations [20]. This study incorporated Haar WD techniques
for feature extraction from CGM data. One of the naïve but
extensively used WD techniques is the Haar basis [21]. The
Haar basis coefficients are obtained using the points’ pairwise
average and then subtracting the average value from the pair’s
first component. In the next steps, averages are computed
but differences remain unchanged. This study implemented
similar addition and subtraction approaches to generate WD
features and the derived WD features for different classes are
compared.

F. Power Spectral Density Feature
The power spectral density (PSD) defines power distribution

into frequency components composing that signal. Welch’s
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method is used for estimating spectral density at different
frequency levels. It uses to convert a time series signal into
frequency domain components. Welch’s method decreases the
noise while estimating the power spectrum by sacrificing the
frequency resolution. It is the advanced method for calculating
power spectra as compared to standard periodogram power
estimation. The average power, P , of a signal x(t) is derived
based on:

P = lim
T →∞

1

T

∫ T

0
|x(t)|2 dt (15)

where T is the total time duration of the signal x(t). The
power spectral density, Sx x(ω), is derived as:

Sx x(ω) = lim
T →∞ E

[∣∣x̂(ω)
∣∣2

]
(16)

where E[x̂(ω)] is the expected value of the signal x(t)
in frequency domain, and ω (rad/sec) is the frequency of
the signal. The extracted power spectral density features for
the individual classes are used to developed the proposed
framework.

G. Time Series Feature
Time series feature extraction is considered as one of the

preliminary steps of the ML framework. It is a complex task
as it involves domain knowledge and coding an implemen-
tation. In this study, different time series features have been
extracted from CGM data using a Python package titled Time
Series Feature Extraction (tsfresh). The tsfresh implements
63-time series characterization to extract temporal, statistical,
and spectral features. In this study, the following time series
features have been extracted from the CGM data. The absolute
energy (E) of the CGM is the sum over the squared BG values
calculated based on:

E =
∑

i=1,...,n

x2
i (17)

where x is the individual BG value. The absolute sum of
changes (ASC) yields the summation over the absolute value
of successive variations in the BG values, and it is calculated
using:

ASC =
∑

i=1,...,n−1

| xi+1 − xi | (18)

The autocorrelation R(l) of BG values for lag l is derived as:

R(l) = 1

(n − l)σ 2

n−l∑
t=1

(xi − μ)(xi+l − μ) (19)

where n is overall observations, σ 2 and μ are variance and
mean of BG values. The autoregressive coefficient (ARC)
of CGM is extracted using the maximum likelihood of an
autoregressive system:

xi = ϕ0 +
k∑

n=1

ϕi xi−n + εi (20)

where k is the maximum lag. The process returns AR coef-
ficients ϕi . A more complicated time series has more peaks,

valleys, etc. The time series complexity (TSC) feature for BG
values is estimated based on the following equation.

T SC =
√√√√n−1∑

i=1

(xi − xi−1)2 (21)

The coefficients of Ricker wavelet (RW), a continuous wavelet
transform, are derived from:

RW = 2√
3aπ

1
4

(1 − x2

a2 )ex p(− x2

2a2 ) (22)

where a is the width of the RW function. The Fourier
coefficients for BG values are extracted by using a fast Fourier
transformation algorithm:

Ak =
n−1∑
i=0

xi exp

{
−2π j

mk

n

}
, k = 0, . . . , n − 1 (23)

which returns the complex coefficients, and j is the imaginary
unit. The only real part of the coefficient is extracted as a
feature. The entropy is calculated by split data into bins that
are as pure as possible: most of the values in a bin belong to
the same class. The bin entropy (E) is derived for CGM data
based on:

E =
min(max_bins,len(x))∑

k=0

pklog(pk) · 1(pk>0) (24)

where pk is the percentage of samples in bin k.

H. Feature Selection and Fusion
Feature selection is considered a crucial step during ML

architecture development. It facilitates the removal of redun-
dant features. Integrating all the features generated from
individual techniques into a compact feature vector is defined
as feature fusion. The fused set of pertinent features can
enhance model performance. All the extracted features are
merged to generate the ultimate feature set of size 1050, and
the finalized data size is 150 × 1050. This study applies the
filter method, a correlation-based feature selection technique,
to find pertinent features significantly related with the outcome
variable HbA1c. A statistical measure known as the Pearson
correlation is used to rank features based on their values.
Pearson correlation measures the linear dependence between
two variables, lies between -1 and 1, is calculated using:

ρX1,X2 = covX1,X2

σX1σX2

(25)

where cov is the covariance, σX1 and σX2 are standard devia-
tion of the feature vector X1 and X2 respectively.

Furthermore, the extracted features are ranked based on
their values in a decreasing order. The highly discriminat-
ing features are selected by visual inspection and redundant
features are discarded. The WD feature selection results for
four classes (C1, C3, C5, and C6) are shown in Fig. 5 as
an example. A total of 102 WD features are ranked for each
class in descending order based on their wavelet coefficient
values. It is observed that the 1-12 ranked feature values
of class C1 are significantly lower than class C6. For class
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Fig. 5. The extracted WD feature selection based on their coefficient
values.

Fig. 6. Proposed three-staged MSMC model for HbA1c prediction.

C3 and C5, there are noticeable differences for 1-12 positioned
feature values. However, there is no significant difference
for 13–102 ranked feature values among all four classes.
Therefore, those 13–102 ranked features are discarded during
feature selection as those features poorly correlate with the
outcome variable HbA1c.

V. MSMC MACHINE LEARNING FRAMEWORK

The proposed three-staged and five-staged MSMC ML
framework for HbA1c prediction is summarized in Fig. 6 and
7. The model’s outcome is the 2–3 months advanced prediction
of HbA1c ranges using the past 15 days of CGM data. The
three-staged MSMC model involves a total of three stages to
accomplish the classification tasks. In stage 1, the aim is to
develop an optimized ML model to differentiate between C1
(HbA1c ≤ 7.5%) and C2 (>7.5%). Another optimal ML model
classifies instances into class C3 (7.5% < HbA1c ≤ 9%) and
class C4 (>9%) in stage 2. In the final stage, the aim is to
distinguish C5 (9% < HbA1c ≤ 12.5%) from C6 (>12.5%).
However, the five-staged MSMC model consists a total of five
classification stages. The ML model in stage 1 differentiate
between S1 (HbA1c ≤ 6.5%) and S2 (>6.5%). In the second
stage, another optimal ML model classifies instances into class
S3 (6.5% < HbA1c ≤ 7.5%) and class S4 (>7.5%). The third
stage distinguishes S5 (7.5% < HbA1c ≤ 8.25%) from S6
(>8.25%). In the subsequent stage, separate ML models are
developed and optimized to distinguish between the classes:
S5 vs. S6, S7 vs. S8, and S9 vs. S10.

Fig. 7. Proposed five-staged MSMC model for HbA1c prediction.

The three-staged classification approach ultimately divides
HbA1c ranges into four distinct patients groups. These patient
groups belong to classes C1, C3, C5, and C6, respectively.
Conversely, the five-staged MSMC model has distinguished
six unique patient classes. These classes are S1, S3, S5, S7,
S9, and S10.

A. Support Vector Machine
The SVM uses the Lagrangian optimization technique to

find the best plane that maximizes the margin among the
classes [22]. It implements a kernel trick to differentiate
the outcomes when the data are not linearly distinguishable.
The data are transformed into higher dimensional space using
a kernel trick that ensures linear separation. The study adapted
polynomial SVM for advanced HbA1c prediction. The hyper-
parameters C and 
 are optimized in a brute-force manner.
The hyperparameter C is a regularization factor responsible
for margin flexibility, while the 
 value controls the position
of the hyperplane. The optimal value of the C parameter is 100,
while a value of 10 is found to be optimal for the 
 parameter.

B. Naive Bayes
The Naive Bayes (NB) classifiers are probabilistic models

developed applying Bayes’ theorem. The model, coupled with
kernel density function, achieves higher performance with
a strong assumption of independence between the features.
This study ensembles three classifiers, namely, the NB,
averaged one-dependence estimators (A1DE), and averaged
two-dependence estimators (A2DE), to predict HbA1c levels.
The NB assumes complete feature independence. However,
the A1DE and A2DE models relax the assumption and apply
weaker independence among the features and achieve higher
accuracy than the NB model [23]. The ensembling steps are:
first, data have been split into ten folds, then three models
are developed using nine folds data, and the tenth rest fold
is used to test the models. Each model provides its class
probability on the test samples. Finally, probabilities are
combined from the individual classifiers’ decision to finalize
the test samples’ class.

C. Random Forest
The ML techniques often encounter a bias-variance trade-off

property. To reduce bias and variance of the model, a method
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known as boosting is used. In boosting, several classifiers’ out-
comes are combined to come up with the final decision. It uses
an iterative approach where misclassified tuples are given
more attention in the next step by increasing weight. On the
contrary, the bagging approach avoids over-fitting by randomly
sampling data while building trees and, thus, improves the
model’s stability and accuracy. The random forest (RF) is one
such bagging model that randomly samples data and selects
a subset of the features to add more randomness [24]. This
study adapted and optimized the RF model for long-term
HbA1c prediction, previously used in the study [25]. A total
of three hyperparameters, namely, split criterion, the number
of estimators, and the minimum samples split, are searched for
optimal values. The highest performance is achieved for the
gini impurity criterion, 200 estimators, and minimum samples
split of 10.

VI. RESULT AND DISCUSSION

The results of feature extraction and selection are high-
lighted and evaluated. The 10-folds cross-validation (CV10)
results of the developed MSMC framework is discussed and
compared.

A. Performance Evaluation
The metrics used to assess the efficacy of the developed

MSMC framework are: Accuracy = (t p+ tn)/(t p+ tn + f p+
f n), Sensitivity = t p/(t p + f n), Specificity = tn/(tn + f p),
and AUC = p(Score(t p) > Score(tn), where tp, tn, fp,
and fn stand for true positive, true negative, false positive,
and false negative instances. The accuracy is the number
of cases correclty predicted out of all cases. The sensitivity
measures the proportion of tp cases accurately detected, while
the specificity measures the numbers of tn cases correctly
identified. The area under the curve (AUC) indicates the
probability of a tp event will be ranked higher as compared
to a tn event.

B. Feature Evaluation
The results of extracted TIR characteristics for classes C1,

C3, C5, and C6 are summarized using a bar graph, as shown
in Fig. 8. The subjects’ 15 days of CGM data have been inves-
tigated to find the association between TIR and HbA1c. The
feature values for TIR (70–180 mg/dL), TBR (<70mg/dL),
and TIR (180–250 mg/dL) of the class C1 were found 74.15%,
1.82%, and 21.46%, respectively. However, the value for TIR
(70–180 mg/dL) feature of class C6 was much lower (22.19%)
as compared to C1 (74.15%). The features TBR (<70mg/dL)
and TIR (180–250 mg/dL) also followed a linear association
with the outcome variable. From the analysis in Fig. 8, it can
be inferred that the proposed TIR features are strong predictors
of the future HbA1c levels.

The extracted PSD features for classes C1, C3, C5, and
C6 are presented in Fig. 11. It shows the differences in PSD
values (dB) for different classes. The observation is that
PSD values of class C1 are significantly lower than class
C6 throughout the frequency spectrum. For class C3 and C5,
there are noticeable differences in feature values. However,

Fig. 8. Time in range features comparison for different classes.

Fig. 9. The PSD features with their frequency components.

to reduce the redundancy, top 20 PSD features based on
their power values are selected for model development and
evaluation.

C. HbA1c Prediction Model Performance
The cross-validation results of the proposed three-staged

MSMC models are presented in Fig. 10 and outlined in
Table V. The ensembling approach obtained 90.67% accuracy,
91.48% sensitivity, 90.29% specificity, and 92.15% AUC score
in stage 1 while classifying classes C1 and C2. The SVM
achieved 83.49% accuracy, 85.71% sensitivity, 81.96% speci-
ficity, and an AUC score of 86.23% in stage 2 while differ-
entiating between classes C3 and C4. In the final stage, the
proposed A1DE model distinguished class C5 from C6 with
91.80% accuracy, 89.54% sensitivity, 88.19% specificity, and
90.72% AUC. The developed model displayed an overall
accuracy of 88.65% when tested with the entire dataset.

Furthermore, the HbA1c prediction performance for the pro-
posed five-staged MSMC model is summarized in Table VIII.
The RF model manages 90% accuracy, 88% sensitivity, 90.4%
specificity, and 92.37% AUC score in stage 1 while classifying
class S1 and S2. Accuracy has dropped to 84.8% during
classification of classes S3 and S4 in stage 2 using the SVM.
The lowest accuracy of 79% is observed in the final stage of
the MSMC model while separating class S9 from S10.
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TABLE V
LIST OF GLUCOSE VARIABILITY FEATURES EXTRACTED

The performance comparison for three-staged and
five-staged architecture is outlined in Fig. 11. For the proposed
three-staged model, the highest accuracy of 88.65% has been
achieved. However, for the five-staged model, the accuracy

is dropped to 83.41%. The overall sensitivity of 89.54%
has been observed for the three-staged approach. However,
the overall sensitivity of the developed five-staged model
is significantly lower than the three-staged model. The
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Fig. 10. HbA1c classification result for the proposed three-staged MSMC
model.

TABLE VI
HbA1c CLASSIFICATION RESULT FOR THREE-STAGED MSMC MODEL

TABLE VII
HbA1c CLASSIFICATION RESULT FOR FIVE-STAGED MSMC MODEL

Fig. 11. The performances comparison for three-staged and five-staged
model.

specificity and AUC score results for the three-staged model
are significantly higher than the five-staged model. This is
because the finer grain the classification becomes, the more
complex the prediction becomes as HbA1C is highly variable
an accurate and precise prediction is very complex.

There was a tradeoff between the number of stages of the
MSMC model and its performance. It was observed that the
overall performance of the three-staged MSMC model was
significantly better as compared to the five-staged model. The
discrepancy in the performance is that the five-staged model
predicted smaller HbA1c ranges (margin, ∼ 1%). Contrarily,
the margin of HbA1c ranges for the three-staged model was
higher (∼ 2%). To correctly predict smaller HbA1c ranges,
the five-staged model compromised its performance from
overall accuracy of 88.65% to 83.41%. Longer term prediction
of HbA1c is a challenging task as it depends on the subjects’
lifestyle and biological factors [26]. The work done in this
research aims to predict the HbA1c of a user 2-3 month in
advance. This is the first time this concept is investigated in the
literature. All previous works have attempted to only estimate

TABLE VIII
COMPARISON OF LITERATURE ON HbA1c ESTIMATION

the current and instantaneous HbA1c. The estimated HbA1c
levels are sometimes way off from the actual HbA1c values.
This estimation, with large deviation, may often misguided
healthcare professionals while taking necessary preventive
interventions. However, predicting accurate HbA1c values
into a specific range, such as between 7.5% and 9% as an
example, appears to be more beneficial for diabetes manage-
ment [27]. In the literature, advanced estimation of HbA1c
values utilizing CGM data were not investigated. The studies
[10], [11] as outlined in Table VIII calculated the present
HbA1c values using the current BG data. The HbA1c values
are significantly related with recent BG values as compared to
the previous values. Furthermore, the extraction of pertinent
features utilizing CGM sensor data to forecast HbA1c haven’t
been explored. This is the first time in literature that HbA1c
prediction is attempted by applying an MSMC classification
framework. The missing data treatment, feature extraction,
selection, and fusion, combined with the MSMC framework,
obtained an overall accuracy of 88.65% and 83.41% for the
three-staged and five-staged classification tasks, respectively.
The developed framework has an excellent perspective for both
doctors and patients to arrange preemptive actions as they
are now well-informed of a person’s future HbA1c levels and
infer the possibility of developing diabetes-related difficulties.
The interventions or treatment can be started early to avoid
complications and prolong healthier living.

CONCLUSION

The present research work devised a novel approach for
the prediction of HbA1c levels. The prediction (not current
estimation) of HbA1C levels has never been investigated in
the literature despite the significance it holds. The proposed
model is composed of data collection using CGM sensor, new
methods for missing data estimation, seven feature extraction
techniques have been utilized to extract representative fea-
tures, then implementing an MSMC model for the advanced
prediction task. The developed framework achieved 88.65%
and 83.41% accuracy for the three-staged and five-staged
classification models, respectively. One of the challenges we
faced during model evaluation is the lack of a publicly
available CGM dataset to test our model’s applicability for
HbA1c prediction. The public CGM datasets from Diabetes
Research in Children Network (DirecNet) have limited HbA1c
levels (6.7–9%), while the developed MSMC models classify
HbA1c in the range 5.2–14.5%. This limitation is addressed by
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embarking on a data collection initiative from Qatar’s national
children’s hospital for collection of CGM diabetic children.
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