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Abstract—Automatic speech recognition (ASR) based on
surface electromyography (sEMG) sensors is an important
technology converting electrical signals into computer-
readable textual messages, which can overcome the limitation
of acoustic sensors that are easily contaminated by environ-
mental noises. However, current placements of sEMG sensors
mainly depend on the experimenter’s experience, which could
miss important information about the major muscular activ-
ities and lead to the decline of classification performance.
In this study, 120 closely-spaced sEMG sensors were utilized
to collect high-density sEMG signals for recognizing ten digits
in English and Chinese. The linear discriminant analysis
classifier was used to classify the speaking tasks, and the
sequential forward selection algorithm was utilized for analyzing the optimal position of the sensors. The results showed
that the HD sEMG energy maps could help visualize the dynamic muscle activities during the speaking process, and
significantly different muscular contraction patterns were observed for different speaking tasks. The classification
accuracies when using the facial sensors were significantly lower than those on the neck, although with the same number
of sensors. Moreover, the classification rates could be higher than 90% with only 15 optimally selected sensors that were
mainly distributedon the neck instead of the face. This study suggests that the neck muscles could be the main contributor,
and more sEMG sensors should be placed on the neck to improve the ASR performance. The findings of this study could
provide valuable clues for the development of a practical sEMG-based speech recognition system, especially for patients
with speaking disorders.

Index Terms— Automatic speech recognition, high-density surface electromyography, sensors placement, sequential
forward selection algorithm.
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I. INTRODUCTION

SPEAKING activity, as one of the necessary ingredients
of human life, is an essential way for human social

communication. Speaking is a complex process controlled
by a large number of articulatory muscles associated with
phonation. Speaking different words or languages requires
different ways of pronunciation and therefore involves differ-
ent muscular contraction patterns, which could be recorded
by a non-invasive technique called surface electromyogra-
phy (sEMG) via placing EMG sensors on the skin surface
for measuring the corresponding electrical signals. Since the
sEMG signals contain substantial dynamic information about
the articulatory muscle activities, the sEMG sensors could
be used in automatic speech recognition (ASR) systems that
convert the electrical sEMG signals associated with human
speaking into computer-readable textual messages [1].
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Unlike conventional recognition methods using the human
voice collecting from acoustic sensors, the sEMG-based ASR
systems do not rely on any acoustic signals, that are not always
available and easily contaminated by various environmental
noises. Therefore, it can be used even if the subject does not
produce any audible voices (silent speech), such as patients
with speech disorders [2], [3]. Therefore, the sEMG-based
ASR system has developed into a prevalent technique with a
wide variety of applications for speaking recognition in both
audible and silent modes [4]–[6].

Since the sEMG technique is non-invasive and easy to
use, the sEMG-based ASR has been reported in numerous
studies during the past decades. For example, fifteen English
words were classified by using the sEMG signals recorded
from two sensors over the neck muscles of the subject with a
firefighter’s self-contained breathing apparatus [7]. In another
study, a three-channel EMG system was developed for patients
with speech impairment, and three Arabic vowels were recog-
nized by using the sEMG signals recorded from facial mus-
cles [8]. Three channels of sEMG sensors were placed on
the facial muscles, and eleven voiceless Bangla vowels were
classified by using the artificial neural network [9]. A total
of eight sEMG sensors (4 on the face and 4 on the neck)
were used to record the sEMG signals when reading phrases
constructed from a 2500-word vocabulary for silent speech
recognition of patients at least 6 months after total laryngec-
tomy [3]. Five sensors (two on the face and three on the neck)
were used to acquire the sEMG signals, and fourteen sEMG
features and four classifiers were examined to classify eleven
Thai words [10]. Five channels of sEMG sensors located on
the facial muscles were utilized to classify nine Thai syllables
for the rehabilitation of dysarthric patients [11]. Ten sEMG
sensors placed on the facial and neck muscles were used to
recognize ten specific silent speech commands in Chinese [12].
Moreover, different sEMG-based speech recognition systems
have also been developed for different languages, such as
English [13]–[15], Chinese [16]–[18], Japanese [19], [20],
Thai [21], [22], Korean [23], Aceh [24] and Malay [25].

However, the placements of the sensors in the above-
mentioned studies were mostly decided based on the experi-
ence or the trial-and-error method of the experimenter without
any quantitative analysis, leading to a possible declination of
the performance of the ASR system due to improperly placed
sensors. A possible solution might be that the experimenter
could place the sensor according to the physical distribution
of the articulatory muscles [26]. Nevertheless, the speaking
process is complex neuromuscular activities involving a larger
number of small facial and neck muscles, and therefore the
speaking of different words might generate dramatically dif-
ferent patterns of muscular involvements [27]. Moreover, each
language may have its unique activation pattern of the articu-
latory muscles because of its specific pronunciation style [28].
Studies showed that the role of the articulatory muscles could
be significantly different for different languages, and the place-
ment of sensors could considerably affect the performance of
the ASR system accordingly [29], [30]. Therefore, the inves-
tigation of the contribution of different articulatory muscles is
helpful for providing objective guidelines on optimal sensor

placements in cases with an inadequate number of sensors,
so that the accuracy of the sEMG-based ASR system could be
considerably improved. However, up to the present time, there
are few studies to investigate the contributions of the facial and
neck muscles in speech recognition of different languages.

In addition, most of the previous studies used only a
few sensors located on the facial and/or neck muscles to
record sEMG signals as the input of the sEMG-based ASR
system. However, the muscles responsible for speaking are
characterized by a large number and small shapes, and these
muscles spanned a relatively large area across the face and
neck to achieve subtle movements. The usage of a few
empirically placed sensors in sEMG measurements may not
provide adequate information to investigate the contributions
of the facial and neck muscles in speech recognition. It is
still not clear the muscles of which region (the face or the
neck) play a more important role in the ASR system, due to
the lack of comprehensive analyses of full information from
all the muscles. Thus, these challenges have motivated the
emergence of the high-density sEMG (HD sEMG) technique
using multi-channel sEMG sensors in the sEMG-based ASR
field. The HD sEMG technique uses a large number of closely
placed sensors to record electrical activities of a large area of
muscles so that the comprehensive information of a group of
target muscles could be fully revealed [31]. Over the past few
decades, the HD sEMG signals had been adopted in many
research studies to decode motion intents for human-machine
interaction systems, to evaluate the swallowing functions in
patients with dysphagia, to study the behavior of the paraspinal
muscles in people with low back pain and to analyze the motor
unit decomposition in a non-invasive way [32]–[34]. It is also
clinically useful in the assessment of motor fiber conduction
velocity [35] and fatigue evaluation of motor unit action
potentials [36] due to its non-invasiveness and its capacity to
record over very long periods. The introduction of HD sEMG
technique into the sEMG-based ASR system could overcome
the limitation of current methods with insufficient sensors so
that complete information about articulatory muscles could be
obtained to analyze the contributions of the facial and neck
muscles in ASR, which helps to provide practical guidelines
on how to place the sEMG sensors to improve the performance
of the sEMG-based ASR system.

The purpose of this study is to investigate the contributions
of different articulatory muscles for English and Chinese
speech recognition using multi-channel sEMG sensors. A total
of 120 surface sensors closely placed over the facial and neck
muscles were utilized to simultaneously collect HD sEMG
signals when the subjects were speaking ten English and
Chinese digits, respectively. A set of topographic maps were
constructed to visualize the dynamic energy distribution of the
articulatory muscular activities during the speaking process.
The classification accuracies were calculated and compared
for different sensor groups of the face and neck regions. The
distribution of the optimal sensors automatically selected by
a sequential forward selection algorithm was also analyzed
to investigate the roles of different articulatory muscles. This
study could provide a useful guideline for appropriately plac-
ing sEMG sensors and pave the way for the development of a
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TABLE I
SPEAKING TASKS OF TEN DIGITS IN

ENGLISH AND CHINESE LANGUAGE

clinically feasible system for sEMG-based speech recognition,
especially for patients with speaking disorders.

II. MATERIALS AND METHODS

A. Subjects and Experimental Procedure

A total of eighteen healthy volunteers (eleven males and
seven females) with normal speaking and hearing capabilities
were recruited to participate in the experiment of this study.
All of the volunteers were native Chinese speakers with no
less than ten years of English learning. Before the speak-
ing tasks, the subjects were introduced with the intentions
and procedures of the experimental protocols in detail. The
experiments were approved by the Institutional Review Board
of Shenzhen Institutes of Advanced Technology (#IRB ID:
SIAT-IRB-170815-H0178). Every subject willingly provided
their written informed consent and permitted the scientific and
educational use of their photos and data.

In the experiments, the subjects were required to speak
different digits with an audible speech in both English and
Chinese, and the corresponding HD sEMG signals were col-
lected from the articulatory muscles on the face and neck
regions by multi-channel sEMG sensors. Before each session,
40 seconds of electrical signals were recorded when each
subject remained in a relaxed state without any speaking or
movements to obtain the baseline for the sEMG signals. Then
the subjects were asked to speak ten digits (0 to 9) in English
and Chinese, respectively (Table I). For each trial, each digit
was spoken within one second, followed by a three-second
rest to avoid muscle fatigue. Each trial was repeated 28 times
before continuing to the next digit. The experiments were
carried out in an electromagnetic-shielded room to ensure
high-quality HD sEMG recordings.

B. HD sEMG Acquisition

In this study, the HD sEMG signals were synchronously
recorded by a total of 120 sEMG sensors closely placed on
the face and neck regions. The REFA 128 system (TMSI,
REFA, the Netherlands) was used for the data collection with

Fig. 1. Placement of the 120 sEMG sensors on the face and neck
muscles for HD sEMG data acquisition.

a sampling of 2048 Hz for each channel. Before the data
acquisition, the skin surface was cleaned carefully by using the
alcohol pad for removing extra dust, dander, and skin oil that
could affect the quality of the sEMG signals. The 120 sEMG
sensors were arranged as a set of two-dimensional arrays to
cover all the facial and neck muscles, and the distance between
each adjacent sensor was kept at a small interval of 15 mm
to obtain comprehensive electrophysiological information at a
high spatial resolution. As shown in Fig. 1, eighty sensors
were structured in a 5 × 16 grid evenly located on the
neck muscles. Meanwhile, two sensor arrays in a 4 × 5 grid
(40 channels in total) were symmetrically placed on the left
and right sides of the facial muscles.

In order to compare the contributions of different muscles
in speech recognition, the sensor arrays were grouped in six
ways (Fig. 2): (1) F-40: all the 40 sensors on the facial muscles
(channel F1 to F40); (2) NO-40: the 40 sensors located at the
odd columns of sensor arrays in the neck region (channel N1,
N3, …, N79); (3) NC-40: the 40 neighboring channels located
at the central area of the neck (channel N5 to N12, …, N69 to
N76); (4) NE-40: the 40 sensors located at the even columns
of the neck region (channel N2, N4, …, N80); (5) NA-80:
all the 80 sensors on the neck muscles (channel N1 to N80);
(6) FN-120: all of the 120 sensors on the facial and neck
muscles.

C. HD sEMG Topographic Energy Maps

Firstly, the original sEMG data were filtered by a fourth-
order Butterworth band-pass filter with cut-off frequencies
from 30 to 500 Hz to attenuate low-frequency baseline wander
and other high-frequency noises. Besides, a custom notch filter
was utilized to reduce the power-line interferences at 50 Hz
and its harmonic frequencies. Then, the HD sEMG signals of
each channel were calculated by a set of analysis windows
(length of 250ms) to generate the root mean square (RMS)
of the HD sEMG recordings. Then, the RMS values were
normalized (NRMS) across all channels of electrodes by using
the maximum and minimum RMS of HD sEMG recordings.
Afterward, a sequence of the topographic energy maps was
constructed by the NRMS values for visualizing and evaluating
the contraction patterns of the facial and neck muscles during
the speaking tasks.

The RMS was calculated for each analysis window to obtain
the average energy distribution of the muscular activities as
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Fig. 2. Different ways to group the multi-channel sEMG sensors: (a) Face
region: 40 sensors on the facial muscles (F-40). (b) Neck region: all
the 80 sensors on neck muscles (NA-80), central columns (NC-40), odd
columns (NO-40), and even columns (NE-40).

follows:

R {v [m]} =
√√√√ 1

m

m∑
i=1

v2 [i ] (1)

where R{v[m]} is the RMS value of sEMG signals for each
analysis window, v[i ] is the i th sample in the analysis window,
and m is the total number of windows.

The normalized RMS values were symbolized by NR as
follows.

N R (i) = R (i, j) − min (R)

max (R) − min (R)
(2)

where NR(i) is the normalized RMS value of sEMG signals
in channel i , R(i, j) is the RMS value of channel i in analysis
window j , min(R) is the minimum RMS value of channel i ,
and max(R) is the maximum RMS value of channel i .

D. Features Extracting and Word Classification

Then, the features of the HD sEMG signals were extracted
for providing useful information embedded in the sEMG
signals to recognize the intended speech tasks. The filtered
HD sEMG signals containing all the 28 repetitions were

TABLE II
FOUR TIME DOMAIN FEATURES AND THEIR

MATHEMATICAL DEFINITIONS

manually sliced for each digit, with only the sEMG signals
corresponding to the audible speaking process reserved to
form the activity data. Afterward, the activity data containing
the 28 repetitions of the same digit were partitioned into the
sEMG series by a 400-point (almost 200 ms) sliding window
with a 200-point increment for the computation of the sEMG
features. Signal features that are in the time domain (TD),
frequency domain (FD), and time-frequency domain (TFD)
are used in sEMG-based pattern recognition. Among these
different features in different domains, the TD features were
used most frequently in sEMG classification due to their easy
implementation, low computation complexity, and satisfactory
performance [10], [37]–[41]. Moreover, Hudgins’s feature
set, including the Mean Absolute Value (MAV), Waveform
Length (WL), Zero Crossing (ZC), and Slope Sign Change
(SSC), could comprehensively reflect the temporal and spectral
properties of sEMG signals [10] and therefore they were
widely used by many other studies about prosthesis control
and muscle-computer interface [42]–[47]. Thus, in this study,
these four time-domain features, including the MAV, WL, ZC,
and SSC, were extracted from the preprocessed sEMG signals
for English and Chinese word classification, and the formula
to compute these features were shown in Table II.

Then 5-fold cross-validation arithmetic was employed to
segment the matrix of extracted features and the correspond-
ing targets into training and testing sets. These sets were
subsequently fed into the linear discriminant analysis (LDA)
classifier for recognizing the speech patterns inherent in the
extracted sEMG features. Classification accuracy is one of the
most popular metrics in various pattern recognition applica-
tions including speech recognition. In addition, classification
accuracy is the simplest clustering quality measure to evaluate
clustering results associated with the ground truth. It is essen-
tial for the accurate realization of a user’s intent, and directly
presents the recognition results of the speaking tasks. Thus,
classification accuracy was considered as our core metric for
evaluating the contributions of different articulatory muscles
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Fig. 3. Flowchart of sequential forward selection (SFS) algorithm to
select the optimal sensors.

in speech recognition [49]:

Acc = Ncor

Ntest
× 100% (3)

where Acc is the classification accuracy, Ncor is the number
of correctly classified samples, and Ntest is the total number
of testing samples.

E. Sensor Optimization Analysis

In this study, the optimal sensor number was also calculated,
and the distribution of the optimal sEMG sensors was analyzed
to compare the contributions of different muscles for speech
recognition. The sequential forward selection (SFS) algorithm,
which automatically selects a subset of features that is most
relevant to the problem, was employed to calculate the optimal
sensor number for given classification accuracy. The SFS algo-
rithm was easy to implement and shows great performance in
various circumstances of data dimension reduction [50], [51].
The SFS algorithm started with a null feather set, and then the
channel with the highest classification accuracy was selected
among all the 120 channels. Subsequently, one more channel
with the largest accuracy increment was added at each step
of the algorithm until it reached a target desired classification
accuracy, as shown in Fig. 3.

Given that the optimal channel sets {(i-1)Sch} containing a
total of (i-1) channels had already been selected in the (i-1)th

iteration for the SFS algorithm, each channel (EMG j ) from
the rest sensors would be picked out and combined with the
selected sets {(i-1)Sch} in the i th iteration (4). This procedure
was repeated until all the rest channels have been tested,
and the optimal channel EMG∗ with the highest classification
accuracy would be selected for the i th iteration. Accordingly,

the sets {(i-1)Sch + EMG∗} would be selected as the i th

optimal channel sets {(i)Sch} indicated by (5).

Acc
({(i − 1) Sch} + E MG∗)

= max
j∈{1,2,...,N−i } Acc

({(i − 1) Sch} + E MG j
)

(4)

{(i)Sch} = {(i − 1) Sch} + E MG∗ (5)

{(0)Sch} = � (6)

In this study, different numbers of optimal sEMG sensors,
involving 5 channels (5-ch), 10 channels (10-ch), 15 chan-
nels (15-ch), 20 channels (20-ch), 25 channels (25-ch), and
30 channels (30-ch), were selected from the total 120 sEMG
sensors by using the SFS algorithm, respectively. Then,
the location of these optimally selected sensors was analyzed
according to their distribution and the sensor number from
different groups of muscles was counted separately.

The statistical analyses of one-way ANOVA were per-
formed to analyze the effects of different sensor groups on
the classification accuracies for Chinese and English speech
recognition, respectively. Meanwhile, the distribution of the
optimal sEMG sensors was also compared among different
sensor groups to evaluate the contribution of different muscles
for different speech recognition tasks. All the statistical results
were obtained by comparing the p-value with a confidence
level of 0.05. In this study, all the analyses of the offline HD
sEMG data, such as digital filtering, feature extraction, SFS
algorithms, and pattern recognition, were implemented in the
Matlab software platform (MathWorks, Natick, MA, USA).

III. RESULTS

A. HD sEMG Topographic Energy Maps for the Entire
Speaking Process

In this study, the dynamic HD sEMG topographic energy
maps, which could demonstrate the energy distribution of the
articulatory muscular activities when the subject was speak-
ing, were constructed from the sEMG signals and a typical
example was shown in Fig. 4, where high energy intensity
was represented by red color. The entire speaking process was
segmented into six temporal frames (frame 1 to frame 6) for
exhibiting the dynamic activities of the facial and neck muscles
when the subject was speaking the English words “zero” and
“one”, respectively.

Before the subject started to speak the word “zero”,
the energy map kept at low intensity on both the face and
neck regions in frame 1, as shown in Fig. 4(a). In frame 2,
a high-energy area appeared at the bottom center of the neck,
indicating the beginning of the word speaking. Then the energy
concentration area started to move upward, and the maximum
muscular activities were observed in the middle of the facial
region in frame 3, with constantly diminishing EMG activities
when moving away from the mouth. Afterward, the region
with maximum muscular activities traveled downwards back
to the lower edge location of the neck region, while the
activities of the facial muscles decreased to a low intensity in
frame 4. Thereafter, the intensity of the high-energy area on
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Fig. 4. Dynamic HD sEMG topographic energy maps during the entire
speaking process when the subject was speaking “zero” (a) and “one” (b).

the neck gradually declined in frame 5, and finally disappeared
in frame 6 when the speaking task completed.

On the contrary, the HD sEMG topographic energy map
in Fig. 4(b) demonstrated a significantly different pattern when
the subject spoke a different word of “One”. Unlike Fig 3(a)
in which the energy concentration area traveled forward and
backward between the face and the neck, the EMG activities
of the word “one” showed a briefer and simpler pattern.
In Fig 3(b), noticeable muscular activities were first observed
in frame 2 over the facial muscles around the mouth region.
Then the intensity of the facial muscular activities considerably
increased in frame 3, and the range of the active region spread
downward to the center of the neck. After that, the intensity
of the active areas significantly decreased in frame 4, with
some residual energy distributed along the mouth region. From
frame 5 to frame 6, no apparent muscular activities were
observed on either the face or the neck region.

Additionally, when comparing with the two speaking tasks
in Fig. 4(a) and 4(b), it was observed that the energy maps
showed approximately symmetric left-and-right distributions
for both the face and neck muscles during the whole speaking
process.

B. Averaged HD sEMG Topographic Energy Maps for
Different Words

For comparing the HD sEMG topographic energy maps
among different speaking tasks, all the temporal frames
(Fig. 4) during the speaking process were averaged for each
digit word, and the averaged energy maps of 10 different words
were shown in Fig. 5. It was observed that the EMG activities
of the facial muscles were mainly located around the mouth
regions while those of the neck muscles exhibited on the center
of the neck across all the ten speaking tasks. Nevertheless,
evident differences were also observed among different speak-
ing tasks. While rather high intensities of muscular activities
were observed on the neck region for the words “four”, “five”
and “seven”, the significantly lower amplitude of neck energy
distribution were seen for other words such as “two”, “three”,
“six” and “nine”. For the neck region, the area with the highest
energy tended to locate at the lower portion for most of
the word speaking tasks. Moreover, it was observed that the
muscular activities showed coarse left/right symmetry for the

Fig. 5. The typical HD sEMG topographic maps when speaking ten
different English words, including zero, one, two, three, four, five, six,
seven, eight, and nine.

neck regions. However, significant differences between the left
and right could be observed in the facial region, especially for
the words of “zero”, “two” and “five”. In other words, the
facial areas with the highest energy were inclined to distribute
around the mouth at the lower portions.

C. Comparison of Classification Accuracies Among
Different Sensor Groups

To evaluate the performance of the speech recognition
system among different sensor groups, the confusion matrices
of classification accuracies were computed and compared for
the F-40 and NO-40 sensor groups, as shown in Fig. 6. It was
noted that the accuracy of the “rest” task attained 100% on
F-40 and NO-40 groups for both English and Chinese recog-
nition. In Fig. 6(a), for the F-40 group, while the accuracy
reached 91.3 % for recognizing digit one, it dropped to around
67% in classifying digits eight and nine. Most of the accuracies
were lower than 80% for the F-40 group. In contrast, most
of the English words had a recognition accuracy above 80%,
with the only exception of digit seven. In Fig. 6(b), using
the F-40 sensor group for Chinese speech recognition showed
slightly higher overall accuracy than English recognition tasks,
with half of the tasks having accuracies higher than 80%. For
the NO-40 group, only one task (digit 6) had a classification
accuracy less than 80% and the highest accuracy could reach
up to 94.5%.

For investigating the contributions of different muscle activ-
ities towards the sEMG based speech recognition, the 120 HD
sEMG sensors were grouped in six different ways based on
their locations (Fig. 2): F-40, NC-40, NO-40, NE-40, NA-80,
and FN-120. A typical example of the classification accuracy
(averaged across digits) as a function of the sensor group was
shown for both languages in Fig. 7. It was observed that the
F-40 and NC-40 groups had the lowest averaged classification
accuracies (as low as 77.92%) for both languages. With the
same number of sensors, the NO-40 and NE-40 groups showed
significantly better performance with a classification accuracy
as high as 91.58%, and there were no significant differences
between the two groups. When all the 80 neck sensors were
used for the recognition, the NA-80 group demonstrated the
highest classification accuracy up to 95.09%. Moreover, the
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Fig. 6. The confusion matrixes of the classification accuracies using
different sensor groups (F-40 and NO-40) for English (a) and Chinese
(b) speech recognition.

Chinese recognition showed higher averaged classification
accuracies and smaller standard deviations across all the sensor

Fig. 7. The comparison of the classification accuracies (averaged across
different speaking tasks) among different sensor groups for English
(a) and Chinese (b) sEMG-based speech recognition.

groups when compared with the English tasks, especially for
the F-40 and NC-40 groups.

To further investigate the contributions of different regions
of muscles, the classification accuracies averaged across all the
different digits and subjects were compared among all the six
different sensor groups (F-40, NC-40, NO-40, NE-40, NA-80,
and FN-120) for both English and Chinese, as shown in Fig. 8.
It was observed that the classification accuracy of the F-40
group was the lowest for both English (76.9%) and Chinese
(81.11%) recognition, with the NC-40 group having slightly
better performance. The NO-40 and NE-40 groups showed
considerably higher accuracies than the F-40 and NC-40
groups, and there were no significant differences between
the NO-40 and NE-40 groups. Further increase in the sensor
number would also lead to additional performance improve-
ment in the speech classification, such as the NA-80 and
FN-120 groups, with the highest accuracy up to 96.54%. It was
also observed that the accuracies for English recognition were
slightly lower than that of Chinese recognition across all the
sensor groups, especially for the F-40 group.
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Fig. 8. The comparison of the classification accuracy averaged across
all the different digits and subjects among six different sensor groups for
recognizing English and Chinese speaking tasks.

D. Distribution of Optimal Sensors for Different
Classification Accuracies

To further localize the best subset of all the HD sEMG
sensors that contributed mostly to speech recognition and to
reduce the sensor number for practical sEMG-based applica-
tions, the SFS algorithm was proposed to automatically find
the optimal channel after searching all the 120 sEMG sensors.
Then the number of the optimal channels that came from three
different sensor groups (F-40, NO-40, and NE-40) was counted
for each sensor group, respectively, and the distribution of
the optimal channels among the three sensors groups was
illustrated in Fig. 9. As shown in Fig. 9(a), as the optimal
channel number increased from 5 to 30, the corresponding
classification accuracy improved from 74.11% to 94.9% for
the English recognition tasks. It was also observed that the
optimal channel numbers selected from facial muscles were
much less than that from the neck muscles. For instance, for
an optimal channel of 5, there was only one optimal channel
selected from the F-40 group, while there were both two
channels selected from the NO-40 and NE-40 groups. Notably,
when the optimal channel number increased, significantly
more optimal channels came from the neck region (either the
NO-40 or the NE-40 group) instead of the face region. Similar
patterns of the optimal channel distribution were also observed
for Chinese recognition tasks in Fig. 9(b), with significantly
more channels coming from the neck muscles. Moreover,
the Chinese recognition tasks seemed to have slightly more
optimal sensors coming from the facial muscles (F-40 group),
when compared with the English speech recognition.

To further investigate the contributions between the facial
and neck muscles for speech recognition, the number of the
optimally selected sEMG sensors by the SFS algorithm were
statistically analyzed across all the enrolled subjects, and the
averaged optimal channel numbers coming from the three
different sensor groups (F-40, NO-40, and NE-40) were shown
in Fig. 10. It was observed from Fig. 10(a) that classification

Fig. 9. The distribution of the optimal channels among the three-sensor
groups (F-40, NO-40, and NE-40) as a function of the optimal channel
number for English (a) and Chinese (b) speech recognitions.

performance showed substantial improvement (from 64.66%
to 90.85%) when the optimal channel number increased from
5 to 30, for English speech recognition. The optimal channel
number from the F-40 group was significantly lower than
either the NO-40 or the NE-40 group, and there was no
significant difference between the two groups of the neck
region. Similar observations were found for the distribution
pattern of the optimal channels for Chinese speech recognition
in Fig. 10 (b). It was noteworthy that the average classifi-
cation accuracies for Chinese recognition were systemically
higher than that of English recognition for the same optimally
selected channel number.

E. Contributions of Different Muscle Groups With the
Increasing Class Number

In addition, to further examine the overall performance of
our system, we increased the word number by combining the
ten English and ten Chinese speaking tasks as a new set with a
total of 20 speech tasks, and then the classification accuracies
were compared across different sensor groups (F-40, NE-40,
and NO-40) as the class number increased from 1 to 20. As it
was shown in Fig. 11 below, the classification accuracies of
the F-40 group remained at the lowest level when compared
with the NO-40 and NE-40 groups. Meanwhile, a decrease
in the classification accuracies was constantly observed when
increasing the speech class number, regardless of the sensor
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Fig. 10. The distribution of the optimal channel numbers coming from the
three different sensor groups (F-40, NO-40, and NE-40) when averaged
across all the recruited subjects for English (a) and Chinese (b) speech
recognition.

groups (F-40, NO-40, or NE-40). However, the declining
rate of accuracy was quite different among different sensor
groups. When the class number increased from 1 to 20,
the classification accuracies dropped from 100% to 73.76%
for the F-40 group, 85.1% for the NO-40 group, and
87.67% for the NE-40 group, respectively. In comparison,
the classification accuracies for NO-40 and NE-40 groups were
significantly higher than the F-40 group when recognizing
20 words, and the results were consistent with the findings
from classifying 10 English or Chinese words.

Moreover, the distribution of the optimally selected sensors
was also calculated and compared among the F-40, NO-40,
and NE-40 sensor groups when recognizing 20 speaking
classes, as shown in Fig. 12. As could be observed from
the figure, when the optimal channel number increased from

Fig. 11. Comparison of the classification accuracies among the F-40,
NO-40, and NE-40 sensor groups when increasing the speech class
number from one to twenty.

Fig. 12. The distribution of the optimally selected sensors among
different sensor groups (F-40, NO-40, and NE-40) when recognizing
20 speaking classes.

5 to 30, the corresponding classification accuracy dramatically
increased from 70.94% to 93.87% for recognizing 20 speech
classes. By further examining the sensor distribution, it was
found that the optimally selected sensors are mainly distributed
on the neck muscles (either the NO-40 or the NE-40 group)
instead of the face muscles (F-40). For example, among the
5 optimal selected channels, there was only one sensor coming
from the F-40 group. When the optimal channel number
increased, the number of optimal sensors from the F-40 group
was always smaller than the NO-40 or NE-40 group, similar
to the findings of 10 English or Chinese word classes.

IV. DISCUSSION

The sEMG-based ASR is a technique that enables the
recognition of speaking activities into a textual representation
using the sEMG signals recorded from the articulatory muscles
associated with speaking activities by the sEMG sensors. The
principal objective of this study was to examine the contri-
butions of different articulatory muscles for the sEMG-based
ASR, which would be helpful for providing practical guide-
lines for sEMG sensor placement. This purpose was achieved
by using the HD sEMG signals recorded from the facial and
neck muscles when speaking ten digits in English and Chinese,
respectively.
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The study showed that the energy maps calculated from the
HD sEMG signals could help to visualize the dynamic energy
distribution of the muscular activities during the speaking
process (Fig. 4) and provide physiological clues to identify
different word pronunciations (Fig. 5). The HD sEMG topo-
graphic energy maps are attributed to the vocal cord vibration
and mouth movement during the physiological process of
speaking [52], [53]. The dynamic spatiotemporal patterns in
normal subjects (Fig. 4 and 5) could illustrate the charac-
teristics of a normal speaking process and, therefore, could
establish a standard for the diagnosis of the articulatory muscle
activities. Meanwhile, the placement of the electrode used for
evaluating the speaking functions should follow the myoelec-
trical characteristics of the speaking activities. Based on the
results of this study, the electrodes located in the center of the
neck or close to the mouth picked up the largest amplitude of
sEMG signals, and therefore they are important for providing
the most reliable information for speaking assessment. The
findings would suggest that the HD sEMG topographic energy
maps could be possibly used as a potential tool for finding
the proper sensor placement for speaking related researches,
such as speech recognition or evaluation of phonation function.
It should also be noted that there were significant individual
differences in the classification accuracies when using the
same group of sensors (Fig. 7), which might be a result of
the different speaking styles or habits of different individuals
or languages. Therefore, the purpose of this study is to
obtain an individual-independent general understanding of the
contributions of different articulatory muscles and therefore
provide practical guidelines for sensor placements that are
applicable to all individuals.

The use of the HD sEMG technique with multi-channel
sensors plays an important role in the investigations of this
study by means of covering all the small articulatory muscles
in high space-resolution and providing full information about
the muscular activities during the speaking process. In most
of the previous studies, the sEMG-based ASR investigations
depended on the sEMG signals recorded from a few numbers
of sensors whose positions were chosen empirically with no
quantitative analysis, such as five facial sensors for Thai word
recognition [11], eight face and neck sensors for English
silent speech recognition [10], and ten face and neck surface
sensors for Chinese silent speech classification [13]. However,
the insufficient small number of sEMG sensors chosen by
experience might lead to the missing of important muscle
coverage and major electrical activities that would be essential
for speech recognition. For example, placing all the sEMG
sensors along the edges of the face or the neck region (Fig. 1)
may miss the large amplitude of muscular activities in the
middle regions and result in the rather low amplitude of
sEMG signals containing little information about the speaking
activities (Fig. 4 and 5), leading to the deterioration of the
classification performance of the speech recognition. The HD
sEMG technique utilized a total of 120 sEMG sensors that are
enough to cover all the face and neck muscles, and ensured
that no important information about the muscular activities
was missed to investigate the contributions of different muscles
thoroughly.

In this study, the 120 HD sEMG sensors were divided into
six different groups based on their locations to assess the con-
tributions of different articulatory muscles for the sEMG-based
ASR systems. The results from Fig. 7 and 8 showed that the
facial sensor group (F-40) had significantly lower classification
accuracies than any of the neck sensor groups (NC-40, NO-40,
NE-40), although with the same channel numbers. Meanwhile,
the results in Fig. 11 showed that the classification accuracy
of the facial group F-40 was the lowest compared with the
sensor groups on the neck (NO-40 and NE-40), when the
class number of speaking tasks increased from one to twenty.
These results demonstrated that the neck muscles should be
the main contributor towards satisfactory speech recognition
performance. The findings confirm that the placement of the
sensors greatly affects the classification rate of the ASR
system, and the neck muscles show a more important role
in better speech recognition than the facial muscles. It may
be explained by the physiological fact that there are more
articulatory muscles distributed along the neck regions, and
there are more muscles activated or involved during speech
production [27]. The insignificant differences between the
NO-40 and NE-40 groups may be attributed to the reason
that the two groups are interlaced with extremely close
space between neighboring columns to cover nearly the same
information sources. The finding that the NC-40 group had
significantly lower classification accuracy than either the
NO-40 or the NE-40 group suggests that the sEMG sensors
should cover larger areas to achieve better classification per-
formances, which is also consistent with the findings of our
previous studies on sEMG-based speech recognition [54], [55].
These findings of this study may be useful for providing useful
recommendations about sensor placements in routine practices
of sEMG-based speech recognition.

Considering that there could be redundancy within the
HD sEMG signals and placing sEMG sensors as many as
120 could be time-consuming, the SFS algorithm was pro-
posed to automatically select the optimal channels with the
highest classification accuracy so that the sensor number
could be greatly reduced. The results in Fig. 9 showed that
the classification accuracy dramatically increased with the
optimal channel number, and it could reach about 90% for
only 15 optimally selected sensors. By further analyzing
the origination, it was found that significantly more optimal
sensors came from the neck sensor group (either NO-40 or
NE-40) than the facial sensor group (F-40), although the sensor
groups had the same number of channels. Besides, similar
findings were shown in Fig. 12, the classification accuracy
was 88.62% with only 15 optimally selected sensors when
mixing all the English and Chinese words. These findings
indicated that the neck muscles should be a more significant
contributor to sEMG-based speech recognition, which agrees
with the findings in Fig. 7 and 8. It may be explained by
the fact that speeches were generated by the quasi-periodic
vibration of the vocal cords located within the larynx, which
were mainly controlled by the articulatory muscles around
the neck. The results of our study suggest that instead of
placing an equal number of sensors on the face and neck,
it may be a better practice to place more sensors along the
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neck region to further improve the classification performance.
Other approaches besides the SFS algorithm could also be
used to further reduce the number of the sensor channels,
so the wearable sEMG-based speech recognition systems or
devices could be developed by placing only a few electrodes
on the optimal locations. Acoustic and inertial sensors could
also be employed in future studies so that the information
from different types of sensors could be fused to reduce more
channels and additionally improve the performance of the
sEMG-based speech recognition.

The language also acts as an essential factor in the speech
recognition, and many different sEMG-based speech recogni-
tion systems were developed in previous studies for different
languages, such as English [14], [15], Chinese [16], [17],
Japanese [20], Portuguese [56], Spanish [22] and Arabic [8].
In this study, the performances of sEMG-based speech
recognition were systemically compared between English and
Chinese under different conditions. The results of
Fig. 8, 9, and 10 indicated that the classification accuracies
of Chinese speech recognition were slightly higher than
English recognition, regardless of the sensor groups or the
optimal sensor channels. The slight superior performance
of Chinese speech recognition may be attributed to the fact
that all the recruited subjects are native Chinese speakers,
and they were more fluent in Chinese speaking. It was also
observed that when using only the facial sensors (F-40) or
the neck sensors (NO-40 or NE-40), the English recognition
showed significantly lower classification accuracies than
Chinese, indicating that the English-speaking task may rely
more heavily on the coordination between the facial and
neck muscles. However, only ten digits were employed in the
experiments of this study; more different words or phonemes
could be involved for further investigating the differences
between English and Chinese speech recognition in future
studies.

V. CONCLUSION

In this study, multi-channel sEMG sensors (120 channels)
were placed on the facial and neck muscles with high spatial
resolution, and the recorded HD sEMG signals were used for
automatic speech recognition of English and Chinese digits.
The energy maps calculated from the HD sEMG signals
showed that the muscular activities of different locations
demonstrated significant patterns during the speaking process,
and they could help to visualize the dynamic energy distribu-
tion of the articulatory muscular activities. The classification
accuracies when using only the sensors on the face were
significantly lower than those for the neck muscles, although
with the same number of channel numbers. The optimal
sensors automatically selected by the sequential forward selec-
tion algorithm mainly distributed along with muscles on the
neck instead of the face. The classification accuracies of
Chinese speech recognition were slightly higher than English
recognition, regardless of the sensor groups or the optimal
channel number. The findings of this study showed that the
multi-channel sEMG sensors could be useful to study the
muscular activation patterns during speech recognition com-
prehensively, and the muscles on the neck should be the main

contributor towards satisfactory classification performance.
This study could provide valuable clues for the development of
a practical sEMG-based speech recognition system, especially
for patients with speaking disorders.
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