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Abstract—Breathing rate monitoring is a must for hospi-
talized patients with the current coronavirus disease 2019
(COVID-19). We review in this paper recent implementa-
tions of breathing monitoring techniques, where both con-
tact and remote approaches are presented. It is known that
with non-contact monitoring, the patient is not tied to an
instrument, which improves patients’ comfort and enhances
the accuracy of extracted breathing activity, since the dis-
tress generated by a contact device is avoided. Remote
breathing monitoring allows screening people infected with
COVID-19 by detecting abnormal respiratory patterns. How-
ever, non-contact methods show some disadvantages such
as the higher set-up complexity compared to contact ones.
On the other hand, many reported contact methods are mainly implemented using discrete components. While, numerous
integrated solutions have been reported for non-contact techniques, such as continuous wave (CW) Doppler radar and
ultrawideband (UWB) pulsed radar. These radar chips are discussed and their measured performances are summarized
and compared.

Index Terms— Chronic obstructive pulmonary diseases (COPD), COVID-19, breathing monitoring techniques, Doppler
radar, ultra-wideband (UWB) pulse radar.

I. INTRODUCTION

TTE main function of the respiratory system is gas
exchange. Oxygen is transferred from the external ambi-

ent into our bloodstream, while carbon dioxide is expelled
outside [1]. Fig. 1 illustrates the respiratory system including
the upper and lower respiratory tract regions. When inhaling,
the air flow passes through the larynx and the trachea, and
then splits into two bronchi. Each bronchus is divided into two

Manuscript received February 25, 2021; revised March 25, 2021;
accepted March 26, 2021. Date of publication April 12, 2021; date of
current version June 30, 2021. This work was supported in part by Natural
Sciences and Engineering Research Council of Canada (NSERC),
in part by Mathematics of Information Technology and Complex Systems
(MITACS), and in part by Dymedso Inc. The associate editor coordinating
the review of this article and approving it for publication was Prof. Tarikul
Islam. (Corresponding author: Mohamed Ali.)

Mohamed Ali is with the Department of Electrical Engineering, Poly-
technique Montréal, Montreal, QC H3T IJ4, Canada, and also with the
Department of Microelectronics, Electronics Research Institute, Cairo
12622, Egypt (e-mail: mohamed.ali@polymtl.ca).

Ali Elsayed is with the Nanotechnology and Nanoelectronics
Program, University of Science and Technology, Zewail City of Science,
Technology and Innovation, Giza 12578, Egypt.

Arnaldo Mendez and Yvon Savaria are with the Department of
Electrical Engineering, Polytechnique Montréal, Montreal, QC H3T IJ4,
Canada.

Mohamad Sawan is with the Department of Electrical Engineering,
Polytechnique Montréal, Montreal, QC H3T IJ4, Canada, and also
with the School of Engineering, Westlake Institute for Advanced Study,
Westlake University, Hangzhou 310024, China.

Digital Object Identifier 10.1109/JSEN.2021.3072607

smaller branches to form bronchial tubes. These tubes form a
multitude of pathways within the lung that terminate at the end
with a link to the alveoli. Gases exchanges occur at the alveoli,
where oxygen diffuses into the lung capillaries in exchange
with carbon dioxide. Exhalation starts after the gas exchange
and the air containing carbon dioxide begins to return across
the bronchial pathways back out to the external ambient
through the nose or mouth. In addition, the respiratory system
has other secondary functions including filtering, warming,
and humidifying the inhaled air.

The respiratory rate (RR), or the number of breaths per
minute, is a clinical parameter that represents ventilation,
i.e., the movement of air in and out of the lungs. A change in
RR is often the first sign of deterioration as the body attempts
to maintain oxygen delivery to the tissues [2], [3].

An accurate measurement of the RR is essential for vital
signs monitoring (i.e., RR, oxygen saturation, temperature,
blood pressure, pulse/heart rate, and alert, verbal, pain, unre-
sponsive (AVPU) response) of patients with breathing troubles
such as Chronic obstructive pulmonary disease (COPD) and
COVID-19. The latter, which is caused by a coronavirus,
induces severe respiratory illness to many. It has a major
impact on society and it is currently receiving a great deal
of attention. In the same vein, SARS-CoV-2 has also been a
very significant cause of concerns. Patients with moderate or
severe COVID-19 are usually hospitalized for close monitoring
and supportive care, where indicators of severe disease are

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

https://orcid.org/0000-0002-7476-7920
https://orcid.org/0000-0002-3404-9959
https://orcid.org/0000-0002-1615-7147
https://orcid.org/0000-0002-4137-7272


14570 IEEE SENSORS JOURNAL, VOL. 21, NO. 13, JULY 1, 2021

Fig. 1. Illustration of human respiratory system. [1].

marked Tachypnea (breathing rate, ≥ 30 breaths per minute)
[4], [5]. Therefore, continuous breathing rate monitoring is
required to evaluate the progress of hospitalized patients with
COVID-19. In addition, remote breathing rate monitoring
helps screening people infected with COVID-19 by detecting
abnormal respiratory patterns [6], [7].

In addition, irregular cardiac rhythms and breathing cessa-
tion are thought to be the underlying triggers of sudden adult
death syndrome (SADS) and infant sudden death syndrome
(SIDS), which is the third leading cause of infant mortality
[8]. Hence, continuous monitoring of respiratory rate can
help minimizing life-threatening occurrences, especially for
patients with respiratory and cardiovascular problems. Res-
piratory rates can be utilized along with breathing patterns to
both diagnose and monitor a person’s health conditions when
it comes to pulmonary diseases. The normal respiratory rate
varies from one person to another, but in general it lies between
12-20 breaths per minute at rest [9]. Abnormal respiratory
rates can fall into three categories: Tachypnea (high respiratory
rate), Bradypnea (low respiratory rate), or Apnea (cessation
of breathing) [10]. The latter is often divided into two
main categories called central, caused by respiratory system
development deficiencies, and obstructive, caused by airway
obstruction [11]. Other abnormal respiratory patterns such as
Kussmaul’s breathing, Apneustic breathing, Cheyne–Stokes
respiration, Ataxic and Biot’s breathing, and Agonal breathing
have been reported in [12]. Ideal breathing monitoring systems
should be non-invasive, comfortable, easy to use, low-cost, and
should offer high accuracy.

This paper reviews recent implementations (discrete and
integrated) of various respiratory monitoring techniques.
These methods are classified as either contact or remote
(non-contact). Contact and wearable respiratory devices have
direct contact with the subject’s body. On the other hand,
non-contact monitoring techniques are based on measuring
the respiration rate without making contact with the subject’s
body.

In the remaining parts of the paper, we introduce
contact-based methods for respiration monitoring in Section II

Fig. 2. Block diagram of the sound-based respiratory monitoring.

and non-contact approaches are presented in Section III, where
the measured performance of the integrated solutions are
summarized and compared. Our results and evaluation of the
reviewed breathing monitoring techniques are presented in
Section IV. Finally, conclusions from this review are drawn
in Section V.

II. CONTACT RESPIRATORY MONITORING TECHNIQUES

Contact respiratory devices have direct contact with the
subject’s body. They are based on measuring one of the
following parameters: respiratory sound, respiratory airflow,
respiratory-related chest, or abdominal movements.

A. Sound-Based Respiratory Monitoring
One of the oldest type of medical examinations is auscul-

tation, in which a physician assesses circulatory, respiratory,
and gastrointestinal systems by examining the internal sounds
of the body. In chronic respiratory diseases such as chronic
obstructive pulmonary diseases (COPD), chronic bronchitis,
and bronchial asthma, futile secretions (i.e. mucus and sputum)
are produced in the breathing tracts. This leads to inflammation
causing airways obstruction and thus the airflow speed changes
resulting in abnormal breathing sounds [13]. Decades of
medical studies have established correlations between anom-
alous breathing sounds including wheezing, crackles, rhonchi,
broncho-vesicular and bronchial, and corresponding potential
diagnoses.

However, the accuracy of information obtained by ausculta-
tion depends on the experience of the physician [14]. In addi-
tion, this method does not allow continuous monitoring [14].
To overcome these limitations, wireless and wearable acoustic
monitoring devices are of essence to continuously follow up
with patients. Fig. 2 shows a generic block diagram of the
sound-based breathing monitoring system, where the sound
is captured by a microphone. Then, the signal is processed
through some analog circuits for filtering and amplification
purposes. The processed analog signal is then digitized by
means of an analog-to-digital converter (ADC) for further
digital processing, including features recognition. In addition,
a wireless transmission circuit may be used to update the
patient’s corresponding physician and to reduce power usage
by processing the data over the base station i.e. a laptop,
mobile phone, or internet servers. The use of acoustic devices
varies from only coughing and breathing frequency detection
to full wheeze detection and analysis [15], [16]. Many devices
combine the use of acoustic breathing pattern with the chest
displacement pattern to enhance accuracy [15], [17]. Sound
detection devices (e.g. microphone) are usually located in chest
area. In [17], the strengths of the acquired acoustic signals
from three locations (the left interior of the first intercostal
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Fig. 3. (a) Possible locations for the sound detection device on the chest,
and (b) Strengths of the acquired acoustic signal at each location [17].

space, the left interior of the second intercostal space, and the
left margin of the third intercostal space) on the chest were
compared (see Fig. 3). It was found that the acoustic signal is
slightly stronger around the first intercostal space level.

To efficiently develop wheeze detection algorithms, a suf-
ficient and reliable database for wheezing sounds is required.
One of these databases was built in [18]. Other lung sounds
recordings are also available online on different platforms used
mainly to train medical students for auscultation. However,
sufficient and reliable datasets for lung sounds other than
wheezing sounds are still lacking. Another major challenge
is that acoustic signals are susceptible to noise (artifacts)
either from the surroundings or from other body voices, i.e.
talking, coughing, and heartbeats [19]. Thus, the detection
system should have high sensitivity in addition to consume
low-power and be compact in order to cope with the wearable
technology trends in biomedical engineering. The breathing
sound analysis algorithm given in [19] archives a sensitivity
of 91.51 %, while in [20], a 91.3 % success rate and relatively
low-power implementation was achieved.

B. Airflow Sensing-Based Respiratory Monitoring
Respiratory rate can be extracted from airflow as expiratory

air is warmer than inspiratory air. In addition, the pressure
of the airflow can be used to extract the respiratory signal.
To monitor patients’ breathing, a sensor attached to the air-
ways is required to measure the changes in these parameters.
Moreover, the breathing activity could be extracted by detect-

ing the expired carbon dioxide (CO2). Furthermore, humidity
sensors could be adopted to detect the breathing rate as
expiratory air has higher humidity than inspiratory air.

1) Airflow Temperature Sensing: In this technique, the dif-
ference in temperature between the inhaled and exhaled air
is measured by means of a thermistor located under the nose.
Authors in [21], employed a small temperature resistor clipped
onto the nose, and its output was fed to a high-gain differential
amplifier as shown in Fig. 4(a). This amplified signal is
then applied to an envelope detector. The output signal is
subsequently processed by a microcontroller unit (MCU) to
calculate the respiration rate. An additional temperature sensor
could be used to detect the ambient temperature so that the
device is usable virtually at all temperatures. Also, the airflow
temperature sensing-based breathing monitoring technique was
implemented using one integrated circuit (IC), TMP100, which
involves a temperature sensor and an ADC to digitize the
measured signal as depicted in Fig. 4(b) [22]. This work used
an additional module that uses a wireless GSM modem to send
urgent results to the healthcare givers.

The backscattering technique that is based on a transponder
response modulation has been used for wireless communica-
tion [23], [24]. The transponder is composed of an array of
dipoles, loaded with a varactor diode, which implements a fre-
quency selective surface as shown in Fig. 4(c). The measured
temperature tunes the frequency of a low-frequency oscillator.
Then, the oscillator output modulates the varactor diode, which
in turn modulates the backscattered response of the transpon-
der. This method helps to reduce the power consumption since
the only active element is the oscillator; no ADC or MCU
are needed in the transmitter side. A customized reader is
then used to receive the backscattered signal and extract the
temperature readings. The maximum reading distance achieved
by this method is 3 m [23]. This system is mounted on the
subject’s head has shown in Fig. 4(d). Although backscattered
communication was used in this system to reduce power
consumption, it suffers from the sensitivity to the angle and
distance variations from the transponder.

2) CMOS/MEMS-Based Airflow Pressure Sensing: A
micro-electromechanical system (MEMS) micro-cantilever-
based respiratory airflow sensor has been presented for
the first time in [29]. When the airflow is applied to the
sensor, it deforms and its resistance changes accordingly.
This results in a linear change in the sensor output voltage.
Since MEMS sensors are compatible with CMOS processes,
fully integrated systems could be realized. Authors in [25]
integrated three resistive MEMS sensors together with the
CMOS processing circuits in one chip as shown in Fig. 5(a).
In this design, the generated output voltage from the MEMS
sensor is applied first to a chopper circuit to modulate the
low-frequency respiratory signals to higher frequencies.
Then, a differential difference amplifier (DDA) is employed
to amplify the modulated signal. Next, another chopper is
used to modulate the input offset of the DDA and other
noises (like flicker noise) to the high-frequency range, while
the original respiratory signal is demodulated back to the
low-frequency range. This structure allows filtering noise
by means of a low-pass filter (LPF). Since the needed total
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Fig. 4. Implementations of airflow temperature sensing-based respira-
tory monitoring: (a) Using analog components, (b) Using the TMP100 IC,
(c) Backscattering approach, and (d) System’s mounting on the subject’s
head [23].

gains of the three MEMS sensors may be different, a second
amplifier stage is employed with an off-chip resistor to adjust
its gain. A switched-capacitor (SC) circuit-based LPF with a
bandwidth of 2.5 Hz was implemented. Also, an anti-aliasing
filter was used before the SC filter to cancel signals with
frequencies higher than half of the SC switching frequency.
This work is implemented in 0.35 μm CMOS/MEMS
technology with a chip area of 1.8 × 2.4 mm2 as depicted in
Fig. 5(b). However, integrated resistive MEMS sensors have
DC offset as a result of inherent resistance mismatch due to
process variations.

Authors in [26] implemented a DC servo loop (DSL)
offset calibration scheme as part of an airflow detection
CMOS/MEMS chip to automatically eliminate DC offsets in
the MEMS sensors. The mouth breathing airflow measure-

Fig. 5. CMOS/MEMS-based respiration detection system: (a) Block
diagram [25], (b) Chip microphotograph [25], and (c) Measured mouth
breathing airflow [26].

TABLE I
PERFORMANCE COMPARISON OF CMOS/MEMS CHIPS

FOR AIRFLOW PRESSURE DETECTION

ment process exploiting this chip is illustrated in Fig. 5(c).
Another fully integrated approach has been reported in [27],
where it includes the MEMS sensors, analog sensing circuits,
an ADC to allow further processing, and three capacitor-less
low dropout voltage regulators so that the chip can be powered
through a single Li-ion battery. Another similar work has been
reported in [28], where an off-chip MEMS sensor has been
used to detect the respiratory signal, while the processing
circuits have been integrated in 0.5 μm CMOS technol-
ogy with an active silicon area of 0.163 mm2. In addition,
an Artaflex wireless transceiver module has been utilized for
data transmission. The performance of the CMOS/MEMS
chips for airflow pressure detection to extract the breathing
activity that were cited have been summarized in Table I.
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Fig. 6. Block diagram of infrared spectroscopy device.

3) CO2 Monitoring (Capnometry): Breathing rate could be
extracted be measuring the concentration of subject’s expired
carbon dioxide (CO2). The Capnography method, which is
the gold standard for RR measurements [30]–[33], is used
for measuring patient’s breathing rate in clinical studies.
It continuously measures the concentration or partial pressure
of CO2 in respiratory gases, where the exhaled air contains
more CO2 than the inhaled air. Infrared spectroscopy is the
most commonly used method to measure the amount of CO2
in gas samples. With that method, a transmitter is used to
emit a beam of infrared light through the gas sample. That
beam falls onto an infrared detector as depicted in Fig. 6.
The presence of CO2 in the gas results in a reduction in the
amount of the detected light, which results in voltage changes
in the processing circuit. Although Capnography is potentially
accurate, it requires sensitive CO2 sensors to be attached to
the subject through a medical face mask or nasal cannula,
which results in a reduced comfort level to the patient. Various
infrared carbon-dioxide sensors and their specifications have
been reported in [34].

4) Humidity-Based Sensing: Since the air exhaled has higher
humidity than the air inhaled, breathing rate monitoring
could be done using a humidity sensor placed close to the
patient’s nose or mouth. Various humidity sensors could be
adopted including resistive sensors [35], capacitive sensors
[36], nanocrystal and nanoparticles sensors [37]–[39], fiber
optic sensors [40], [41], and impedance sensors [42]. These
different types of humidity sensors have been reviewed and
their specifications were compared in [43]. A paper-based
humidity sensor has been investigated in [39], where changes
in resistance of a paper with printed graphite electrodes has
been converted into an electrical signal.

As shown in Fig. 7, this compact sensor has been embedded
into a medical mask. A data acquisition and processing unit
has been built using off-the-shelf electronic components and
supplied by a rechargeable 5V DC battery. This unit was
used to apply a voltage across the paper electrodes. The
resulting signal is received, amplified and digitized to produce
a measurement transmitted over a wireless Bluetooth link to
the display device (a tablet computer running a custom-built
Android application). This cost-effective implementation was
shown to be capable of continuous monitoring of breathing
rate at rest and during walking (up to 60 breaths per minute).
However, a facemask is required to allow measurements,
which is unsuitable for patients with breathing troubles.

C. Chest Movement-Based Respiratory Monitoring
1) Using Piezoelectric Transducers: A thin sheet of

polyvinylidene fluoride (PVDF), which is a piezoelectric mate-
rial, can be used to measure the change in body volume

Fig. 7. Breathing rate monitoring prototype using a paper-based humidity
sensor [39]: (a) A facemask with the embedded paper-based sensor, (b)
Data acquisition board, and (c) Display device (A tablet computer running
an Android application).

during respiration. An array of 4 × 1 sensors reported in
[48] has been designed to be placed under the subject’s back
(between a bed cover and a bed mattress). The measured sig-
nals are applied to an apnea detection algorithm to extract the
respiratory signal among various signals generated from the
PVDF and then, detect apnea. This approach needs complex
setup. Authors in [44] presented a wearable solution, where
integrated processing circuits have been used to receive and
process the signal from the PVDF sensor. In this design,
the charge generated by the PVDF sensor is firstly converted
to a voltage by means of a charge amplifier and then digitized
using an ADC. In addition, wireless data transmission has
been implemented with an impulse radio ultra-wideband (IR-
UWB) radio transmitter working in the 3.1–5 GHz frequency
range. A block diagram of the system exploiting this technique
and the implemented chip are shown in Fig. 8. Although this
approach has many advantages including low-power integrated
CMOS circuits, low weight, and wireless telemetry, it needs
to be attached to a jacket or a chest belt for proper operation,
which decreases the patient’s comfort level.

2) Using Accelerometers: As shown in Fig. 9(a), respiration
is expressed through both thoracic cage and abdominal cavity
activities. So, during inspiration, the chest expands and the
abdomen rises. While in case of expiration, the chest contracts
and the abdomen falls. Therefore, thoracic and/or abdominal
cavity motions could be monitored (by means of accelerometer
and/or gyroscope sensors) to extract the breathing activity
[15], [49]–[54]. Authors in [15], [49] used two sensor nodes,
as shown in Fig. 9(b), to collect the thoracic and abdominal



14574 IEEE SENSORS JOURNAL, VOL. 21, NO. 13, JULY 1, 2021

Fig. 8. Piezoelectric sensor-based breathing monitoring system [44]:
(a) Block diagram and (b) Chip microphotograph.

Fig. 9. (a) Chest and abdomen activities during respiration cycle [15]
and (b) Two attached sensor nodes, equipped with inertial measurement
units, to measure and transmit chest and abdomen motions [15].

cavity motions data. Each sensor node has an inertial mea-
surement unit (LSM9DS0 provided by STMicroelectronics) to
provide the accelerometer and gyroscope data that represent
the thoracic or abdominal cavity motion. The data obtained
from each inertial measurement unit is then transferred to
an MCU (through an SPI interface bus) to perform angle
calculations and filtering before being wirelessly transmitted
to a base-station by means of a low-power radio module. The
received signal is smoothed using a Savitzky-Golay smoothing
filter and then applied to a peak detection algorithm to extract
the breathing peaks. Although this prototype has some advan-
tages including small size and low-weight, which allows better
comfort to the person, it consumes a relatively high current
(28.2 mA), that lead to an autonomy of only 6 hours when it
is powered by a 100 mA-h lithium battery.

3) Ultrasound-Based; Wearable Approaches: Ultrasound
waves can be used to monitor human’s vital signs such as
breathing and heart rates. In that class of systems, an ultra-
sound transmitter is used to emit ultrasound waves towards
the subject’s chest and the restored waves are changed either
in amplitude or phase as a result of the motions of heart
and respiratory systems. Ultrasound sensors can be either in
close contact with the body [56] or separated [57], [58]. The
rest of this section investigates the ultrasound-based wearable
approaches, while the section dealing with remote-based tech-
niques covers the ultrasound-based remote methods.

A piezo-ultrasound transducer is commonly used as it offers
low cost and good performance. It is important when using

ultrasound transducers to place the sensor away from the bones
as they introduce both large attenuation factor and acoustic
impedance of 5 dB/cm and 6 × 106 rayl, respectively [56].
The intercostal area among T5-T8 ribs offers a good resolution
for monitoring both the heart and internal organs movement
[55], [59]. The axial resolution of the sensor, hence, must
be adjusted to accurately catch this range. This range can
be calculated simply by dividing the velocity of the wave
by the double of the operating frequency [56]. Although
increasing the frequency improves accuracy, it also increases
the power consumption and computational complexity, which
are undesirable with wearable devices.

An example of wearable ultrasound-based respiratory and
heart rate system is shown in Fig. 11 [55], [59]. In this imple-
mentation, a high-voltage (HV) pulser is employed to produce
±20 V with 1 MHz pulsed signal. This HV swing is used
to improve the intensity of ultrasound waves. The generated
pulses are applied to the PZT-4 piezo transducer. The reflected
ultrasound beams are then amplified by a two-stage linear
amplifier exploiting a wide band-pass passive filter to remove
the unwanted high and low frequency components of the
received signal. The magnified waveform is then applied to an
envelope detector and a dynamic average threshold crossing
(D-ATC) circuit to simplify digital processing. A 2-channel,
8-bit ADC is utilized to digitize the received signal before
applying it to an FPGA for further processing. Then, the gen-
erated data from the FPGA is logged and processed by
MATLAB with a user-friendly GUI interface, where low
and high-pass finite impulse response (FIR) filters have been
used to extract both low (respiration) and high (heart cycles)
frequency elements of the signal, respectively. The results
was compared to Spirometry and showed 89 % agreement.
The obtained respiratory signal has sensitivity and specificity
of 94.5% and 94.0%, respectively with the spirometer signals
used as reference. Despite the promising results of the contact
ultrasound sensor, it has few drawbacks such as the use of
both adhesive patches to stabilize the sensor and conductive
material, i.e. gel, which can cause some discomfort to the
patient especially for prolonged monitoring. It is also sensitive
to upper body movements and prone to error in cases of
shallow breathing and obstructive sleep apnea [55], [59].

D. Lung Conductivity Sensing
Bioimpedance fluctuations in the thorax can be used to

monitor respiration. This concept was first introduced in [60],
where a magnetically coupled device was used to measure
conductivity variations in the chest as a result of breathing.
In this study, a three-coil differential transformer was used.
The center coil induces eddy currents into the body by
exciting it with a 100 kHz sine wave signal generated by a
crystal oscillator that is amplified by a power amplifier. Then,
the voltage induced in the secondary coils, which correlates
with respiration, is measured to monitor conductivity changes.
However, this approach uses three coils which results in a
complex hardware. To overcome this inconvenient, several
single coil-based systems have been presented [45]–[47], [61].
A Colpitts oscillator was designed using a single flexible coil
placed on the body surface, where variations in coil impedance
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Fig. 10. Sensor (coil) locations of the impedance fluctuation sensing method: (a) In mattress cover [45], (b) Into an office chair [46], (c) In a textile
carrier [46], and (d) Attached onto the body by a belt [47].

Fig. 11. A wearable ultrasound-based breathing monitoring system [55].

as a result of changes in lung conductivity modulate the coil
frequency [45], [61]. This frequency change is measured by
a frequency counter. Although this method uses only one coil
placed in a mattress under the subject, it shows inaccurate
measurements when the subject moves and, as shown in
Fig. 10, the coil should be attached to the subject’s mattress
cover, chair, cloths, or through a belt. Another conductivity
sensing technique is the on body bioimpedance sensing [62].
In this technique, a bioimpedance signal is extracted using a
wearable device with four electrodes attached to the patients’
shoulders by injecting a current through the central arteries and
trachea. The authors were able to read low and high respiratory
rates with an accuracy of 100% in 10 adult subjects.

E. Photoplethysmography-Based Respiratory Monitoring
Photoplethysmography (PPG) is an optical non-invasive

method used to measure blood perfusion through tissues. It is
based on illuminating blood vessels with infrared light (usually
through patient’s finger). Then, a PPG sensor measures the
amount of infrared light absorbed or reflected by blood, which
reflects changes in blood volume [63]. Fortunately, breathing
rate modulates the PPG waveform in three ways (as shown
in Fig. 12); frequency, intensity, and amplitude [64], [65].
Firstly, the heart rate increases during inspiration and decreases
during expiration, causing respiratory induced frequency vari-
ations (RIFVs) of the PPG signal. Secondly, exchange of
blood between the pulmonary circulation and the systemic
circulation leads to variations of perfusion baseline, called

Fig. 12. Respiratory-induced variations in the PPG waveform [64].

the respiratory-induced intensity variation (RIIV). Finally,
the respiratory-induced amplitude variation (RIAV) is caused
as a result of a reduction in cardiac output due to reduced
ventricular filling. Various algorithms has been presented to
estimate the BR from a measured PPG waveform, including
Fourier transforms [66], digital filters [67], wavelet decom-
position [68], variable-frequency complex demodulation [69],
and autoregression [70].

F. Electrocardiography-Based Respiratory Monitoring
Electrocardiography (ECG) devices measure the electrical

field induced by the heart and respiratory activity in the
chest [71]. During the respiratory cycle, chest movements
due to filling and emptying of the lungs, results in a rota-
tion of the electrical axis of the heart, which impacts beat
morphology [72].

In addition, heart rate is modulated by respiration (increases
during inspiration and decreases during expiration). Fur-
thermore, it has been shown that respiratory frequencies
occur in the ECG spectrum due to heart movement [73].
Several ECG-derived respiration (EDR) techniques have been
proposed to extract the breathing activity from the recorded
ECG. Some of these techniques extract the breathing infor-
mation through respiration-induced variations in beat-to-beat
morphology [74], [75], while others extract it from the heart
rate [76], [77].

III. NON-CONTACT BREATHING MONITORING

TECHNIQUES

In non-contact respiratory monitoring techniques, the device
does not contact the patient’s body. These methods may be
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Fig. 13. Block diagram of the infrared thermography-based breathing
monitoring.

more suitable in some critical settings, including the current
COVID-19 pandemic and with children. In these techniques,
remote monitoring could be used to screen people who are
infected with COVID-19 by detecting abnormal respiratory
patterns. However, non-contact techniques need complex and
costly installation. In the following sections, we present in
detail various techniques used to implement non-contact res-
piratory monitoring.

A. Camera-Based Respiratory Monitoring
1) Infrared Thermography: Since the temperature around the

nostrils fluctuates during the respiratory cycle (e.g. 31.17 ◦C
during inspiration and 31.44 ◦C during expiration [78]),
infrared thermography can be used to monitor breathing rate.
As shown in Fig. 13, infrared thermography consists of three
main steps; identification of a region of interest (ROI) i.e.
the nose, tracking the ROI, and extracting the breathing rate
via processing. Various methods have been used to identify
the ROI such as segmentation [79]–[81], classification [82],
or depth maps extraction [83].

Authors in [80] and [82] adopted a tracking algorithm,
while in [84], a camera combined an infrared sensor has been
mounted on a tilt-platform in attempt to reduce the compu-
tation power used in segmentation and tracking. Processing
is usually done after the signal is applied to a low-pass filter
to remove the noise. Autocorrelation and curve fitting are the
most common techniques used to process the filtered signal
[81], [84], [85]. An algorithm to extract respiration signals
based on pixel time series has been presented in [86], where it
does not need nose-tracking and image segmentation. In addi-
tion, a depth camera was used to collect depth images of a
subject (chest, abdomen, and shoulder) at 1-4 m from the depth
camera [6]. Then, these images are processed to extract the
respiratory signal. Authors in [7] extracted breathing signals
of the video obtained from a thermal camera. Normal and
abnormal breathing patterns were classified from such video
through a deep learning neural network.

Even if infrared thermography can be very helpful for med-
ical robotics and sleep study applications, it is computationally
intensive and relatively expensive. Also, it is prone to error due
to tracking inaccuracies in highly mobile subjects. In [78],
the ability of the presented method to extract breathing rate
during head motion and breathing disorders was reported.
Breathing through both mouth and nose can be a source of
error too if segmentation does not cover the mouth.

2) Video-Based: Breathing activity could be extracted from
analyzing motions in different ROIs captured by a video
camera. In [87], a charged-coupled device (CCD) camera

Fig. 14. Typical continuous wave CW doppler radar for vital sign
detection.

was used to extract remotely the breathing activity due to
detecting the optical flow of surface movement of the body
during respiration. In [88], the breathing signal was obtained
by using two CCD cameras and two fiber grating (FG) three
dimensional (3D) vision sensors to detect volume changes
in the location caused by respiratory rhythms. Other studies
used depth image sensing cameras exploiting time-of-flight
(ToF) sensors [89] or Kinect sensors [90]. In [89], a camera
exploiting time-of-flight (ToF) sensors was adopted to compute
a dense estimation of the 3D respiratory motion of a patient.
With this method, a dense 3D surface model of patient’s
chest and abdomen was acquired at more than 15 frames
per second. However, depth image sensing cameras have short
detection ranges in addition to their high associated costs [91],
[92]. In other study [91], a monochrome camera was used
to track the respiratory signal and non-respiratory motions.
Then, a classifier was adopted to select only the correct
breath measurements. The authors in [93] presented a generic
blind deconvolution technique to obtain breathing signals from
videos by modeling every pixel in the abdominal-thoracic
region as the output of a linear time-invariant (LTI) channel
connected in parallel with an unknown dynamics response.

B. Radar-Based Respiratory Monitoring
During breathing, both the chest and abdomen move. These

movements range from 4 mm to 12 mm based on each individ-
ual and the amount of inspired air [96]. Based on this concept,
many contactless monitoring techniques could be used to
extract the breathing rate. Continuous wave (CW) doppler
radar is one of these methods, where RF signals are transmitted
and then modulated by chest and abdomen movements. Also,
short pulses could be transmitted towards the target and the
reflected ones are then received and processed, where the time
delay between the transmitted pulse and the received echo is
thus proportional to the distance between the target and the
radar. The latter is known as ultra-wideband (UWB) pulse
radar. In the following subsections, we provide a deep review
on these two radar types and highlight the main differences
between them. In addition, the measured performance of the
integrated solutions for radar-based respiratory monitoring are
summarized and compared.

1) CW Doppler Radar: Fig. 14 presents the block diagram
of a typical CW doppler radar for vital sign detection. In this
technique, a carrier is transmitted toward a human body, where
its frequency or phase is modulated by the physiological
movement (i.e., heartbeat and respiration). By comparing the
transmitted and the received signals (by means of a mixer),
the change in frequency and phase can be derived from the
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TABLE II
PERFORMANCE COMPARISON OF CW DOPPLER RADAR CHIPS (VALUES OBTAINED IN RESEARCH LABS SETTINGS)

received signal. The resulting baseband signal is then filtered
and converted into digital form by means of an ADC for post
processing to extract various features, mainly the breathing
rate.

Several architectures have been presented to implement
CW doppler radar including homodyne [97], heterodyne [98],
double-sideband [99], direct IF sampling [94], [100]–[103],
circularly Polarized [104], and self-injection locking [105].
These architectures and their baseband signal processing have
been reviewed in [106]. We summarize and compare the
measured performance of the integrated CW doppler radar
chips in Table II. As shown in this table, the listed designs
achieve different performance parameters such as operating
frequency, silicon area, power consumption, breathing rate,
and detection range. The ability of radar designs listed in
Table II to detect the breathing rate was validated in research
laboratories environment. Also, few authors compared the
breathing rate obtained from a radar with that found from a
reference method. For example, breathing rates obtained with
the radar sensor reported in [101] were compared with those
found using a piezoelectric respiratory effort belt. The authors
reported a 95% match.

Front-end architecture must be carefully selected to maxi-
mize the sensitivity and extend the detection range. Fig. 15(a)
shows an example of a direct conversion 5.8 GHz radar
receiver chip integrated in 130 nm CMOS technology [94].
The baseband signal and spectrum detected using this chip
are depicted in Fig. 15(b).

2) Laser Doppler Vibrometer (LDV)-Based Radar: Laser
Doppler Vibrometer (LDV) is an optical and non-contact
technique used to measure surface velocity and displacement
on the basis of the Doppler shift. It adopts laser radar
(instead of radio-frequency radar) to obtain the shift in laser
frequency as a result of movements of the surface of interest.

Fig. 15. A direct conversion 5.8 GHz radar receiver [94]: (a) Integrated
chip in 130 nm CMOS technology and (b) Detected signals.

This approach was used to monitor breathing activity by
measuring displacements of the chest-wall [107]–[110]. The
LDV-based non-contact breathing rate monitoring system
proposed in [109] was operated at a distance of 1.5 m,
on different points of the patients’ thoracic and abdomi-
nal area. Another LDV method was proposed in [110] to
monitor breathing activity of preterm infants. LDV-based
systems offer high sensitivity (high displacement resolu-
tion) and they require low-power density (less than 1 mW),
which implies no biological impacts on patients [110].
However, they are highly affected by motion artifacts and
subjects’ movements in addition to their associated high
cost [92], [111].

3) UWB Pulse Radar: The ultra-wideband (UWB) frequency
range that extends from 3.1 to 10.6 GHz is free from interfer-
ence, except for the Wi-Fi at 5 GHz. UWB systems offer some
benefits over narrowband systems, including low implementa-
tion complexity, good immunity to both noise and multi-path
fading, low power dissipation, and better coexistence with
other existing narrowband links [122]. Since its transmitted
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TABLE III
PERFORMANCE COMPARISON OF UWB PULSE RADAR CMOS CHIPS (VALUES OBTAINED IN RESEARCH LABS SETTINGS)

Fig. 16. UWB pulse radar: (a) Correlation receiver [95] and (b) Direct
sampling receiver.

power is low (<–41.3 dBm/MHz), it has no harmful effects on
human body. The main drawback of UWB link is the limited
coverage. Based on this promising technology, UWB pulsed
radars have been developed, where narrow pulses are transmit-
ted with a wide instantaneous bandwidth. However, with this
wide bandwidth, receiver architectures for narrowband systems
cannot be used. One solution is the correlation receiver [95],
[113], [123] shown in Fig. 16(a), where short pulses are
produced by the pulse generator and transmitted towards the
target. The reflected signals are first applied to a low-noise
amplifier (LNA) to be amplified and then multiplied with a
template signal that is a delayed replica of the transmitted
pulses produced by means of a Shaper. The resulting signal
from the multiplier is then integrated to increase the signal-to-
noise ratio (SNR) and get the envelope holding the information
on the movement rate. The time delay between the transmitted
pulse and the received echo is thus proportional to the distance
between the target and the radar. An approach based on
correlations allows sampling the signal at a rate lower than

the bandwidth of the actual signal. However, to track and
detect objects, the delayed pulses must be swept in the range
of interest, which results in complex downstream processing
and control logic.

Directly sampling the signal at RF frequency is another
approach (see Fig. 16(b)), which preserves all the informa-
tion carried in the received waveform in the digital domain
[114]–[117], [119], [120], [124], [125]. This relaxes the
selection of subsequent processing and detection algorithms.
However, this method results in higher power consumption and
hardware complexity, since a high sampling rate is required.
To solve this issue, non real-time sampling techniques like
equivalent time sampling (ETS) [115]–[117], swept-threshold
(ST) sampling [119], and time-extension [124] method can be
utilized because the target moves slowly. Table III compares
the measured performance of various UWB pulse radar chips.
Unlike CW radars, no frequency conversions are needed in
UWB pulse radar transceivers, which results in lower hardware
complexity, leading to lower power consumption for longer
battery autonomy.

4) FMCW Radar: Another method that has shown potential
for remote healthcare applications is the frequency-modulated
continuous-wave (FMCW) radar. Fig. 17(a) shows the prin-
ciple of operation of a FMCW radar, where the frequency
shifts (� f ) of the emitted radar signals over time allow
determining the distance to the patient [126]. The breathing
or movement of the patient changes the amplitude of the
reflected waveform. Therefore, breathing activity is detected
by measuring the distance between the chest wall and the
transceiver device. FMCW requires very high bandwidth since
the chest displacements are in millimeters [127]. On the other
hand, the FMCW wide-band radar can be compact and light
weight, while consuming less power, and allowing real time
processing [128].

In [112], a 24 GHz FMCW radar prototype with 250 MHz
bandwidth has been implemented to detect the vital signs
of multiple adjacent subjects. Fig. 17(b) shows the measured
range estimation for two subjects at a distance of 100 cm
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Fig. 17. FMCW radar: (a) Principle of operation, (b) Measured range
estimation for two subjects at a distance of 100 cm and 140 cm [112],
and (c) Measured respiration rate of these two subjects [112].

and 140 cm, while the measured respiration rate of these two
subjects is illustrated in Fig. 17(c).

5) Processing Algorithms: Common processing algorithms
used in research are fast Fourier transform (FFT) [129],
wavelet analysis [130], and time-frequency analysis [131].
Signal processing methods like the one reported in [132] uses
a combination of various algorithms to judge the signal in
different situations adding to the adaptability of the algorithm
and its robustness. FFT takes the DFT of the signal for a given
time window and selects the dominant frequency components.
On the other hand, wavelets were used to detect the breathing
pattern, hence, various wavelet formulas such as continuous
wavelet transform (CWT) [133] and 8th order Gaussian pulse
[134] have been used to model the signal in order to extract
features of interest.

Other algorithms detect zero-crossing used to estimate
the breathing rate based on counting negative-to-positive

transitions in the obtained signal. Linear predictive coding
(LPC) [135] builds a linear relationship using the least-square
error method for a given time-window, then, this relationship
plays the role of a filter and it is used to determine the location
of the dominant spectral shape and least-squares harmonic
(LSH), which uses the Geortzl algorithm in order to model
the breathing pattern using a finite sum of harmonics [132].

Combining several algorithms enhances the accuracy of
estimating the breathing rate [136]. However, for retrieving the
whole breathing pattern for tidal volume studying, continuous
wavelet transform is better equipped to do so since it provides
time-frequency analysis, which helps extracting many features
such as energy, entropy, frequency distribution, and power
along with patterns recognition techniques for characterising
the breathing disorders in addition to filtering-out the motion
artefacts [133]. It is of interest that wavelet analysis is less
prone to the errors caused by non-periodic breathing patterns
[133], [134].

C. Ultrasound-Based: Contactless Approaches
Contactless ultrasound implementations [57], [58], [121],

[137] are more suitable for sleep studies and apnea detection.
It is mainly used to calculate the breathing rate and offers no
discomfort to the patient. First, the distance at which the sensor
is located from the subject is determined using the attenuation
characteristics of the sensor [58]. The processing includes
smoothing the signal, mainly using low-pass filters adjusted
at the average respiration frequency, which is around 0.25 Hz.
Then, various methods can be applied for peak detection such
as phase portrait reconstruction [58]. Finally, phase detection is
used to distinguish artifacts of non-respiratory and caretakers
motions. Detection of these movements can be used to assess
caretakers effort, detect seizures and determine sleep state
[139]. A 40kHz self-injection-locked (SIL) ultrasound radar
to detect heartbeat and respiration activities was presented for
the first time in [121]. This design involves a phase-canceling
feedback demodulation topology to extract the movements of
the target, which greatly improves the linearity of the SIL
radar. This allows the detection of large body movements
and lung movements without significant distortion to the
respiration and heartbeat signals. The reported prototype was
tested to detect the movements of the chest at a distance
of 30 cm. Resulting time-domain and the frequency-domain
plots of the chest movements recorded over one-minute are
provided in Fig. 18(a) and Fig. 18(b), respectively, where
small involuntary body movements, breathing pattern, and
heartbeat have been detected.

The work in [138] showed a method depending on air-
flow measurements, where the presented system measures
the frequency shift resulting from the velocity difference
between the exhaled air flow and the ambient environment.
In this design, a 40 kHz ultrasound transducer is placed at
a distance of 50 cm above the patient head, where it emits
a signal with 100 dB/0.0002 μbar emission level and 6 dB
beamwidth. Then, the reflected ultrasound wave is collected
by an ultrasound receiver, placed at a distance of 30 cm from
the patient head. The resulting signal is subject to amplification
and shaping before it further processed for visualization. The



14580 IEEE SENSORS JOURNAL, VOL. 21, NO. 13, JULY 1, 2021

Fig. 18. Detected chest movement signals through self-injection-
locked ultrasound radar represented in [121]: (a) Time-domain and
(b) Frequency-domain.

results obtained with this method showed that the inclination
of the subject’s head affects the signal intensity. In addition,
the resulting breathing signal is embedded in the doppler shift
during rapid subject movements, such as sleeping position
changes, which affects the detection of breathing activity.

D. Remote Plethysmography
Remote plethysmography could be done using mobile

phones cameras which allows monitoring blood volume
changes based on variations in the recorded light intensity
[140]–[143]. It is based on using an imaging array instead
of a single photo detector as in the case of contact plethys-
mographic sensor. One example of plethysmographic imaging
was reported in [143]. This study showed the feasibility of
estimating the BR by placing a finger on a mobile phone
camera. Firstly, a video is recorded with the camera once a
finger is correctly placed on the lens followed by detecting
the optimal region of interest (ROI) from the red chan-
nel of the video. Then, a proposed algorithm extracts the

imaging photoplethysmogram from this ROI, and calculates
the position and amplitude of the measured pulses.

IV. RESULTS

Several breathing rate monitoring techniques were presented
in this paper. Each method offers some advantages and also
suffers from some limitations as summarized in Table IV.
Non-contact monitoring techniques including infrared ther-
mography, radar-based, and ultrasound-based allow remote
breathing detection, which results in improved patient’s com-
fort compared to contact methods in which the patient is tied
to an equipment. These methods, however, require a complex
and static setup in addition to their susceptibility to target
movements (artifacts), which affects the monitoring accuracy.
On the other hand, sound detection-based breathing monitoring
allows a wearable solution, in which the breathing signal could
be measured without restricting much the patient’s motion.
However, the measured sound signal is highly susceptible to
noise either from the surroundings or from other body voices,
including talking, coughing, and heartbeats.

The hardware required to implement radar-based breathing
monitoring systems is fairly simple, which is particularly use-
ful in medical conditions that require continuous monitoring
such as sleep studies and apnea monitoring. Radar-based sys-
tems are also immune to environmental changes coming from
light and temperature. In addition, they are less computation-
ally expensive than thermography-based approaches, which
implement complex segmentation and tracking algorithms.
However, radar-based breathing monitoring systems suffer
from several disadvantages such as sensitivity to the target
distance (the closer the distance to the transmitter-receiver
pair, the higher the error [132]) and the so-called null-point
problem. Other sources of errors include noise coming from
subject movements and activities, artifacts from metal objects,
and the existence of more than one person in the same location
of observation.

CW Doppler and UWB radars are shown to have compara-
ble performance. Both techniques are simple and allow low
power consumption while offering limited detection range.
CW radars suffer from clutter noise, micro-Doppler scattering
resulting from other parts of a body (e.g., arm and leg),
and multiple-target identification [106]. On the other hand,
FM-CW radars have shown their ability to localize targets
from some distance [144]. Thus, FMCW radars could be
adopted for patients and elderly care in smart homes and
ambulatory environments, where the subjects could be very
mobile.

Although ultrasonic technology allows remote breathing
monitoring, it requires a fixed setup. Also, the obtained
results from this method are affected by subjects’ move-
ments, inclination of the subject’s head, and sleeping position
changes. CMOS/MEMS-Based airflow pressure sensing is a
promising technique, where both the pressure sensor (MEMS
sensor) and the CMOS processing circuits are fabricated in
a single chip. This fully integrated solution achieves low
power, which allows a battery-powered solution. However,
it suffers from the associated fabrication cost due to the large
required silicon area by the MEMS sensors. In addition, its
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TABLE IV
OVERVIEW OF THE REVIEWED BREATHING MONITORING SYSTEMS

ability to monitor breathing for a moving target was not yet
evaluated.

In general, for biosecurity (e.g. to prevent cross-
contamination) and ergonomic reasons (e.g. patient’s comfort
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and ease of use), non-contact or remote techniques may be the
best suited for continuous breathing monitoring of hospitalized
patients, while for diagnosis of breathing troubles, the most
accurate techniques should be used regardless whether they
are implemented with contact or remote sensors.

To the best of the authors’ knowledge, only the thermal
imaging technique has been presented for screening people
who are infected with COVID-19 by detecting abnormal
respiratory patterns [6], [7]. We believe that radar-based
breathing monitoring could also be considered for screening
people who are infected with COVID-19, since it shows
many advantages including the remote detection and immu-
nity to environmental changes such as light and temperature.
Thus, it could be used outside an hospital environment,
which helps in screening large scale of people. Also,
unlike infrared thermography-based breathing monitoring,
radar-based could be used to screen people wearing masks.
Moreover, radar-based monitoring allows a wider detection
range compared to that achieved by the ultrasound-based
method.

V. CONCLUSION

Implementation techniques for both contact and non-contact
breathing monitoring have been reviewed in this paper.
Non-contact monitoring methods have several advantages over
contact methods, including improved patients’ comfort, espe-
cially for long-term monitoring, because patients are not tied
to an instrument. Moreover, the distress generated by a contact
device (e.g. a mask) may alter the breathing rate. Sensitivity
to environmental changes such as light and temperature is
avoided in non-contact techniques, which results in better
accuracy. We confirmed through this review that remote
breathing monitoring allows screening of people infected
with COVID-19 by detecting abnormal respiratory patterns.
However, non-contact methods are more complex compared
to contact ones and are affected by target movements. Finally,
we evaluated various breathing monitoring systems, to identify
their respective advantages and limitations.
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